1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-04 12:00:25 +00:00

Optimize SkyMaterials by removing uses of acos and simplifying logic

The results looks almost the same and run much faster.
This commit is contained in:
clayjohn
2025-01-23 20:03:19 -08:00
parent 09ea7bc6a3
commit 6fede0b951
4 changed files with 159 additions and 73 deletions

View File

@@ -151,6 +151,32 @@ vec4 fog_process(vec3 view, vec3 sky_color) {
}
#endif // !DISABLE_FOG
// Eberly approximations from https://seblagarde.wordpress.com/2014/12/01/inverse-trigonometric-functions-gpu-optimization-for-amd-gcn-architecture/.
// input [-1, 1] and output [0, PI]
float acos_approx(float p_x) {
float x = abs(p_x);
float res = -0.156583f * x + (M_PI / 2.0);
res *= sqrt(1.0f - x);
return (p_x >= 0) ? res : M_PI - res;
}
// Based on https://math.stackexchange.com/questions/1098487/atan2-faster-approximation
// but using the Eberly coefficients from https://seblagarde.wordpress.com/2014/12/01/inverse-trigonometric-functions-gpu-optimization-for-amd-gcn-architecture/.
float atan2_approx(float y, float x) {
float a = min(abs(x), abs(y)) / max(abs(x), abs(y));
float s = a * a;
float poly = 0.0872929f;
poly = -0.301895f + poly * s;
poly = 1.0f + poly * s;
poly = poly * a;
float r = abs(y) > abs(x) ? (M_PI / 2.0) - poly : poly;
r = x < 0.0 ? M_PI - r : r;
r = y < 0.0 ? -r : r;
return r;
}
void main() {
vec3 cube_normal;
#ifdef USE_MULTIVIEW
@@ -171,7 +197,7 @@ void main() {
vec2 uv = gl_FragCoord.xy; // uv_interp * 0.5 + 0.5;
vec2 panorama_coords = vec2(atan(cube_normal.x, -cube_normal.z), acos(cube_normal.y));
vec2 panorama_coords = vec2(atan2_approx(cube_normal.x, -cube_normal.z), acos_approx(cube_normal.y));
if (panorama_coords.x < 0.0) {
panorama_coords.x += M_PI * 2.0;

View File

@@ -34,11 +34,11 @@
#include "core/version.h"
Mutex ProceduralSkyMaterial::shader_mutex;
RID ProceduralSkyMaterial::shader_cache[2];
RID ProceduralSkyMaterial::shader_cache[4];
void ProceduralSkyMaterial::set_sky_top_color(const Color &p_sky_top) {
sky_top_color = p_sky_top;
RS::get_singleton()->material_set_param(_get_material(), "sky_top_color", sky_top_color);
RS::get_singleton()->material_set_param(_get_material(), "sky_top_color", sky_top_color * sky_energy_multiplier);
}
Color ProceduralSkyMaterial::get_sky_top_color() const {
@@ -47,7 +47,7 @@ Color ProceduralSkyMaterial::get_sky_top_color() const {
void ProceduralSkyMaterial::set_sky_horizon_color(const Color &p_sky_horizon) {
sky_horizon_color = p_sky_horizon;
RS::get_singleton()->material_set_param(_get_material(), "sky_horizon_color", sky_horizon_color);
RS::get_singleton()->material_set_param(_get_material(), "sky_horizon_color", sky_horizon_color * sky_energy_multiplier);
}
Color ProceduralSkyMaterial::get_sky_horizon_color() const {
@@ -56,7 +56,9 @@ Color ProceduralSkyMaterial::get_sky_horizon_color() const {
void ProceduralSkyMaterial::set_sky_curve(float p_curve) {
sky_curve = p_curve;
RS::get_singleton()->material_set_param(_get_material(), "sky_curve", sky_curve);
// Actual curve passed to shader includes an ad hoc adjustment because the curve used to be
// in calculated in angles and now uses cosines.
RS::get_singleton()->material_set_param(_get_material(), "inv_sky_curve", 0.6 / sky_curve);
}
float ProceduralSkyMaterial::get_sky_curve() const {
@@ -65,7 +67,9 @@ float ProceduralSkyMaterial::get_sky_curve() const {
void ProceduralSkyMaterial::set_sky_energy_multiplier(float p_multiplier) {
sky_energy_multiplier = p_multiplier;
RS::get_singleton()->material_set_param(_get_material(), "sky_energy", sky_energy_multiplier);
RS::get_singleton()->material_set_param(_get_material(), "sky_top_color", sky_top_color * sky_energy_multiplier);
RS::get_singleton()->material_set_param(_get_material(), "sky_horizon_color", sky_horizon_color * sky_energy_multiplier);
RS::get_singleton()->material_set_param(_get_material(), "sky_cover_modulate", Color(sky_cover_modulate.r, sky_cover_modulate.g, sky_cover_modulate.b, sky_cover_modulate.a * sky_energy_multiplier));
}
float ProceduralSkyMaterial::get_sky_energy_multiplier() const {
@@ -74,11 +78,16 @@ float ProceduralSkyMaterial::get_sky_energy_multiplier() const {
void ProceduralSkyMaterial::set_sky_cover(const Ref<Texture2D> &p_sky_cover) {
sky_cover = p_sky_cover;
if (p_sky_cover.is_valid()) {
RS::get_singleton()->material_set_param(_get_material(), "sky_cover", p_sky_cover->get_rid());
} else {
RS::get_singleton()->material_set_param(_get_material(), "sky_cover", Variant());
}
if (shader_set) {
RS::get_singleton()->material_set_shader(_get_material(), get_shader_cache());
}
}
Ref<Texture2D> ProceduralSkyMaterial::get_sky_cover() const {
@@ -87,7 +96,7 @@ Ref<Texture2D> ProceduralSkyMaterial::get_sky_cover() const {
void ProceduralSkyMaterial::set_sky_cover_modulate(const Color &p_sky_cover_modulate) {
sky_cover_modulate = p_sky_cover_modulate;
RS::get_singleton()->material_set_param(_get_material(), "sky_cover_modulate", sky_cover_modulate);
RS::get_singleton()->material_set_param(_get_material(), "sky_cover_modulate", Color(sky_cover_modulate.r, sky_cover_modulate.g, sky_cover_modulate.b, sky_cover_modulate.a * sky_energy_multiplier));
}
Color ProceduralSkyMaterial::get_sky_cover_modulate() const {
@@ -96,7 +105,7 @@ Color ProceduralSkyMaterial::get_sky_cover_modulate() const {
void ProceduralSkyMaterial::set_ground_bottom_color(const Color &p_ground_bottom) {
ground_bottom_color = p_ground_bottom;
RS::get_singleton()->material_set_param(_get_material(), "ground_bottom_color", ground_bottom_color);
RS::get_singleton()->material_set_param(_get_material(), "ground_bottom_color", ground_bottom_color * ground_energy_multiplier);
}
Color ProceduralSkyMaterial::get_ground_bottom_color() const {
@@ -105,7 +114,7 @@ Color ProceduralSkyMaterial::get_ground_bottom_color() const {
void ProceduralSkyMaterial::set_ground_horizon_color(const Color &p_ground_horizon) {
ground_horizon_color = p_ground_horizon;
RS::get_singleton()->material_set_param(_get_material(), "ground_horizon_color", ground_horizon_color);
RS::get_singleton()->material_set_param(_get_material(), "ground_horizon_color", ground_horizon_color * ground_energy_multiplier);
}
Color ProceduralSkyMaterial::get_ground_horizon_color() const {
@@ -114,7 +123,9 @@ Color ProceduralSkyMaterial::get_ground_horizon_color() const {
void ProceduralSkyMaterial::set_ground_curve(float p_curve) {
ground_curve = p_curve;
RS::get_singleton()->material_set_param(_get_material(), "ground_curve", ground_curve);
// Actual curve passed to shader includes an ad hoc adjustment because the curve used to be
// in calculated in angles and now uses cosines.
RS::get_singleton()->material_set_param(_get_material(), "inv_ground_curve", 0.6 / ground_curve);
}
float ProceduralSkyMaterial::get_ground_curve() const {
@@ -123,7 +134,8 @@ float ProceduralSkyMaterial::get_ground_curve() const {
void ProceduralSkyMaterial::set_ground_energy_multiplier(float p_multiplier) {
ground_energy_multiplier = p_multiplier;
RS::get_singleton()->material_set_param(_get_material(), "ground_energy", ground_energy_multiplier);
RS::get_singleton()->material_set_param(_get_material(), "ground_bottom_color", ground_bottom_color * ground_energy_multiplier);
RS::get_singleton()->material_set_param(_get_material(), "ground_horizon_color", ground_horizon_color * ground_energy_multiplier);
}
float ProceduralSkyMaterial::get_ground_energy_multiplier() const {
@@ -132,7 +144,7 @@ float ProceduralSkyMaterial::get_ground_energy_multiplier() const {
void ProceduralSkyMaterial::set_sun_angle_max(float p_angle) {
sun_angle_max = p_angle;
RS::get_singleton()->material_set_param(_get_material(), "sun_angle_max", Math::deg_to_rad(sun_angle_max));
RS::get_singleton()->material_set_param(_get_material(), "sun_angle_max", Math::cos(Math::deg_to_rad(sun_angle_max)));
}
float ProceduralSkyMaterial::get_sun_angle_max() const {
@@ -141,7 +153,9 @@ float ProceduralSkyMaterial::get_sun_angle_max() const {
void ProceduralSkyMaterial::set_sun_curve(float p_curve) {
sun_curve = p_curve;
RS::get_singleton()->material_set_param(_get_material(), "sun_curve", sun_curve);
// Actual curve passed to shader includes an ad hoc adjustment because the curve used to be
// in calculated in angles and now uses cosines.
RS::get_singleton()->material_set_param(_get_material(), "inv_sun_curve", 1.6f / Math::pow(sun_curve, 1.4f));
}
float ProceduralSkyMaterial::get_sun_curve() const {
@@ -153,7 +167,7 @@ void ProceduralSkyMaterial::set_use_debanding(bool p_use_debanding) {
_update_shader();
// Only set if shader already compiled
if (shader_set) {
RS::get_singleton()->material_set_shader(_get_material(), shader_cache[int(use_debanding)]);
RS::get_singleton()->material_set_shader(_get_material(), get_shader_cache());
}
}
@@ -174,11 +188,16 @@ Shader::Mode ProceduralSkyMaterial::get_shader_mode() const {
return Shader::MODE_SKY;
}
// Internal function to grab the current shader RID.
// Must only be called if the shader is initialized.
RID ProceduralSkyMaterial::get_shader_cache() const {
return shader_cache[int(use_debanding) + (sky_cover.is_valid() ? 2 : 0)];
}
RID ProceduralSkyMaterial::get_rid() const {
_update_shader();
if (!shader_set) {
RS::get_singleton()->material_set_shader(_get_material(), shader_cache[1 - int(use_debanding)]);
RS::get_singleton()->material_set_shader(_get_material(), shader_cache[int(use_debanding)]);
RS::get_singleton()->material_set_shader(_get_material(), get_shader_cache());
shader_set = true;
}
return _get_material();
@@ -186,7 +205,7 @@ RID ProceduralSkyMaterial::get_rid() const {
RID ProceduralSkyMaterial::get_shader_rid() const {
_update_shader();
return shader_cache[int(use_debanding)];
return get_shader_cache();
}
void ProceduralSkyMaterial::_validate_property(PropertyInfo &p_property) const {
@@ -265,13 +284,15 @@ void ProceduralSkyMaterial::cleanup_shader() {
if (shader_cache[0].is_valid()) {
RS::get_singleton()->free(shader_cache[0]);
RS::get_singleton()->free(shader_cache[1]);
RS::get_singleton()->free(shader_cache[2]);
RS::get_singleton()->free(shader_cache[3]);
}
}
void ProceduralSkyMaterial::_update_shader() {
MutexLock shader_lock(shader_mutex);
if (shader_cache[0].is_null()) {
for (int i = 0; i < 2; i++) {
for (int i = 0; i < 4; i++) {
shader_cache[i] = RS::get_singleton()->shader_create();
// Add a comment to describe the shader origin (useful when converting to ShaderMaterial).
@@ -283,75 +304,73 @@ shader_type sky;
uniform vec4 sky_top_color : source_color = vec4(0.385, 0.454, 0.55, 1.0);
uniform vec4 sky_horizon_color : source_color = vec4(0.646, 0.656, 0.67, 1.0);
uniform float sky_curve : hint_range(0, 1) = 0.15;
uniform float sky_energy = 1.0; // In Lux.
uniform sampler2D sky_cover : filter_linear, source_color, hint_default_black;
uniform vec4 sky_cover_modulate : source_color = vec4(1.0, 1.0, 1.0, 1.0);
uniform float inv_sky_curve : hint_range(1, 100) = 4.0;
uniform vec4 ground_bottom_color : source_color = vec4(0.2, 0.169, 0.133, 1.0);
uniform vec4 ground_horizon_color : source_color = vec4(0.646, 0.656, 0.67, 1.0);
uniform float ground_curve : hint_range(0, 1) = 0.02;
uniform float ground_energy = 1.0;
uniform float sun_angle_max = 30.0;
uniform float sun_curve : hint_range(0, 1) = 0.15;
uniform float inv_ground_curve : hint_range(1, 100) = 30.0;
uniform float sun_angle_max = 0.877;
uniform float inv_sun_curve : hint_range(1, 100) = 22.78;
uniform float exposure : hint_range(0, 128) = 1.0;
uniform sampler2D sky_cover : filter_linear, source_color, hint_default_black;
uniform vec4 sky_cover_modulate : source_color = vec4(1.0, 1.0, 1.0, 1.0);
void sky() {
float v_angle = acos(clamp(EYEDIR.y, -1.0, 1.0));
float c = (1.0 - v_angle / (PI * 0.5));
vec3 sky = mix(sky_horizon_color.rgb, sky_top_color.rgb, clamp(1.0 - pow(1.0 - c, 1.0 / sky_curve), 0.0, 1.0));
sky *= sky_energy;
float v_angle = clamp(EYEDIR.y, -1.0, 1.0);
vec3 sky = mix(sky_top_color.rgb, sky_horizon_color.rgb, clamp(pow(1.0 - v_angle, inv_sky_curve), 0.0, 1.0));
if (LIGHT0_ENABLED) {
float sun_angle = acos(dot(LIGHT0_DIRECTION, EYEDIR));
if (sun_angle < LIGHT0_SIZE) {
float sun_angle = dot(LIGHT0_DIRECTION, EYEDIR);
float sun_size = cos(LIGHT0_SIZE);
if (sun_angle > sun_size) {
sky = LIGHT0_COLOR * LIGHT0_ENERGY;
} else if (sun_angle < sun_angle_max) {
float c2 = (sun_angle - LIGHT0_SIZE) / (sun_angle_max - LIGHT0_SIZE);
sky = mix(LIGHT0_COLOR * LIGHT0_ENERGY, sky, clamp(1.0 - pow(1.0 - c2, 1.0 / sun_curve), 0.0, 1.0));
} else if (sun_angle > sun_angle_max) {
float c2 = (sun_size - sun_angle) / (sun_size - sun_angle_max);
sky = mix(sky, LIGHT0_COLOR * LIGHT0_ENERGY, clamp(pow(1.0 - c2, inv_sun_curve), 0.0, 1.0));
}
}
if (LIGHT1_ENABLED) {
float sun_angle = acos(dot(LIGHT1_DIRECTION, EYEDIR));
if (sun_angle < LIGHT1_SIZE) {
float sun_angle = dot(LIGHT1_DIRECTION, EYEDIR);
float sun_size = cos(LIGHT1_SIZE);
if (sun_angle > sun_size) {
sky = LIGHT1_COLOR * LIGHT1_ENERGY;
} else if (sun_angle < sun_angle_max) {
float c2 = (sun_angle - LIGHT1_SIZE) / (sun_angle_max - LIGHT1_SIZE);
sky = mix(LIGHT1_COLOR * LIGHT1_ENERGY, sky, clamp(1.0 - pow(1.0 - c2, 1.0 / sun_curve), 0.0, 1.0));
} else if (sun_angle > sun_angle_max) {
float c2 = (sun_size - sun_angle) / (sun_size - sun_angle_max);
sky = mix(sky, LIGHT1_COLOR * LIGHT1_ENERGY, clamp(pow(1.0 - c2, inv_sun_curve), 0.0, 1.0));
}
}
if (LIGHT2_ENABLED) {
float sun_angle = acos(dot(LIGHT2_DIRECTION, EYEDIR));
if (sun_angle < LIGHT2_SIZE) {
float sun_angle = dot(LIGHT2_DIRECTION, EYEDIR);
float sun_size = cos(LIGHT2_SIZE);
if (sun_angle > sun_size) {
sky = LIGHT2_COLOR * LIGHT2_ENERGY;
} else if (sun_angle < sun_angle_max) {
float c2 = (sun_angle - LIGHT2_SIZE) / (sun_angle_max - LIGHT2_SIZE);
sky = mix(LIGHT2_COLOR * LIGHT2_ENERGY, sky, clamp(1.0 - pow(1.0 - c2, 1.0 / sun_curve), 0.0, 1.0));
} else if (sun_angle > sun_angle_max) {
float c2 = (sun_size - sun_angle) / (sun_size - sun_angle_max);
sky = mix(sky, LIGHT2_COLOR * LIGHT2_ENERGY, clamp(pow(1.0 - c2, inv_sun_curve), 0.0, 1.0));
}
}
if (LIGHT3_ENABLED) {
float sun_angle = acos(dot(LIGHT3_DIRECTION, EYEDIR));
if (sun_angle < LIGHT3_SIZE) {
float sun_angle = dot(LIGHT3_DIRECTION, EYEDIR);
float sun_size = cos(LIGHT3_SIZE);
if (sun_angle > sun_size) {
sky = LIGHT3_COLOR * LIGHT3_ENERGY;
} else if (sun_angle < sun_angle_max) {
float c2 = (sun_angle - LIGHT3_SIZE) / (sun_angle_max - LIGHT3_SIZE);
sky = mix(LIGHT3_COLOR * LIGHT3_ENERGY, sky, clamp(1.0 - pow(1.0 - c2, 1.0 / sun_curve), 0.0, 1.0));
} else if (sun_angle > sun_angle_max) {
float c2 = (sun_size - sun_angle) / (sun_size - sun_angle_max);
sky = mix(sky, LIGHT3_COLOR * LIGHT3_ENERGY, clamp(pow(1.0 - c2, inv_sun_curve), 0.0, 1.0));
}
}
vec4 sky_cover_texture = texture(sky_cover, SKY_COORDS);
sky += (sky_cover_texture.rgb * sky_cover_modulate.rgb) * sky_cover_texture.a * sky_cover_modulate.a * sky_energy;
c = (v_angle - (PI * 0.5)) / (PI * 0.5);
vec3 ground = mix(ground_horizon_color.rgb, ground_bottom_color.rgb, clamp(1.0 - pow(1.0 - c, 1.0 / ground_curve), 0.0, 1.0));
ground *= ground_energy;
%s
%s
vec3 ground = mix(ground_bottom_color.rgb, ground_horizon_color.rgb, clamp(pow(1.0 + v_angle, inv_ground_curve), 0.0, 1.0));
COLOR = mix(ground, sky, step(0.0, EYEDIR.y)) * exposure;
}
)",
i ? "render_mode use_debanding;" : ""));
(i % 2) ? "render_mode use_debanding;" : "", i > 1 ? "vec4 sky_cover_texture = texture(sky_cover, SKY_COORDS);" : "", i > 1 ? "sky += (sky_cover_texture.rgb * sky_cover_modulate.rgb) * sky_cover_texture.a * sky_cover_modulate.a;" : ""));
}
}
}
@@ -583,7 +602,7 @@ void PhysicalSkyMaterial::set_use_debanding(bool p_use_debanding) {
_update_shader();
// Only set if shader already compiled
if (shader_set) {
RS::get_singleton()->material_set_shader(_get_material(), shader_cache[int(use_debanding)]);
RS::get_singleton()->material_set_shader(_get_material(), get_shader_cache());
}
}
@@ -598,6 +617,10 @@ void PhysicalSkyMaterial::set_night_sky(const Ref<Texture2D> &p_night_sky) {
} else {
RS::get_singleton()->material_set_param(_get_material(), "night_sky", Variant());
}
if (shader_set) {
RS::get_singleton()->material_set_shader(_get_material(), get_shader_cache());
}
}
Ref<Texture2D> PhysicalSkyMaterial::get_night_sky() const {
@@ -608,11 +631,16 @@ Shader::Mode PhysicalSkyMaterial::get_shader_mode() const {
return Shader::MODE_SKY;
}
// Internal function to grab the current shader RID.
// Must only be called if the shader is initialized.
RID PhysicalSkyMaterial::get_shader_cache() const {
return shader_cache[int(use_debanding) + (night_sky.is_valid() ? 2 : 0)];
}
RID PhysicalSkyMaterial::get_rid() const {
_update_shader();
if (!shader_set) {
RS::get_singleton()->material_set_shader(_get_material(), shader_cache[1 - int(use_debanding)]);
RS::get_singleton()->material_set_shader(_get_material(), shader_cache[int(use_debanding)]);
RS::get_singleton()->material_set_shader(_get_material(), get_shader_cache());
shader_set = true;
}
return _get_material();
@@ -620,7 +648,7 @@ RID PhysicalSkyMaterial::get_rid() const {
RID PhysicalSkyMaterial::get_shader_rid() const {
_update_shader();
return shader_cache[int(use_debanding)];
return get_shader_cache();
}
void PhysicalSkyMaterial::_validate_property(PropertyInfo &p_property) const {
@@ -630,7 +658,7 @@ void PhysicalSkyMaterial::_validate_property(PropertyInfo &p_property) const {
}
Mutex PhysicalSkyMaterial::shader_mutex;
RID PhysicalSkyMaterial::shader_cache[2];
RID PhysicalSkyMaterial::shader_cache[4];
void PhysicalSkyMaterial::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_rayleigh_coefficient", "rayleigh"), &PhysicalSkyMaterial::set_rayleigh_coefficient);
@@ -687,13 +715,15 @@ void PhysicalSkyMaterial::cleanup_shader() {
if (shader_cache[0].is_valid()) {
RS::get_singleton()->free(shader_cache[0]);
RS::get_singleton()->free(shader_cache[1]);
RS::get_singleton()->free(shader_cache[2]);
RS::get_singleton()->free(shader_cache[3]);
}
}
void PhysicalSkyMaterial::_update_shader() {
MutexLock shader_lock(shader_mutex);
if (shader_cache[0].is_null()) {
for (int i = 0; i < 2; i++) {
for (int i = 0; i < 4; i++) {
shader_cache[i] = RS::get_singleton()->shader_create();
// Add a comment to describe the shader origin (useful when converting to ShaderMaterial).
@@ -730,7 +760,7 @@ float henyey_greenstein(float cos_theta, float g) {
void sky() {
if (LIGHT0_ENABLED) {
float zenith_angle = clamp( dot(UP, normalize(LIGHT0_DIRECTION)), -1.0, 1.0 );
float sun_energy = max(0.0, 1.0 - exp(-((PI * 0.5) - acos(zenith_angle)))) * LIGHT0_ENERGY;
float sun_energy = max(0.0, 0.757 * zenith_angle) * LIGHT0_ENERGY;
float sun_fade = 1.0 - clamp(1.0 - exp(LIGHT0_DIRECTION.y), 0.0, 1.0);
// Rayleigh coefficients.
@@ -740,8 +770,8 @@ void sky() {
vec3 mie_beta = turbidity * mie * mie_color.rgb * 0.000434;
// Optical length.
float zenith = acos(max(0.0, dot(UP, EYEDIR)));
float optical_mass = 1.0 / (cos(zenith) + 0.15 * pow(93.885 - degrees(zenith), -1.253));
float zenith = max(0.0, dot(UP, EYEDIR));
float optical_mass = 1.0 / (zenith + 0.15 * pow(3.885 + 54.5 * zenith, -1.253));
float rayleigh_scatter = rayleigh_zenith_size * optical_mass;
float mie_scatter = mie_zenith_size * optical_mass;
@@ -766,22 +796,22 @@ void sky() {
// Solar disk and out-scattering.
float sunAngularDiameterCos = cos(LIGHT0_SIZE * sun_disk_scale);
float sunAngularDiameterCos2 = cos(LIGHT0_SIZE * sun_disk_scale*0.5);
float sunAngularDiameterCos2 = cos(LIGHT0_SIZE * sun_disk_scale * 0.5);
float sundisk = smoothstep(sunAngularDiameterCos, sunAngularDiameterCos2, cos_theta);
vec3 L0 = (sun_energy * extinction) * sundisk * LIGHT0_COLOR;
L0 += texture(night_sky, SKY_COORDS).xyz * extinction;
%s
vec3 color = Lin + L0;
COLOR = pow(color, vec3(1.0 / (1.2 + (1.2 * sun_fade))));
COLOR *= exposure;
} else {
// There is no sun, so display night_sky and nothing else.
COLOR = texture(night_sky, SKY_COORDS).xyz;
%s
COLOR *= exposure;
}
}
)",
i ? "render_mode use_debanding;" : ""));
(i % 2) ? "render_mode use_debanding;" : "", i > 1 ? "L0 += texture(night_sky, SKY_COORDS).xyz * extinction;" : "", i > 1 ? "COLOR = texture(night_sky, SKY_COORDS).xyz;" : ""));
}
}
}

View File

@@ -55,10 +55,12 @@ private:
float global_energy_multiplier = 1.0f;
static Mutex shader_mutex;
static RID shader_cache[2];
static RID shader_cache[4];
static void _update_shader();
mutable bool shader_set = false;
RID get_shader_cache() const;
protected:
static void _bind_methods();
void _validate_property(PropertyInfo &property) const;
@@ -164,7 +166,9 @@ class PhysicalSkyMaterial : public Material {
private:
static Mutex shader_mutex;
static RID shader_cache[2];
static RID shader_cache[4];
RID get_shader_cache() const;
float rayleigh = 0.0f;
Color rayleigh_color;

View File

@@ -187,6 +187,32 @@ vec4 fog_process(vec3 view, vec3 sky_color) {
return vec4(fog_color, 1.0);
}
// Eberly approximation from https://seblagarde.wordpress.com/2014/12/01/inverse-trigonometric-functions-gpu-optimization-for-amd-gcn-architecture/.
// input [-1, 1] and output [0, PI]
float acos_approx(float p_x) {
float x = abs(p_x);
float res = -0.156583f * x + (M_PI / 2.0);
res *= sqrt(1.0f - x);
return (p_x >= 0) ? res : M_PI - res;
}
// Based on https://math.stackexchange.com/questions/1098487/atan2-faster-approximation
// but using the Eberly coefficients from https://seblagarde.wordpress.com/2014/12/01/inverse-trigonometric-functions-gpu-optimization-for-amd-gcn-architecture/.
float atan2_approx(float y, float x) {
float a = min(abs(x), abs(y)) / max(abs(x), abs(y));
float s = a * a;
float poly = 0.0872929f;
poly = -0.301895f + poly * s;
poly = 1.0f + poly * s;
poly = poly * a;
float r = abs(y) > abs(x) ? (M_PI / 2.0) - poly : poly;
r = x < 0.0 ? M_PI - r : r;
r = y < 0.0 ? -r : r;
return r;
}
void main() {
vec3 cube_normal;
#ifdef USE_MULTIVIEW
@@ -207,7 +233,7 @@ void main() {
vec2 uv = uv_interp * 0.5 + 0.5;
vec2 panorama_coords = vec2(atan(cube_normal.x, -cube_normal.z), acos(cube_normal.y));
vec2 panorama_coords = vec2(atan2_approx(cube_normal.x, -cube_normal.z), acos_approx(cube_normal.y));
if (panorama_coords.x < 0.0) {
panorama_coords.x += M_PI * 2.0;