You've already forked godot
							
							
				mirror of
				https://github.com/godotengine/godot.git
				synced 2025-11-03 11:50:27 +00:00 
			
		
		
		
	recast: Update to upstream version 1.6.0
Release notes: - https://github.com/recastnavigation/recastnavigation/releases/tag/v1.6.0
This commit is contained in:
		
							
								
								
									
										2
									
								
								thirdparty/README.md
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								thirdparty/README.md
									
									
									
									
										vendored
									
									
								
							@@ -617,7 +617,7 @@ in 10.40, it can be found in the `patches` folder.
 | 
			
		||||
## recastnavigation
 | 
			
		||||
 | 
			
		||||
- Upstream: https://github.com/recastnavigation/recastnavigation
 | 
			
		||||
- Version: git (4fef0446609b23d6ac180ed822817571525528a1, 2022)
 | 
			
		||||
- Version: 1.6.0 (6dc1667f580357e8a2154c28b7867bea7e8ad3a7, 2023)
 | 
			
		||||
- License: zlib
 | 
			
		||||
 | 
			
		||||
Files extracted from upstream source:
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										951
									
								
								thirdparty/recastnavigation/Recast/Include/Recast.h
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										951
									
								
								thirdparty/recastnavigation/Recast/Include/Recast.h
									
									
									
									
										vendored
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -19,11 +19,11 @@
 | 
			
		||||
#ifndef RECASTALLOC_H
 | 
			
		||||
#define RECASTALLOC_H
 | 
			
		||||
 | 
			
		||||
#include <stddef.h>
 | 
			
		||||
#include <stdint.h>
 | 
			
		||||
 | 
			
		||||
#include "RecastAssert.h"
 | 
			
		||||
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <stdint.h>
 | 
			
		||||
 | 
			
		||||
/// Provides hint values to the memory allocator on how long the
 | 
			
		||||
/// memory is expected to be used.
 | 
			
		||||
enum rcAllocHint
 | 
			
		||||
@@ -47,18 +47,27 @@ typedef void (rcFreeFunc)(void* ptr);
 | 
			
		||||
/// Sets the base custom allocation functions to be used by Recast.
 | 
			
		||||
///  @param[in]		allocFunc	The memory allocation function to be used by #rcAlloc
 | 
			
		||||
///  @param[in]		freeFunc	The memory de-allocation function to be used by #rcFree
 | 
			
		||||
///  
 | 
			
		||||
/// @see rcAlloc, rcFree
 | 
			
		||||
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc);
 | 
			
		||||
 | 
			
		||||
/// Allocates a memory block.
 | 
			
		||||
///  @param[in]		size	The size, in bytes of memory, to allocate.
 | 
			
		||||
///  @param[in]		hint	A hint to the allocator on how long the memory is expected to be in use.
 | 
			
		||||
///  @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
 | 
			
		||||
/// @see rcFree
 | 
			
		||||
/// 
 | 
			
		||||
/// @param[in]		size	The size, in bytes of memory, to allocate.
 | 
			
		||||
/// @param[in]		hint	A hint to the allocator on how long the memory is expected to be in use.
 | 
			
		||||
/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
 | 
			
		||||
/// 
 | 
			
		||||
/// @see rcFree, rcAllocSetCustom
 | 
			
		||||
void* rcAlloc(size_t size, rcAllocHint hint);
 | 
			
		||||
 | 
			
		||||
/// Deallocates a memory block.
 | 
			
		||||
///  @param[in]		ptr		A pointer to a memory block previously allocated using #rcAlloc.
 | 
			
		||||
/// @see rcAlloc
 | 
			
		||||
/// Deallocates a memory block.  If @p ptr is NULL, this does nothing.
 | 
			
		||||
///
 | 
			
		||||
/// @warning This function leaves the value of @p ptr unchanged.  So it still
 | 
			
		||||
/// points to the same (now invalid) location, and not to null.
 | 
			
		||||
/// 
 | 
			
		||||
/// @param[in]		ptr		A pointer to a memory block previously allocated using #rcAlloc.
 | 
			
		||||
/// 
 | 
			
		||||
/// @see rcAlloc, rcAllocSetCustom
 | 
			
		||||
void rcFree(void* ptr);
 | 
			
		||||
 | 
			
		||||
/// An implementation of operator new usable for placement new. The default one is part of STL (which we don't use).
 | 
			
		||||
 
 | 
			
		||||
@@ -19,13 +19,10 @@
 | 
			
		||||
#ifndef RECASTASSERT_H
 | 
			
		||||
#define RECASTASSERT_H
 | 
			
		||||
 | 
			
		||||
// Note: This header file's only purpose is to include define assert.
 | 
			
		||||
// Feel free to change the file and include your own implementation instead.
 | 
			
		||||
 | 
			
		||||
#ifdef NDEBUG
 | 
			
		||||
 | 
			
		||||
// From http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/
 | 
			
		||||
#	define rcAssert(x) do { (void)sizeof(x); } while((void)(__LINE__==-1),false)
 | 
			
		||||
// From https://web.archive.org/web/20210117002833/http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/
 | 
			
		||||
#	define rcAssert(x) do { (void)sizeof(x); } while ((void)(__LINE__==-1), false)
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
@@ -38,7 +35,7 @@ typedef void (rcAssertFailFunc)(const char* expression, const char* file, int li
 | 
			
		||||
 | 
			
		||||
/// Sets the base custom assertion failure function to be used by Recast.
 | 
			
		||||
///  @param[in]		assertFailFunc	The function to be used in case of failure of #dtAssert
 | 
			
		||||
void rcAssertFailSetCustom(rcAssertFailFunc *assertFailFunc);
 | 
			
		||||
void rcAssertFailSetCustom(rcAssertFailFunc* assertFailFunc);
 | 
			
		||||
 | 
			
		||||
/// Gets the base custom assertion failure function to be used by Recast.
 | 
			
		||||
rcAssertFailFunc* rcAssertFailGetCustom();
 | 
			
		||||
@@ -47,8 +44,8 @@ rcAssertFailFunc* rcAssertFailGetCustom();
 | 
			
		||||
#	define rcAssert(expression) \
 | 
			
		||||
		{ \
 | 
			
		||||
			rcAssertFailFunc* failFunc = rcAssertFailGetCustom(); \
 | 
			
		||||
			if(failFunc == NULL) { assert(expression); } \
 | 
			
		||||
			else if(!(expression)) { (*failFunc)(#expression, __FILE__, __LINE__); } \
 | 
			
		||||
			if (failFunc == NULL) { assert(expression); } \
 | 
			
		||||
			else if (!(expression)) { (*failFunc)(#expression, __FILE__, __LINE__); } \
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										632
									
								
								thirdparty/recastnavigation/Recast/Source/Recast.cpp
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										632
									
								
								thirdparty/recastnavigation/Recast/Source/Recast.cpp
									
									
									
									
										vendored
									
									
								
							@@ -16,81 +16,65 @@
 | 
			
		||||
// 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
#include <float.h>
 | 
			
		||||
#define _USE_MATH_DEFINES
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdarg.h>
 | 
			
		||||
#include "Recast.h"
 | 
			
		||||
#include "RecastAlloc.h"
 | 
			
		||||
#include "RecastAssert.h"
 | 
			
		||||
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdarg.h>
 | 
			
		||||
 | 
			
		||||
namespace
 | 
			
		||||
{
 | 
			
		||||
/// Allocates and constructs an object of the given type, returning a pointer.
 | 
			
		||||
/// TODO: Support constructor args.
 | 
			
		||||
/// @param[in]		hint	Hint to the allocator.
 | 
			
		||||
template <typename T>
 | 
			
		||||
T* rcNew(rcAllocHint hint) {
 | 
			
		||||
	T* ptr = (T*)rcAlloc(sizeof(T), hint);
 | 
			
		||||
/// @param[in]		allocLifetime	Allocation lifetime hint
 | 
			
		||||
template<typename T>
 | 
			
		||||
T* rcNew(const rcAllocHint allocLifetime)
 | 
			
		||||
{
 | 
			
		||||
	T* ptr = (T*)rcAlloc(sizeof(T), allocLifetime);
 | 
			
		||||
	::new(rcNewTag(), (void*)ptr) T();
 | 
			
		||||
	return ptr;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// Destroys and frees an object allocated with rcNew.
 | 
			
		||||
/// @param[in]     ptr    The object pointer to delete.
 | 
			
		||||
template <typename T>
 | 
			
		||||
void rcDelete(T* ptr) {
 | 
			
		||||
	if (ptr) {
 | 
			
		||||
template<typename T>
 | 
			
		||||
void rcDelete(T* ptr)
 | 
			
		||||
{
 | 
			
		||||
	if (ptr)
 | 
			
		||||
	{
 | 
			
		||||
		ptr->~T();
 | 
			
		||||
		rcFree((void*)ptr);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
}  // namespace
 | 
			
		||||
 | 
			
		||||
} // anonymous namespace
 | 
			
		||||
 | 
			
		||||
float rcSqrt(float x)
 | 
			
		||||
{
 | 
			
		||||
	return sqrtf(x);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @class rcContext
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// This class does not provide logging or timer functionality on its 
 | 
			
		||||
/// own.  Both must be provided by a concrete implementation 
 | 
			
		||||
/// by overriding the protected member functions.  Also, this class does not 
 | 
			
		||||
/// provide an interface for extracting log messages. (Only adding them.) 
 | 
			
		||||
/// So concrete implementations must provide one.
 | 
			
		||||
///
 | 
			
		||||
/// If no logging or timers are required, just pass an instance of this 
 | 
			
		||||
/// class through the Recast build process.
 | 
			
		||||
///
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// Example:
 | 
			
		||||
/// @code
 | 
			
		||||
/// // Where ctx is an instance of rcContext and filepath is a char array.
 | 
			
		||||
/// ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not load '%s'", filepath);
 | 
			
		||||
/// @endcode
 | 
			
		||||
void rcContext::log(const rcLogCategory category, const char* format, ...)
 | 
			
		||||
{
 | 
			
		||||
	if (!m_logEnabled)
 | 
			
		||||
	{
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
	static const int MSG_SIZE = 512;
 | 
			
		||||
	char msg[MSG_SIZE];
 | 
			
		||||
	va_list ap;
 | 
			
		||||
	va_start(ap, format);
 | 
			
		||||
	int len = vsnprintf(msg, MSG_SIZE, format, ap);
 | 
			
		||||
	va_list argList;
 | 
			
		||||
	va_start(argList, format);
 | 
			
		||||
	int len = vsnprintf(msg, MSG_SIZE, format, argList);
 | 
			
		||||
	if (len >= MSG_SIZE)
 | 
			
		||||
	{
 | 
			
		||||
		len = MSG_SIZE-1;
 | 
			
		||||
		msg[MSG_SIZE-1] = '\0';
 | 
			
		||||
		len = MSG_SIZE - 1;
 | 
			
		||||
		msg[MSG_SIZE - 1] = '\0';
 | 
			
		||||
 | 
			
		||||
		const char* errorMessage = "Log message was truncated";
 | 
			
		||||
		doLog(RC_LOG_ERROR, errorMessage, (int)strlen(errorMessage));
 | 
			
		||||
	}
 | 
			
		||||
	va_end(ap);
 | 
			
		||||
	va_end(argList);
 | 
			
		||||
	doLog(category, msg, len);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -103,16 +87,22 @@ rcHeightfield* rcAllocHeightfield()
 | 
			
		||||
{
 | 
			
		||||
	return rcNew<rcHeightfield>(RC_ALLOC_PERM);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void rcFreeHeightField(rcHeightfield* heightfield)
 | 
			
		||||
{
 | 
			
		||||
	rcDelete(heightfield);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
rcHeightfield::rcHeightfield()
 | 
			
		||||
	: width()
 | 
			
		||||
	, height()
 | 
			
		||||
	, bmin()
 | 
			
		||||
	, bmax()
 | 
			
		||||
	, cs()
 | 
			
		||||
	, ch()
 | 
			
		||||
	, spans()
 | 
			
		||||
	, pools()
 | 
			
		||||
	, freelist()
 | 
			
		||||
: width()
 | 
			
		||||
, height()
 | 
			
		||||
, bmin()
 | 
			
		||||
, bmax()
 | 
			
		||||
, cs()
 | 
			
		||||
, ch()
 | 
			
		||||
, spans()
 | 
			
		||||
, pools()
 | 
			
		||||
, freelist()
 | 
			
		||||
{
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -129,40 +119,36 @@ rcHeightfield::~rcHeightfield()
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void rcFreeHeightField(rcHeightfield* hf)
 | 
			
		||||
{
 | 
			
		||||
	rcDelete(hf);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
rcCompactHeightfield* rcAllocCompactHeightfield()
 | 
			
		||||
{
 | 
			
		||||
	return rcNew<rcCompactHeightfield>(RC_ALLOC_PERM);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void rcFreeCompactHeightfield(rcCompactHeightfield* chf)
 | 
			
		||||
void rcFreeCompactHeightfield(rcCompactHeightfield* compactHeightfield)
 | 
			
		||||
{
 | 
			
		||||
	rcDelete(chf);
 | 
			
		||||
	rcDelete(compactHeightfield);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
rcCompactHeightfield::rcCompactHeightfield()
 | 
			
		||||
	: width(),
 | 
			
		||||
	height(),
 | 
			
		||||
	spanCount(),
 | 
			
		||||
	walkableHeight(),
 | 
			
		||||
	walkableClimb(),
 | 
			
		||||
	borderSize(),
 | 
			
		||||
	maxDistance(),
 | 
			
		||||
	maxRegions(),
 | 
			
		||||
	bmin(),
 | 
			
		||||
	bmax(),
 | 
			
		||||
	cs(),
 | 
			
		||||
	ch(),
 | 
			
		||||
	cells(),
 | 
			
		||||
	spans(),
 | 
			
		||||
	dist(),
 | 
			
		||||
	areas()
 | 
			
		||||
: width()
 | 
			
		||||
, height()
 | 
			
		||||
, spanCount()
 | 
			
		||||
, walkableHeight()
 | 
			
		||||
, walkableClimb()
 | 
			
		||||
, borderSize()
 | 
			
		||||
, maxDistance()
 | 
			
		||||
, maxRegions()
 | 
			
		||||
, bmin()
 | 
			
		||||
, bmax()
 | 
			
		||||
, cs()
 | 
			
		||||
, ch()
 | 
			
		||||
, cells()
 | 
			
		||||
, spans()
 | 
			
		||||
, dist()
 | 
			
		||||
, areas()
 | 
			
		||||
{
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
rcCompactHeightfield::~rcCompactHeightfield()
 | 
			
		||||
{
 | 
			
		||||
	rcFree(cells);
 | 
			
		||||
@@ -175,13 +161,18 @@ rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet()
 | 
			
		||||
{
 | 
			
		||||
	return rcNew<rcHeightfieldLayerSet>(RC_ALLOC_PERM);
 | 
			
		||||
}
 | 
			
		||||
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset)
 | 
			
		||||
 | 
			
		||||
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* layerSet)
 | 
			
		||||
{
 | 
			
		||||
	rcDelete(lset);
 | 
			
		||||
	rcDelete(layerSet);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
rcHeightfieldLayerSet::rcHeightfieldLayerSet()
 | 
			
		||||
	: layers(),	nlayers() {}
 | 
			
		||||
: layers()
 | 
			
		||||
, nlayers()
 | 
			
		||||
{
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
rcHeightfieldLayerSet::~rcHeightfieldLayerSet()
 | 
			
		||||
{
 | 
			
		||||
	for (int i = 0; i < nlayers; ++i)
 | 
			
		||||
@@ -198,22 +189,26 @@ rcContourSet* rcAllocContourSet()
 | 
			
		||||
{
 | 
			
		||||
	return rcNew<rcContourSet>(RC_ALLOC_PERM);
 | 
			
		||||
}
 | 
			
		||||
void rcFreeContourSet(rcContourSet* cset)
 | 
			
		||||
 | 
			
		||||
void rcFreeContourSet(rcContourSet* contourSet)
 | 
			
		||||
{
 | 
			
		||||
	rcDelete(cset);
 | 
			
		||||
	rcDelete(contourSet);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
rcContourSet::rcContourSet()
 | 
			
		||||
	: conts(),
 | 
			
		||||
	nconts(),
 | 
			
		||||
	bmin(),
 | 
			
		||||
	bmax(),
 | 
			
		||||
	cs(),
 | 
			
		||||
	ch(),
 | 
			
		||||
	width(),
 | 
			
		||||
	height(),
 | 
			
		||||
	borderSize(),
 | 
			
		||||
	maxError() {}
 | 
			
		||||
: conts()
 | 
			
		||||
, nconts()
 | 
			
		||||
, bmin()
 | 
			
		||||
, bmax()
 | 
			
		||||
, cs()
 | 
			
		||||
, ch()
 | 
			
		||||
, width()
 | 
			
		||||
, height()
 | 
			
		||||
, borderSize()
 | 
			
		||||
, maxError()
 | 
			
		||||
{
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
rcContourSet::~rcContourSet()
 | 
			
		||||
{
 | 
			
		||||
	for (int i = 0; i < nconts; ++i)
 | 
			
		||||
@@ -224,32 +219,34 @@ rcContourSet::~rcContourSet()
 | 
			
		||||
	rcFree(conts);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
rcPolyMesh* rcAllocPolyMesh()
 | 
			
		||||
{
 | 
			
		||||
	return rcNew<rcPolyMesh>(RC_ALLOC_PERM);
 | 
			
		||||
}
 | 
			
		||||
void rcFreePolyMesh(rcPolyMesh* pmesh)
 | 
			
		||||
 | 
			
		||||
void rcFreePolyMesh(rcPolyMesh* polyMesh)
 | 
			
		||||
{
 | 
			
		||||
	rcDelete(pmesh);
 | 
			
		||||
	rcDelete(polyMesh);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
rcPolyMesh::rcPolyMesh()
 | 
			
		||||
	: verts(),
 | 
			
		||||
	polys(),
 | 
			
		||||
	regs(),
 | 
			
		||||
	flags(),
 | 
			
		||||
	areas(),
 | 
			
		||||
	nverts(),
 | 
			
		||||
	npolys(),
 | 
			
		||||
	maxpolys(),
 | 
			
		||||
	nvp(),
 | 
			
		||||
	bmin(),
 | 
			
		||||
	bmax(),
 | 
			
		||||
	cs(),
 | 
			
		||||
	ch(),
 | 
			
		||||
	borderSize(),
 | 
			
		||||
	maxEdgeError() {}
 | 
			
		||||
: verts()
 | 
			
		||||
, polys()
 | 
			
		||||
, regs()
 | 
			
		||||
, flags()
 | 
			
		||||
, areas()
 | 
			
		||||
, nverts()
 | 
			
		||||
, npolys()
 | 
			
		||||
, maxpolys()
 | 
			
		||||
, nvp()
 | 
			
		||||
, bmin()
 | 
			
		||||
, bmax()
 | 
			
		||||
, cs()
 | 
			
		||||
, ch()
 | 
			
		||||
, borderSize()
 | 
			
		||||
, maxEdgeError()
 | 
			
		||||
{
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
rcPolyMesh::~rcPolyMesh()
 | 
			
		||||
{
 | 
			
		||||
@@ -262,319 +259,284 @@ rcPolyMesh::~rcPolyMesh()
 | 
			
		||||
 | 
			
		||||
rcPolyMeshDetail* rcAllocPolyMeshDetail()
 | 
			
		||||
{
 | 
			
		||||
	rcPolyMeshDetail* dmesh = (rcPolyMeshDetail*)rcAlloc(sizeof(rcPolyMeshDetail), RC_ALLOC_PERM);
 | 
			
		||||
	memset(dmesh, 0, sizeof(rcPolyMeshDetail));
 | 
			
		||||
	return dmesh;
 | 
			
		||||
	return rcNew<rcPolyMeshDetail>(RC_ALLOC_PERM);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh)
 | 
			
		||||
void rcFreePolyMeshDetail(rcPolyMeshDetail* detailMesh)
 | 
			
		||||
{
 | 
			
		||||
	if (!dmesh) return;
 | 
			
		||||
	rcFree(dmesh->meshes);
 | 
			
		||||
	rcFree(dmesh->verts);
 | 
			
		||||
	rcFree(dmesh->tris);
 | 
			
		||||
	rcFree(dmesh);
 | 
			
		||||
	if (detailMesh == NULL)
 | 
			
		||||
	{
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
	rcFree(detailMesh->meshes);
 | 
			
		||||
	rcFree(detailMesh->verts);
 | 
			
		||||
	rcFree(detailMesh->tris);
 | 
			
		||||
	rcFree(detailMesh);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax)
 | 
			
		||||
rcPolyMeshDetail::rcPolyMeshDetail()
 | 
			
		||||
: meshes()
 | 
			
		||||
, verts()
 | 
			
		||||
, tris()
 | 
			
		||||
, nmeshes()
 | 
			
		||||
, nverts()
 | 
			
		||||
, ntris()
 | 
			
		||||
{
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void rcCalcBounds(const float* verts, int numVerts, float* minBounds, float* maxBounds)
 | 
			
		||||
{
 | 
			
		||||
	// Calculate bounding box.
 | 
			
		||||
	rcVcopy(bmin, verts);
 | 
			
		||||
	rcVcopy(bmax, verts);
 | 
			
		||||
	for (int i = 1; i < nv; ++i)
 | 
			
		||||
	rcVcopy(minBounds, verts);
 | 
			
		||||
	rcVcopy(maxBounds, verts);
 | 
			
		||||
	for (int i = 1; i < numVerts; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		const float* v = &verts[i*3];
 | 
			
		||||
		rcVmin(bmin, v);
 | 
			
		||||
		rcVmax(bmax, v);
 | 
			
		||||
		const float* v = &verts[i * 3];
 | 
			
		||||
		rcVmin(minBounds, v);
 | 
			
		||||
		rcVmax(maxBounds, v);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h)
 | 
			
		||||
void rcCalcGridSize(const float* minBounds, const float* maxBounds, const float cellSize, int* sizeX, int* sizeZ)
 | 
			
		||||
{
 | 
			
		||||
	*w = (int)((bmax[0] - bmin[0])/cs+0.5f);
 | 
			
		||||
	*h = (int)((bmax[2] - bmin[2])/cs+0.5f);
 | 
			
		||||
	*sizeX = (int)((maxBounds[0] - minBounds[0]) / cellSize + 0.5f);
 | 
			
		||||
	*sizeZ = (int)((maxBounds[2] - minBounds[2]) / cellSize + 0.5f);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// See the #rcConfig documentation for more information on the configuration parameters.
 | 
			
		||||
/// 
 | 
			
		||||
/// @see rcAllocHeightfield, rcHeightfield 
 | 
			
		||||
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
 | 
			
		||||
						 const float* bmin, const float* bmax,
 | 
			
		||||
						 float cs, float ch)
 | 
			
		||||
bool rcCreateHeightfield(rcContext* context, rcHeightfield& heightfield, int sizeX, int sizeZ,
 | 
			
		||||
                         const float* minBounds, const float* maxBounds,
 | 
			
		||||
                         float cellSize, float cellHeight)
 | 
			
		||||
{
 | 
			
		||||
	rcIgnoreUnused(ctx);
 | 
			
		||||
	
 | 
			
		||||
	hf.width = width;
 | 
			
		||||
	hf.height = height;
 | 
			
		||||
	rcVcopy(hf.bmin, bmin);
 | 
			
		||||
	rcVcopy(hf.bmax, bmax);
 | 
			
		||||
	hf.cs = cs;
 | 
			
		||||
	hf.ch = ch;
 | 
			
		||||
	hf.spans = (rcSpan**)rcAlloc(sizeof(rcSpan*)*hf.width*hf.height, RC_ALLOC_PERM);
 | 
			
		||||
	if (!hf.spans)
 | 
			
		||||
	rcIgnoreUnused(context);
 | 
			
		||||
 | 
			
		||||
	heightfield.width = sizeX;
 | 
			
		||||
	heightfield.height = sizeZ;
 | 
			
		||||
	rcVcopy(heightfield.bmin, minBounds);
 | 
			
		||||
	rcVcopy(heightfield.bmax, maxBounds);
 | 
			
		||||
	heightfield.cs = cellSize;
 | 
			
		||||
	heightfield.ch = cellHeight;
 | 
			
		||||
	heightfield.spans = (rcSpan**)rcAlloc(sizeof(rcSpan*) * heightfield.width * heightfield.height, RC_ALLOC_PERM);
 | 
			
		||||
	if (!heightfield.spans)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	memset(hf.spans, 0, sizeof(rcSpan*)*hf.width*hf.height);
 | 
			
		||||
	}
 | 
			
		||||
	memset(heightfield.spans, 0, sizeof(rcSpan*) * heightfield.width * heightfield.height);
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void calcTriNormal(const float* v0, const float* v1, const float* v2, float* norm)
 | 
			
		||||
static void calcTriNormal(const float* v0, const float* v1, const float* v2, float* faceNormal)
 | 
			
		||||
{
 | 
			
		||||
	float e0[3], e1[3];
 | 
			
		||||
	rcVsub(e0, v1, v0);
 | 
			
		||||
	rcVsub(e1, v2, v0);
 | 
			
		||||
	rcVcross(norm, e0, e1);
 | 
			
		||||
	rcVnormalize(norm);
 | 
			
		||||
	rcVcross(faceNormal, e0, e1);
 | 
			
		||||
	rcVnormalize(faceNormal);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// Only sets the area id's for the walkable triangles.  Does not alter the
 | 
			
		||||
/// area id's for unwalkable triangles.
 | 
			
		||||
/// 
 | 
			
		||||
/// See the #rcConfig documentation for more information on the configuration parameters.
 | 
			
		||||
/// 
 | 
			
		||||
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
 | 
			
		||||
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
 | 
			
		||||
							 const float* verts, int nv,
 | 
			
		||||
							 const int* tris, int nt,
 | 
			
		||||
							 unsigned char* areas)
 | 
			
		||||
void rcMarkWalkableTriangles(rcContext* context, const float walkableSlopeAngle,
 | 
			
		||||
                             const float* verts, const int numVerts,
 | 
			
		||||
                             const int* tris, const int numTris,
 | 
			
		||||
                             unsigned char* triAreaIDs)
 | 
			
		||||
{
 | 
			
		||||
	rcIgnoreUnused(ctx);
 | 
			
		||||
	rcIgnoreUnused(nv);
 | 
			
		||||
	
 | 
			
		||||
	const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
 | 
			
		||||
	rcIgnoreUnused(context);
 | 
			
		||||
	rcIgnoreUnused(numVerts);
 | 
			
		||||
 | 
			
		||||
	const float walkableThr = cosf(walkableSlopeAngle / 180.0f * RC_PI);
 | 
			
		||||
 | 
			
		||||
	float norm[3];
 | 
			
		||||
	
 | 
			
		||||
	for (int i = 0; i < nt; ++i)
 | 
			
		||||
 | 
			
		||||
	for (int i = 0; i < numTris; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		const int* tri = &tris[i*3];
 | 
			
		||||
		calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
 | 
			
		||||
		const int* tri = &tris[i * 3];
 | 
			
		||||
		calcTriNormal(&verts[tri[0] * 3], &verts[tri[1] * 3], &verts[tri[2] * 3], norm);
 | 
			
		||||
		// Check if the face is walkable.
 | 
			
		||||
		if (norm[1] > walkableThr)
 | 
			
		||||
			areas[i] = RC_WALKABLE_AREA;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// Only sets the area id's for the unwalkable triangles.  Does not alter the
 | 
			
		||||
/// area id's for walkable triangles.
 | 
			
		||||
/// 
 | 
			
		||||
/// See the #rcConfig documentation for more information on the configuration parameters.
 | 
			
		||||
/// 
 | 
			
		||||
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
 | 
			
		||||
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
 | 
			
		||||
								const float* verts, int /*nv*/,
 | 
			
		||||
								const int* tris, int nt,
 | 
			
		||||
								unsigned char* areas)
 | 
			
		||||
{
 | 
			
		||||
	rcIgnoreUnused(ctx);
 | 
			
		||||
	
 | 
			
		||||
	const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
 | 
			
		||||
	
 | 
			
		||||
	float norm[3];
 | 
			
		||||
	
 | 
			
		||||
	for (int i = 0; i < nt; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		const int* tri = &tris[i*3];
 | 
			
		||||
		calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
 | 
			
		||||
		// Check if the face is walkable.
 | 
			
		||||
		if (norm[1] <= walkableThr)
 | 
			
		||||
			areas[i] = RC_NULL_AREA;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf)
 | 
			
		||||
{
 | 
			
		||||
	rcIgnoreUnused(ctx);
 | 
			
		||||
	
 | 
			
		||||
	const int w = hf.width;
 | 
			
		||||
	const int h = hf.height;
 | 
			
		||||
	int spanCount = 0;
 | 
			
		||||
	for (int y = 0; y < h; ++y)
 | 
			
		||||
	{
 | 
			
		||||
		for (int x = 0; x < w; ++x)
 | 
			
		||||
		{
 | 
			
		||||
			for (rcSpan* s = hf.spans[x + y*w]; s; s = s->next)
 | 
			
		||||
			triAreaIDs[i] = RC_WALKABLE_AREA;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void rcClearUnwalkableTriangles(rcContext* context, const float walkableSlopeAngle,
 | 
			
		||||
                                const float* verts, int numVerts,
 | 
			
		||||
                                const int* tris, int numTris,
 | 
			
		||||
                                unsigned char* triAreaIDs)
 | 
			
		||||
{
 | 
			
		||||
	rcIgnoreUnused(context);
 | 
			
		||||
	rcIgnoreUnused(numVerts);
 | 
			
		||||
 | 
			
		||||
	// The minimum Y value for a face normal of a triangle with a walkable slope.
 | 
			
		||||
	const float walkableLimitY = cosf(walkableSlopeAngle / 180.0f * RC_PI);
 | 
			
		||||
 | 
			
		||||
	float faceNormal[3];
 | 
			
		||||
	for (int i = 0; i < numTris; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		const int* tri = &tris[i * 3];
 | 
			
		||||
		calcTriNormal(&verts[tri[0] * 3], &verts[tri[1] * 3], &verts[tri[2] * 3], faceNormal);
 | 
			
		||||
		// Check if the face is walkable.
 | 
			
		||||
		if (faceNormal[1] <= walkableLimitY)
 | 
			
		||||
		{
 | 
			
		||||
			triAreaIDs[i] = RC_NULL_AREA;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int rcGetHeightFieldSpanCount(rcContext* context, const rcHeightfield& heightfield)
 | 
			
		||||
{
 | 
			
		||||
	rcIgnoreUnused(context);
 | 
			
		||||
 | 
			
		||||
	const int numCols = heightfield.width * heightfield.height;
 | 
			
		||||
	int spanCount = 0;
 | 
			
		||||
	for (int columnIndex = 0; columnIndex < numCols; ++columnIndex)
 | 
			
		||||
	{
 | 
			
		||||
		for (rcSpan* span = heightfield.spans[columnIndex]; span != NULL; span = span->next)
 | 
			
		||||
		{
 | 
			
		||||
			if (span->area != RC_NULL_AREA)
 | 
			
		||||
			{
 | 
			
		||||
				if (s->area != RC_NULL_AREA)
 | 
			
		||||
					spanCount++;
 | 
			
		||||
				spanCount++;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	return spanCount;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// This is just the beginning of the process of fully building a compact heightfield.
 | 
			
		||||
/// Various filters may be applied, then the distance field and regions built.
 | 
			
		||||
/// E.g: #rcBuildDistanceField and #rcBuildRegions
 | 
			
		||||
///
 | 
			
		||||
/// See the #rcConfig documentation for more information on the configuration parameters.
 | 
			
		||||
///
 | 
			
		||||
/// @see rcAllocCompactHeightfield, rcHeightfield, rcCompactHeightfield, rcConfig
 | 
			
		||||
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
 | 
			
		||||
							   rcHeightfield& hf, rcCompactHeightfield& chf)
 | 
			
		||||
bool rcBuildCompactHeightfield(rcContext* context, const int walkableHeight, const int walkableClimb,
 | 
			
		||||
                               const rcHeightfield& heightfield, rcCompactHeightfield& compactHeightfield)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(ctx);
 | 
			
		||||
	
 | 
			
		||||
	rcScopedTimer timer(ctx, RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
 | 
			
		||||
	
 | 
			
		||||
	const int w = hf.width;
 | 
			
		||||
	const int h = hf.height;
 | 
			
		||||
	const int spanCount = rcGetHeightFieldSpanCount(ctx, hf);
 | 
			
		||||
	rcAssert(context);
 | 
			
		||||
 | 
			
		||||
	rcScopedTimer timer(context, RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
 | 
			
		||||
 | 
			
		||||
	const int xSize = heightfield.width;
 | 
			
		||||
	const int zSize = heightfield.height;
 | 
			
		||||
	const int spanCount = rcGetHeightFieldSpanCount(context, heightfield);
 | 
			
		||||
 | 
			
		||||
	// Fill in header.
 | 
			
		||||
	chf.width = w;
 | 
			
		||||
	chf.height = h;
 | 
			
		||||
	chf.spanCount = spanCount;
 | 
			
		||||
	chf.walkableHeight = walkableHeight;
 | 
			
		||||
	chf.walkableClimb = walkableClimb;
 | 
			
		||||
	chf.maxRegions = 0;
 | 
			
		||||
	rcVcopy(chf.bmin, hf.bmin);
 | 
			
		||||
	rcVcopy(chf.bmax, hf.bmax);
 | 
			
		||||
	chf.bmax[1] += walkableHeight*hf.ch;
 | 
			
		||||
	chf.cs = hf.cs;
 | 
			
		||||
	chf.ch = hf.ch;
 | 
			
		||||
	chf.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell)*w*h, RC_ALLOC_PERM);
 | 
			
		||||
	if (!chf.cells)
 | 
			
		||||
	compactHeightfield.width = xSize;
 | 
			
		||||
	compactHeightfield.height = zSize;
 | 
			
		||||
	compactHeightfield.spanCount = spanCount;
 | 
			
		||||
	compactHeightfield.walkableHeight = walkableHeight;
 | 
			
		||||
	compactHeightfield.walkableClimb = walkableClimb;
 | 
			
		||||
	compactHeightfield.maxRegions = 0;
 | 
			
		||||
	rcVcopy(compactHeightfield.bmin, heightfield.bmin);
 | 
			
		||||
	rcVcopy(compactHeightfield.bmax, heightfield.bmax);
 | 
			
		||||
	compactHeightfield.bmax[1] += walkableHeight * heightfield.ch;
 | 
			
		||||
	compactHeightfield.cs = heightfield.cs;
 | 
			
		||||
	compactHeightfield.ch = heightfield.ch;
 | 
			
		||||
	compactHeightfield.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell) * xSize * zSize, RC_ALLOC_PERM);
 | 
			
		||||
	if (!compactHeightfield.cells)
 | 
			
		||||
	{
 | 
			
		||||
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", w*h);
 | 
			
		||||
		context->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", xSize * zSize);
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
	memset(chf.cells, 0, sizeof(rcCompactCell)*w*h);
 | 
			
		||||
	chf.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan)*spanCount, RC_ALLOC_PERM);
 | 
			
		||||
	if (!chf.spans)
 | 
			
		||||
	memset(compactHeightfield.cells, 0, sizeof(rcCompactCell) * xSize * zSize);
 | 
			
		||||
	compactHeightfield.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan) * spanCount, RC_ALLOC_PERM);
 | 
			
		||||
	if (!compactHeightfield.spans)
 | 
			
		||||
	{
 | 
			
		||||
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
 | 
			
		||||
		context->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
	memset(chf.spans, 0, sizeof(rcCompactSpan)*spanCount);
 | 
			
		||||
	chf.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*spanCount, RC_ALLOC_PERM);
 | 
			
		||||
	if (!chf.areas)
 | 
			
		||||
	memset(compactHeightfield.spans, 0, sizeof(rcCompactSpan) * spanCount);
 | 
			
		||||
	compactHeightfield.areas = (unsigned char*)rcAlloc(sizeof(unsigned char) * spanCount, RC_ALLOC_PERM);
 | 
			
		||||
	if (!compactHeightfield.areas)
 | 
			
		||||
	{
 | 
			
		||||
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.areas' (%d)", spanCount);
 | 
			
		||||
		context->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.areas' (%d)", spanCount);
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
	memset(chf.areas, RC_NULL_AREA, sizeof(unsigned char)*spanCount);
 | 
			
		||||
	
 | 
			
		||||
	memset(compactHeightfield.areas, RC_NULL_AREA, sizeof(unsigned char) * spanCount);
 | 
			
		||||
 | 
			
		||||
	const int MAX_HEIGHT = 0xffff;
 | 
			
		||||
	
 | 
			
		||||
 | 
			
		||||
	// Fill in cells and spans.
 | 
			
		||||
	int idx = 0;
 | 
			
		||||
	for (int y = 0; y < h; ++y)
 | 
			
		||||
	int currentCellIndex = 0;
 | 
			
		||||
	const int numColumns = xSize * zSize;
 | 
			
		||||
	for (int columnIndex = 0; columnIndex < numColumns; ++columnIndex)
 | 
			
		||||
	{
 | 
			
		||||
		for (int x = 0; x < w; ++x)
 | 
			
		||||
		const rcSpan* span = heightfield.spans[columnIndex];
 | 
			
		||||
			
 | 
			
		||||
		// If there are no spans at this cell, just leave the data to index=0, count=0.
 | 
			
		||||
		if (span == NULL)
 | 
			
		||||
		{
 | 
			
		||||
			const rcSpan* s = hf.spans[x + y*w];
 | 
			
		||||
			// If there are no spans at this cell, just leave the data to index=0, count=0.
 | 
			
		||||
			if (!s) continue;
 | 
			
		||||
			rcCompactCell& c = chf.cells[x+y*w];
 | 
			
		||||
			c.index = idx;
 | 
			
		||||
			c.count = 0;
 | 
			
		||||
			while (s)
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
			
 | 
			
		||||
		rcCompactCell& cell = compactHeightfield.cells[columnIndex];
 | 
			
		||||
		cell.index = currentCellIndex;
 | 
			
		||||
		cell.count = 0;
 | 
			
		||||
 | 
			
		||||
		for (; span != NULL; span = span->next)
 | 
			
		||||
		{
 | 
			
		||||
			if (span->area != RC_NULL_AREA)
 | 
			
		||||
			{
 | 
			
		||||
				if (s->area != RC_NULL_AREA)
 | 
			
		||||
				{
 | 
			
		||||
					const int bot = (int)s->smax;
 | 
			
		||||
					const int top = s->next ? (int)s->next->smin : MAX_HEIGHT;
 | 
			
		||||
					chf.spans[idx].y = (unsigned short)rcClamp(bot, 0, 0xffff);
 | 
			
		||||
					chf.spans[idx].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
 | 
			
		||||
					chf.areas[idx] = s->area;
 | 
			
		||||
					idx++;
 | 
			
		||||
					c.count++;
 | 
			
		||||
				}
 | 
			
		||||
				s = s->next;
 | 
			
		||||
				const int bot = (int)span->smax;
 | 
			
		||||
				const int top = span->next ? (int)span->next->smin : MAX_HEIGHT;
 | 
			
		||||
				compactHeightfield.spans[currentCellIndex].y = (unsigned short)rcClamp(bot, 0, 0xffff);
 | 
			
		||||
				compactHeightfield.spans[currentCellIndex].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
 | 
			
		||||
				compactHeightfield.areas[currentCellIndex] = span->area;
 | 
			
		||||
				currentCellIndex++;
 | 
			
		||||
				cell.count++;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	
 | 
			
		||||
	// Find neighbour connections.
 | 
			
		||||
	const int MAX_LAYERS = RC_NOT_CONNECTED-1;
 | 
			
		||||
	int tooHighNeighbour = 0;
 | 
			
		||||
	for (int y = 0; y < h; ++y)
 | 
			
		||||
	const int MAX_LAYERS = RC_NOT_CONNECTED - 1;
 | 
			
		||||
	int maxLayerIndex = 0;
 | 
			
		||||
	const int zStride = xSize; // for readability
 | 
			
		||||
	for (int z = 0; z < zSize; ++z)
 | 
			
		||||
	{
 | 
			
		||||
		for (int x = 0; x < w; ++x)
 | 
			
		||||
		for (int x = 0; x < xSize; ++x)
 | 
			
		||||
		{
 | 
			
		||||
			const rcCompactCell& c = chf.cells[x+y*w];
 | 
			
		||||
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
 | 
			
		||||
			const rcCompactCell& cell = compactHeightfield.cells[x + z * zStride];
 | 
			
		||||
			for (int i = (int)cell.index, ni = (int)(cell.index + cell.count); i < ni; ++i)
 | 
			
		||||
			{
 | 
			
		||||
				rcCompactSpan& s = chf.spans[i];
 | 
			
		||||
				
 | 
			
		||||
				rcCompactSpan& span = compactHeightfield.spans[i];
 | 
			
		||||
 | 
			
		||||
				for (int dir = 0; dir < 4; ++dir)
 | 
			
		||||
				{
 | 
			
		||||
					rcSetCon(s, dir, RC_NOT_CONNECTED);
 | 
			
		||||
					const int nx = x + rcGetDirOffsetX(dir);
 | 
			
		||||
					const int ny = y + rcGetDirOffsetY(dir);
 | 
			
		||||
					rcSetCon(span, dir, RC_NOT_CONNECTED);
 | 
			
		||||
					const int neighborX = x + rcGetDirOffsetX(dir);
 | 
			
		||||
					const int neighborZ = z + rcGetDirOffsetY(dir);
 | 
			
		||||
					// First check that the neighbour cell is in bounds.
 | 
			
		||||
					if (nx < 0 || ny < 0 || nx >= w || ny >= h)
 | 
			
		||||
					if (neighborX < 0 || neighborZ < 0 || neighborX >= xSize || neighborZ >= zSize)
 | 
			
		||||
					{
 | 
			
		||||
						continue;
 | 
			
		||||
						
 | 
			
		||||
					}
 | 
			
		||||
 | 
			
		||||
					// Iterate over all neighbour spans and check if any of the is
 | 
			
		||||
					// accessible from current cell.
 | 
			
		||||
					const rcCompactCell& nc = chf.cells[nx+ny*w];
 | 
			
		||||
					for (int k = (int)nc.index, nk = (int)(nc.index+nc.count); k < nk; ++k)
 | 
			
		||||
					const rcCompactCell& neighborCell = compactHeightfield.cells[neighborX + neighborZ * zStride];
 | 
			
		||||
					for (int k = (int)neighborCell.index, nk = (int)(neighborCell.index + neighborCell.count); k < nk; ++k)
 | 
			
		||||
					{
 | 
			
		||||
						const rcCompactSpan& ns = chf.spans[k];
 | 
			
		||||
						const int bot = rcMax(s.y, ns.y);
 | 
			
		||||
						const int top = rcMin(s.y+s.h, ns.y+ns.h);
 | 
			
		||||
						const rcCompactSpan& neighborSpan = compactHeightfield.spans[k];
 | 
			
		||||
						const int bot = rcMax(span.y, neighborSpan.y);
 | 
			
		||||
						const int top = rcMin(span.y + span.h, neighborSpan.y + neighborSpan.h);
 | 
			
		||||
 | 
			
		||||
						// Check that the gap between the spans is walkable,
 | 
			
		||||
						// and that the climb height between the gaps is not too high.
 | 
			
		||||
						if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
 | 
			
		||||
						if ((top - bot) >= walkableHeight && rcAbs((int)neighborSpan.y - (int)span.y) <= walkableClimb)
 | 
			
		||||
						{
 | 
			
		||||
							// Mark direction as walkable.
 | 
			
		||||
							const int lidx = k - (int)nc.index;
 | 
			
		||||
							if (lidx < 0 || lidx > MAX_LAYERS)
 | 
			
		||||
							const int layerIndex = k - (int)neighborCell.index;
 | 
			
		||||
							if (layerIndex < 0 || layerIndex > MAX_LAYERS)
 | 
			
		||||
							{
 | 
			
		||||
								tooHighNeighbour = rcMax(tooHighNeighbour, lidx);
 | 
			
		||||
								maxLayerIndex = rcMax(maxLayerIndex, layerIndex);
 | 
			
		||||
								continue;
 | 
			
		||||
							}
 | 
			
		||||
							rcSetCon(s, dir, lidx);
 | 
			
		||||
							rcSetCon(span, dir, layerIndex);
 | 
			
		||||
							break;
 | 
			
		||||
						}
 | 
			
		||||
					}
 | 
			
		||||
					
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	if (tooHighNeighbour > MAX_LAYERS)
 | 
			
		||||
 | 
			
		||||
	if (maxLayerIndex > MAX_LAYERS)
 | 
			
		||||
	{
 | 
			
		||||
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Heightfield has too many layers %d (max: %d)",
 | 
			
		||||
				 tooHighNeighbour, MAX_LAYERS);
 | 
			
		||||
		context->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Heightfield has too many layers %d (max: %d)",
 | 
			
		||||
		         maxLayerIndex, MAX_LAYERS);
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
static int getHeightfieldMemoryUsage(const rcHeightfield& hf)
 | 
			
		||||
{
 | 
			
		||||
	int size = 0;
 | 
			
		||||
	size += sizeof(hf);
 | 
			
		||||
	size += hf.width * hf.height * sizeof(rcSpan*);
 | 
			
		||||
	
 | 
			
		||||
	rcSpanPool* pool = hf.pools;
 | 
			
		||||
	while (pool)
 | 
			
		||||
	{
 | 
			
		||||
		size += (sizeof(rcSpanPool) - sizeof(rcSpan)) + sizeof(rcSpan)*RC_SPANS_PER_POOL;
 | 
			
		||||
		pool = pool->next;
 | 
			
		||||
	}
 | 
			
		||||
	return size;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int getCompactHeightFieldMemoryusage(const rcCompactHeightfield& chf)
 | 
			
		||||
{
 | 
			
		||||
	int size = 0;
 | 
			
		||||
	size += sizeof(rcCompactHeightfield);
 | 
			
		||||
	size += sizeof(rcCompactSpan) * chf.spanCount;
 | 
			
		||||
	size += sizeof(rcCompactCell) * chf.width * chf.height;
 | 
			
		||||
	return size;
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
 
 | 
			
		||||
@@ -16,12 +16,9 @@
 | 
			
		||||
// 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include "RecastAlloc.h"
 | 
			
		||||
#include "RecastAssert.h"
 | 
			
		||||
 | 
			
		||||
static void *rcAllocDefault(size_t size, rcAllocHint)
 | 
			
		||||
static void* rcAllocDefault(size_t size, rcAllocHint)
 | 
			
		||||
{
 | 
			
		||||
	return malloc(size);
 | 
			
		||||
}
 | 
			
		||||
@@ -34,27 +31,21 @@ static void rcFreeDefault(void *ptr)
 | 
			
		||||
static rcAllocFunc* sRecastAllocFunc = rcAllocDefault;
 | 
			
		||||
static rcFreeFunc* sRecastFreeFunc = rcFreeDefault;
 | 
			
		||||
 | 
			
		||||
/// @see rcAlloc, rcFree
 | 
			
		||||
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc)
 | 
			
		||||
void rcAllocSetCustom(rcAllocFunc* allocFunc, rcFreeFunc* freeFunc)
 | 
			
		||||
{
 | 
			
		||||
	sRecastAllocFunc = allocFunc ? allocFunc : rcAllocDefault;
 | 
			
		||||
	sRecastFreeFunc = freeFunc ? freeFunc : rcFreeDefault;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @see rcAllocSetCustom
 | 
			
		||||
void* rcAlloc(size_t size, rcAllocHint hint)
 | 
			
		||||
{
 | 
			
		||||
	return sRecastAllocFunc(size, hint);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// @warning This function leaves the value of @p ptr unchanged.  So it still
 | 
			
		||||
/// points to the same (now invalid) location, and not to null.
 | 
			
		||||
/// 
 | 
			
		||||
/// @see rcAllocSetCustom
 | 
			
		||||
void rcFree(void* ptr)
 | 
			
		||||
{
 | 
			
		||||
	if (ptr)
 | 
			
		||||
	if (ptr != NULL)
 | 
			
		||||
	{
 | 
			
		||||
		sRecastFreeFunc(ptr);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -17,7 +17,6 @@
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
#include <float.h>
 | 
			
		||||
#define _USE_MATH_DEFINES
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -22,7 +22,7 @@
 | 
			
		||||
 | 
			
		||||
static rcAssertFailFunc* sRecastAssertFailFunc = 0;
 | 
			
		||||
 | 
			
		||||
void rcAssertFailSetCustom(rcAssertFailFunc *assertFailFunc)
 | 
			
		||||
void rcAssertFailSetCustom(rcAssertFailFunc* assertFailFunc)
 | 
			
		||||
{
 | 
			
		||||
	sRecastAssertFailFunc = assertFailFunc;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -16,7 +16,6 @@
 | 
			
		||||
// 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
#define _USE_MATH_DEFINES
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
@@ -102,7 +101,7 @@ static int getCornerHeight(int x, int y, int i, int dir,
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void walkContour(int x, int y, int i,
 | 
			
		||||
						rcCompactHeightfield& chf,
 | 
			
		||||
						const rcCompactHeightfield& chf,
 | 
			
		||||
						unsigned char* flags, rcIntArray& points)
 | 
			
		||||
{
 | 
			
		||||
	// Choose the first non-connected edge
 | 
			
		||||
@@ -542,7 +541,7 @@ static bool vequal(const int* a, const int* b)
 | 
			
		||||
	return a[0] == b[0] && a[2] == b[2];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts)
 | 
			
		||||
static bool intersectSegContour(const int* d0, const int* d1, int i, int n, const int* verts)
 | 
			
		||||
{
 | 
			
		||||
	// For each edge (k,k+1) of P
 | 
			
		||||
	for (int k = 0; k < n; k++)
 | 
			
		||||
@@ -778,9 +777,9 @@ static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
 | 
			
		||||
			for (int j = 0; j < ndiags; j++)
 | 
			
		||||
			{
 | 
			
		||||
				const int* pt = &outline->verts[diags[j].vert*4];
 | 
			
		||||
				bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
 | 
			
		||||
				bool intersect = intersectSegContour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
 | 
			
		||||
				for (int k = i; k < region.nholes && !intersect; k++)
 | 
			
		||||
					intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
 | 
			
		||||
					intersect |= intersectSegContour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
 | 
			
		||||
				if (!intersect)
 | 
			
		||||
				{
 | 
			
		||||
					index = diags[j].vert;
 | 
			
		||||
@@ -821,7 +820,7 @@ static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
 | 
			
		||||
/// See the #rcConfig documentation for more information on the configuration parameters.
 | 
			
		||||
///
 | 
			
		||||
/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
 | 
			
		||||
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
 | 
			
		||||
bool rcBuildContours(rcContext* ctx, const rcCompactHeightfield& chf,
 | 
			
		||||
					 const float maxError, const int maxEdgeLen,
 | 
			
		||||
					 rcContourSet& cset, const int buildFlags)
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -16,186 +16,168 @@
 | 
			
		||||
// 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
#define _USE_MATH_DEFINES
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include "Recast.h"
 | 
			
		||||
#include "RecastAssert.h"
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// Allows the formation of walkable regions that will flow over low lying 
 | 
			
		||||
/// objects such as curbs, and up structures such as stairways. 
 | 
			
		||||
/// 
 | 
			
		||||
/// Two neighboring spans are walkable if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) < waklableClimb</tt>
 | 
			
		||||
/// 
 | 
			
		||||
/// @warning Will override the effect of #rcFilterLedgeSpans.  So if both filters are used, call
 | 
			
		||||
/// #rcFilterLedgeSpans after calling this filter. 
 | 
			
		||||
///
 | 
			
		||||
/// @see rcHeightfield, rcConfig
 | 
			
		||||
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(ctx);
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
 | 
			
		||||
	rcScopedTimer timer(ctx, RC_TIMER_FILTER_LOW_OBSTACLES);
 | 
			
		||||
	
 | 
			
		||||
	const int w = solid.width;
 | 
			
		||||
	const int h = solid.height;
 | 
			
		||||
	
 | 
			
		||||
	for (int y = 0; y < h; ++y)
 | 
			
		||||
void rcFilterLowHangingWalkableObstacles(rcContext* context, const int walkableClimb, rcHeightfield& heightfield)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(context);
 | 
			
		||||
 | 
			
		||||
	rcScopedTimer timer(context, RC_TIMER_FILTER_LOW_OBSTACLES);
 | 
			
		||||
 | 
			
		||||
	const int xSize = heightfield.width;
 | 
			
		||||
	const int zSize = heightfield.height;
 | 
			
		||||
 | 
			
		||||
	for (int z = 0; z < zSize; ++z)
 | 
			
		||||
	{
 | 
			
		||||
		for (int x = 0; x < w; ++x)
 | 
			
		||||
		for (int x = 0; x < xSize; ++x)
 | 
			
		||||
		{
 | 
			
		||||
			rcSpan* ps = 0;
 | 
			
		||||
			bool previousWalkable = false;
 | 
			
		||||
			rcSpan* previousSpan = NULL;
 | 
			
		||||
			bool previousWasWalkable = false;
 | 
			
		||||
			unsigned char previousArea = RC_NULL_AREA;
 | 
			
		||||
			
 | 
			
		||||
			for (rcSpan* s = solid.spans[x + y*w]; s; ps = s, s = s->next)
 | 
			
		||||
 | 
			
		||||
			for (rcSpan* span = heightfield.spans[x + z * xSize]; span != NULL; previousSpan = span, span = span->next)
 | 
			
		||||
			{
 | 
			
		||||
				const bool walkable = s->area != RC_NULL_AREA;
 | 
			
		||||
				const bool walkable = span->area != RC_NULL_AREA;
 | 
			
		||||
				// If current span is not walkable, but there is walkable
 | 
			
		||||
				// span just below it, mark the span above it walkable too.
 | 
			
		||||
				if (!walkable && previousWalkable)
 | 
			
		||||
				if (!walkable && previousWasWalkable)
 | 
			
		||||
				{
 | 
			
		||||
					if (rcAbs((int)s->smax - (int)ps->smax) <= walkableClimb)
 | 
			
		||||
						s->area = previousArea;
 | 
			
		||||
					if (rcAbs((int)span->smax - (int)previousSpan->smax) <= walkableClimb)
 | 
			
		||||
					{
 | 
			
		||||
						span->area = previousArea;
 | 
			
		||||
					}
 | 
			
		||||
				}
 | 
			
		||||
				// Copy walkable flag so that it cannot propagate
 | 
			
		||||
				// past multiple non-walkable objects.
 | 
			
		||||
				previousWalkable = walkable;
 | 
			
		||||
				previousArea = s->area;
 | 
			
		||||
				previousWasWalkable = walkable;
 | 
			
		||||
				previousArea = span->area;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// A ledge is a span with one or more neighbors whose maximum is further away than @p walkableClimb
 | 
			
		||||
/// from the current span's maximum.
 | 
			
		||||
/// This method removes the impact of the overestimation of conservative voxelization 
 | 
			
		||||
/// so the resulting mesh will not have regions hanging in the air over ledges.
 | 
			
		||||
/// 
 | 
			
		||||
/// A span is a ledge if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) > walkableClimb</tt>
 | 
			
		||||
/// 
 | 
			
		||||
/// @see rcHeightfield, rcConfig
 | 
			
		||||
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walkableClimb,
 | 
			
		||||
						rcHeightfield& solid)
 | 
			
		||||
void rcFilterLedgeSpans(rcContext* context, const int walkableHeight, const int walkableClimb,
 | 
			
		||||
                        rcHeightfield& heightfield)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(ctx);
 | 
			
		||||
	rcAssert(context);
 | 
			
		||||
	
 | 
			
		||||
	rcScopedTimer timer(ctx, RC_TIMER_FILTER_BORDER);
 | 
			
		||||
	rcScopedTimer timer(context, RC_TIMER_FILTER_BORDER);
 | 
			
		||||
 | 
			
		||||
	const int w = solid.width;
 | 
			
		||||
	const int h = solid.height;
 | 
			
		||||
	const int MAX_HEIGHT = 0xffff;
 | 
			
		||||
	const int xSize = heightfield.width;
 | 
			
		||||
	const int zSize = heightfield.height;
 | 
			
		||||
	const int MAX_HEIGHT = 0xffff; // TODO (graham): Move this to a more visible constant and update usages.
 | 
			
		||||
	
 | 
			
		||||
	// Mark border spans.
 | 
			
		||||
	for (int y = 0; y < h; ++y)
 | 
			
		||||
	for (int z = 0; z < zSize; ++z)
 | 
			
		||||
	{
 | 
			
		||||
		for (int x = 0; x < w; ++x)
 | 
			
		||||
		for (int x = 0; x < xSize; ++x)
 | 
			
		||||
		{
 | 
			
		||||
			for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
 | 
			
		||||
			for (rcSpan* span = heightfield.spans[x + z * xSize]; span; span = span->next)
 | 
			
		||||
			{
 | 
			
		||||
				// Skip non walkable spans.
 | 
			
		||||
				if (s->area == RC_NULL_AREA)
 | 
			
		||||
				if (span->area == RC_NULL_AREA)
 | 
			
		||||
				{
 | 
			
		||||
					continue;
 | 
			
		||||
				
 | 
			
		||||
				const int bot = (int)(s->smax);
 | 
			
		||||
				const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;
 | 
			
		||||
				
 | 
			
		||||
				}
 | 
			
		||||
 | 
			
		||||
				const int bot = (int)(span->smax);
 | 
			
		||||
				const int top = span->next ? (int)(span->next->smin) : MAX_HEIGHT;
 | 
			
		||||
 | 
			
		||||
				// Find neighbours minimum height.
 | 
			
		||||
				int minh = MAX_HEIGHT;
 | 
			
		||||
				int minNeighborHeight = MAX_HEIGHT;
 | 
			
		||||
 | 
			
		||||
				// Min and max height of accessible neighbours.
 | 
			
		||||
				int asmin = s->smax;
 | 
			
		||||
				int asmax = s->smax;
 | 
			
		||||
				int accessibleNeighborMinHeight = span->smax;
 | 
			
		||||
				int accessibleNeighborMaxHeight = span->smax;
 | 
			
		||||
 | 
			
		||||
				for (int dir = 0; dir < 4; ++dir)
 | 
			
		||||
				for (int direction = 0; direction < 4; ++direction)
 | 
			
		||||
				{
 | 
			
		||||
					int dx = x + rcGetDirOffsetX(dir);
 | 
			
		||||
					int dy = y + rcGetDirOffsetY(dir);
 | 
			
		||||
					int dx = x + rcGetDirOffsetX(direction);
 | 
			
		||||
					int dy = z + rcGetDirOffsetY(direction);
 | 
			
		||||
					// Skip neighbours which are out of bounds.
 | 
			
		||||
					if (dx < 0 || dy < 0 || dx >= w || dy >= h)
 | 
			
		||||
					if (dx < 0 || dy < 0 || dx >= xSize || dy >= zSize)
 | 
			
		||||
					{
 | 
			
		||||
						minh = rcMin(minh, -walkableClimb - bot);
 | 
			
		||||
						minNeighborHeight = rcMin(minNeighborHeight, -walkableClimb - bot);
 | 
			
		||||
						continue;
 | 
			
		||||
					}
 | 
			
		||||
 | 
			
		||||
					// From minus infinity to the first span.
 | 
			
		||||
					rcSpan* ns = solid.spans[dx + dy*w];
 | 
			
		||||
					int nbot = -walkableClimb;
 | 
			
		||||
					int ntop = ns ? (int)ns->smin : MAX_HEIGHT;
 | 
			
		||||
					// Skip neightbour if the gap between the spans is too small.
 | 
			
		||||
					if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
 | 
			
		||||
						minh = rcMin(minh, nbot - bot);
 | 
			
		||||
					const rcSpan* neighborSpan = heightfield.spans[dx + dy * xSize];
 | 
			
		||||
					int neighborBot = -walkableClimb;
 | 
			
		||||
					int neighborTop = neighborSpan ? (int)neighborSpan->smin : MAX_HEIGHT;
 | 
			
		||||
					
 | 
			
		||||
					// Rest of the spans.
 | 
			
		||||
					for (ns = solid.spans[dx + dy*w]; ns; ns = ns->next)
 | 
			
		||||
					// Skip neighbour if the gap between the spans is too small.
 | 
			
		||||
					if (rcMin(top, neighborTop) - rcMax(bot, neighborBot) > walkableHeight)
 | 
			
		||||
					{
 | 
			
		||||
						nbot = (int)ns->smax;
 | 
			
		||||
						ntop = ns->next ? (int)ns->next->smin : MAX_HEIGHT;
 | 
			
		||||
						// Skip neightbour if the gap between the spans is too small.
 | 
			
		||||
						if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
 | 
			
		||||
						{
 | 
			
		||||
							minh = rcMin(minh, nbot - bot);
 | 
			
		||||
						minNeighborHeight = rcMin(minNeighborHeight, neighborBot - bot);
 | 
			
		||||
					}
 | 
			
		||||
 | 
			
		||||
					// Rest of the spans.
 | 
			
		||||
					for (neighborSpan = heightfield.spans[dx + dy * xSize]; neighborSpan; neighborSpan = neighborSpan->next)
 | 
			
		||||
					{
 | 
			
		||||
						neighborBot = (int)neighborSpan->smax;
 | 
			
		||||
						neighborTop = neighborSpan->next ? (int)neighborSpan->next->smin : MAX_HEIGHT;
 | 
			
		||||
						
 | 
			
		||||
						// Skip neighbour if the gap between the spans is too small.
 | 
			
		||||
						if (rcMin(top, neighborTop) - rcMax(bot, neighborBot) > walkableHeight)
 | 
			
		||||
						{
 | 
			
		||||
							minNeighborHeight = rcMin(minNeighborHeight, neighborBot - bot);
 | 
			
		||||
 | 
			
		||||
							// Find min/max accessible neighbour height. 
 | 
			
		||||
							if (rcAbs(nbot - bot) <= walkableClimb)
 | 
			
		||||
							if (rcAbs(neighborBot - bot) <= walkableClimb)
 | 
			
		||||
							{
 | 
			
		||||
								if (nbot < asmin) asmin = nbot;
 | 
			
		||||
								if (nbot > asmax) asmax = nbot;
 | 
			
		||||
								if (neighborBot < accessibleNeighborMinHeight) accessibleNeighborMinHeight = neighborBot;
 | 
			
		||||
								if (neighborBot > accessibleNeighborMaxHeight) accessibleNeighborMaxHeight = neighborBot;
 | 
			
		||||
							}
 | 
			
		||||
							
 | 
			
		||||
 | 
			
		||||
						}
 | 
			
		||||
					}
 | 
			
		||||
				}
 | 
			
		||||
				
 | 
			
		||||
 | 
			
		||||
				// The current span is close to a ledge if the drop to any
 | 
			
		||||
				// neighbour span is less than the walkableClimb.
 | 
			
		||||
				if (minh < -walkableClimb)
 | 
			
		||||
				if (minNeighborHeight < -walkableClimb)
 | 
			
		||||
				{
 | 
			
		||||
					s->area = RC_NULL_AREA;
 | 
			
		||||
					span->area = RC_NULL_AREA;
 | 
			
		||||
				}
 | 
			
		||||
				// If the difference between all neighbours is too large,
 | 
			
		||||
				// we are at steep slope, mark the span as ledge.
 | 
			
		||||
				else if ((asmax - asmin) > walkableClimb)
 | 
			
		||||
				else if ((accessibleNeighborMaxHeight - accessibleNeighborMinHeight) > walkableClimb)
 | 
			
		||||
				{
 | 
			
		||||
					s->area = RC_NULL_AREA;
 | 
			
		||||
					span->area = RC_NULL_AREA;
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// For this filter, the clearance above the span is the distance from the span's 
 | 
			
		||||
/// maximum to the next higher span's minimum. (Same grid column.)
 | 
			
		||||
/// 
 | 
			
		||||
/// @see rcHeightfield, rcConfig
 | 
			
		||||
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid)
 | 
			
		||||
void rcFilterWalkableLowHeightSpans(rcContext* context, const int walkableHeight, rcHeightfield& heightfield)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(ctx);
 | 
			
		||||
	rcAssert(context);
 | 
			
		||||
	
 | 
			
		||||
	rcScopedTimer timer(ctx, RC_TIMER_FILTER_WALKABLE);
 | 
			
		||||
	rcScopedTimer timer(context, RC_TIMER_FILTER_WALKABLE);
 | 
			
		||||
	
 | 
			
		||||
	const int w = solid.width;
 | 
			
		||||
	const int h = solid.height;
 | 
			
		||||
	const int xSize = heightfield.width;
 | 
			
		||||
	const int zSize = heightfield.height;
 | 
			
		||||
	const int MAX_HEIGHT = 0xffff;
 | 
			
		||||
	
 | 
			
		||||
	// Remove walkable flag from spans which do not have enough
 | 
			
		||||
	// space above them for the agent to stand there.
 | 
			
		||||
	for (int y = 0; y < h; ++y)
 | 
			
		||||
	for (int z = 0; z < zSize; ++z)
 | 
			
		||||
	{
 | 
			
		||||
		for (int x = 0; x < w; ++x)
 | 
			
		||||
		for (int x = 0; x < xSize; ++x)
 | 
			
		||||
		{
 | 
			
		||||
			for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
 | 
			
		||||
			for (rcSpan* span = heightfield.spans[x + z*xSize]; span; span = span->next)
 | 
			
		||||
			{
 | 
			
		||||
				const int bot = (int)(s->smax);
 | 
			
		||||
				const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;
 | 
			
		||||
				if ((top - bot) <= walkableHeight)
 | 
			
		||||
					s->area = RC_NULL_AREA;
 | 
			
		||||
				const int bot = (int)(span->smax);
 | 
			
		||||
				const int top = span->next ? (int)(span->next->smin) : MAX_HEIGHT;
 | 
			
		||||
				if ((top - bot) < walkableHeight)
 | 
			
		||||
				{
 | 
			
		||||
					span->area = RC_NULL_AREA;
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 
 | 
			
		||||
@@ -17,7 +17,6 @@
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
#include <float.h>
 | 
			
		||||
#define _USE_MATH_DEFINES
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
@@ -29,8 +28,21 @@
 | 
			
		||||
 | 
			
		||||
// Must be 255 or smaller (not 256) because layer IDs are stored as
 | 
			
		||||
// a byte where 255 is a special value.
 | 
			
		||||
static const int RC_MAX_LAYERS = 63;
 | 
			
		||||
static const int RC_MAX_NEIS = 16;
 | 
			
		||||
#ifndef RC_MAX_LAYERS_DEF
 | 
			
		||||
#define RC_MAX_LAYERS_DEF 63
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if RC_MAX_LAYERS_DEF > 255
 | 
			
		||||
#error RC_MAX_LAYERS_DEF must be 255 or smaller
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifndef RC_MAX_NEIS_DEF
 | 
			
		||||
#define RC_MAX_NEIS_DEF 16
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// Keep type checking.
 | 
			
		||||
static const int RC_MAX_LAYERS = RC_MAX_LAYERS_DEF;
 | 
			
		||||
static const int RC_MAX_NEIS = RC_MAX_NEIS_DEF;
 | 
			
		||||
 | 
			
		||||
struct rcLayerRegion
 | 
			
		||||
{
 | 
			
		||||
@@ -89,7 +101,7 @@ struct rcLayerSweepSpan
 | 
			
		||||
/// See the #rcConfig documentation for more information on the configuration parameters.
 | 
			
		||||
/// 
 | 
			
		||||
/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig
 | 
			
		||||
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
 | 
			
		||||
bool rcBuildHeightfieldLayers(rcContext* ctx, const rcCompactHeightfield& chf,
 | 
			
		||||
							  const int borderSize, const int walkableHeight,
 | 
			
		||||
							  rcHeightfieldLayerSet& lset)
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -16,7 +16,6 @@
 | 
			
		||||
// 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
#define _USE_MATH_DEFINES
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
@@ -35,7 +34,7 @@ static bool buildMeshAdjacency(unsigned short* polys, const int npolys,
 | 
			
		||||
							   const int nverts, const int vertsPerPoly)
 | 
			
		||||
{
 | 
			
		||||
	// Based on code by Eric Lengyel from:
 | 
			
		||||
	// http://www.terathon.com/code/edges.php
 | 
			
		||||
	// https://web.archive.org/web/20080704083314/http://www.terathon.com/code/edges.php
 | 
			
		||||
	
 | 
			
		||||
	int maxEdgeCount = npolys*vertsPerPoly;
 | 
			
		||||
	unsigned short* firstEdge = (unsigned short*)rcAlloc(sizeof(unsigned short)*(nverts + maxEdgeCount), RC_ALLOC_TEMP);
 | 
			
		||||
@@ -987,7 +986,7 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
 | 
			
		||||
/// limit must be retricted to <= #DT_VERTS_PER_POLYGON.
 | 
			
		||||
///
 | 
			
		||||
/// @see rcAllocPolyMesh, rcContourSet, rcPolyMesh, rcConfig
 | 
			
		||||
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh)
 | 
			
		||||
bool rcBuildPolyMesh(rcContext* ctx, const rcContourSet& cset, const int nvp, rcPolyMesh& mesh)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(ctx);
 | 
			
		||||
	
 | 
			
		||||
 
 | 
			
		||||
@@ -17,7 +17,6 @@
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
#include <float.h>
 | 
			
		||||
#define _USE_MATH_DEFINES
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -16,377 +16,485 @@
 | 
			
		||||
// 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
#define _USE_MATH_DEFINES
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include "Recast.h"
 | 
			
		||||
#include "RecastAlloc.h"
 | 
			
		||||
#include "RecastAssert.h"
 | 
			
		||||
 | 
			
		||||
inline bool overlapBounds(const float* amin, const float* amax, const float* bmin, const float* bmax)
 | 
			
		||||
/// Check whether two bounding boxes overlap
 | 
			
		||||
///
 | 
			
		||||
/// @param[in]	aMin	Min axis extents of bounding box A
 | 
			
		||||
/// @param[in]	aMax	Max axis extents of bounding box A
 | 
			
		||||
/// @param[in]	bMin	Min axis extents of bounding box B
 | 
			
		||||
/// @param[in]	bMax	Max axis extents of bounding box B
 | 
			
		||||
/// @returns true if the two bounding boxes overlap.  False otherwise.
 | 
			
		||||
static bool overlapBounds(const float* aMin, const float* aMax, const float* bMin, const float* bMax)
 | 
			
		||||
{
 | 
			
		||||
	bool overlap = true;
 | 
			
		||||
	overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
 | 
			
		||||
	overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
 | 
			
		||||
	overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
 | 
			
		||||
	return overlap;
 | 
			
		||||
	return
 | 
			
		||||
		aMin[0] <= bMax[0] && aMax[0] >= bMin[0] &&
 | 
			
		||||
		aMin[1] <= bMax[1] && aMax[1] >= bMin[1] &&
 | 
			
		||||
		aMin[2] <= bMax[2] && aMax[2] >= bMin[2];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline bool overlapInterval(unsigned short amin, unsigned short amax,
 | 
			
		||||
							unsigned short bmin, unsigned short bmax)
 | 
			
		||||
{
 | 
			
		||||
	if (amax < bmin) return false;
 | 
			
		||||
	if (amin > bmax) return false;
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/// Allocates a new span in the heightfield.
 | 
			
		||||
/// Use a memory pool and free list to minimize actual allocations.
 | 
			
		||||
/// 
 | 
			
		||||
/// @param[in]	hf		The heightfield
 | 
			
		||||
/// @returns A pointer to the allocated or re-used span memory. 
 | 
			
		||||
static rcSpan* allocSpan(rcHeightfield& hf)
 | 
			
		||||
{
 | 
			
		||||
	// If running out of memory, allocate new page and update the freelist.
 | 
			
		||||
	if (!hf.freelist || !hf.freelist->next)
 | 
			
		||||
	// If necessary, allocate new page and update the freelist.
 | 
			
		||||
	if (hf.freelist == NULL || hf.freelist->next == NULL)
 | 
			
		||||
	{
 | 
			
		||||
		// Create new page.
 | 
			
		||||
		// Allocate memory for the new pool.
 | 
			
		||||
		rcSpanPool* pool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM);
 | 
			
		||||
		if (!pool) return 0;
 | 
			
		||||
		rcSpanPool* spanPool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM);
 | 
			
		||||
		if (spanPool == NULL)
 | 
			
		||||
		{
 | 
			
		||||
			return NULL;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		// Add the pool into the list of pools.
 | 
			
		||||
		pool->next = hf.pools;
 | 
			
		||||
		hf.pools = pool;
 | 
			
		||||
		// Add new items to the free list.
 | 
			
		||||
		rcSpan* freelist = hf.freelist;
 | 
			
		||||
		rcSpan* head = &pool->items[0];
 | 
			
		||||
		rcSpan* it = &pool->items[RC_SPANS_PER_POOL];
 | 
			
		||||
		spanPool->next = hf.pools;
 | 
			
		||||
		hf.pools = spanPool;
 | 
			
		||||
		
 | 
			
		||||
		// Add new spans to the free list.
 | 
			
		||||
		rcSpan* freeList = hf.freelist;
 | 
			
		||||
		rcSpan* head = &spanPool->items[0];
 | 
			
		||||
		rcSpan* it = &spanPool->items[RC_SPANS_PER_POOL];
 | 
			
		||||
		do
 | 
			
		||||
		{
 | 
			
		||||
			--it;
 | 
			
		||||
			it->next = freelist;
 | 
			
		||||
			freelist = it;
 | 
			
		||||
			it->next = freeList;
 | 
			
		||||
			freeList = it;
 | 
			
		||||
		}
 | 
			
		||||
		while (it != head);
 | 
			
		||||
		hf.freelist = it;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	// Pop item from in front of the free list.
 | 
			
		||||
	rcSpan* it = hf.freelist;
 | 
			
		||||
 | 
			
		||||
	// Pop item from the front of the free list.
 | 
			
		||||
	rcSpan* newSpan = hf.freelist;
 | 
			
		||||
	hf.freelist = hf.freelist->next;
 | 
			
		||||
	return it;
 | 
			
		||||
	return newSpan;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void freeSpan(rcHeightfield& hf, rcSpan* ptr)
 | 
			
		||||
/// Releases the memory used by the span back to the heightfield, so it can be re-used for new spans.
 | 
			
		||||
/// @param[in]	hf		The heightfield.
 | 
			
		||||
/// @param[in]	span	A pointer to the span to free
 | 
			
		||||
static void freeSpan(rcHeightfield& hf, rcSpan* span)
 | 
			
		||||
{
 | 
			
		||||
	if (!ptr) return;
 | 
			
		||||
	// Add the node in front of the free list.
 | 
			
		||||
	ptr->next = hf.freelist;
 | 
			
		||||
	hf.freelist = ptr;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static bool addSpan(rcHeightfield& hf, const int x, const int y,
 | 
			
		||||
					const unsigned short smin, const unsigned short smax,
 | 
			
		||||
					const unsigned char area, const int flagMergeThr)
 | 
			
		||||
{
 | 
			
		||||
	
 | 
			
		||||
	int idx = x + y*hf.width;
 | 
			
		||||
	
 | 
			
		||||
	rcSpan* s = allocSpan(hf);
 | 
			
		||||
	if (!s)
 | 
			
		||||
		return false;
 | 
			
		||||
	s->smin = smin;
 | 
			
		||||
	s->smax = smax;
 | 
			
		||||
	s->area = area;
 | 
			
		||||
	s->next = 0;
 | 
			
		||||
	
 | 
			
		||||
	// Empty cell, add the first span.
 | 
			
		||||
	if (!hf.spans[idx])
 | 
			
		||||
	if (span == NULL)
 | 
			
		||||
	{
 | 
			
		||||
		hf.spans[idx] = s;
 | 
			
		||||
		return true;
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
	rcSpan* prev = 0;
 | 
			
		||||
	rcSpan* cur = hf.spans[idx];
 | 
			
		||||
	
 | 
			
		||||
	// Insert and merge spans.
 | 
			
		||||
	while (cur)
 | 
			
		||||
	// Add the span to the front of the free list.
 | 
			
		||||
	span->next = hf.freelist;
 | 
			
		||||
	hf.freelist = span;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// Adds a span to the heightfield.  If the new span overlaps existing spans,
 | 
			
		||||
/// it will merge the new span with the existing ones.
 | 
			
		||||
///
 | 
			
		||||
/// @param[in]	hf					Heightfield to add spans to
 | 
			
		||||
/// @param[in]	x					The new span's column cell x index
 | 
			
		||||
/// @param[in]	z					The new span's column cell z index
 | 
			
		||||
/// @param[in]	min					The new span's minimum cell index
 | 
			
		||||
/// @param[in]	max					The new span's maximum cell index
 | 
			
		||||
/// @param[in]	areaID				The new span's area type ID
 | 
			
		||||
/// @param[in]	flagMergeThreshold	How close two spans maximum extents need to be to merge area type IDs
 | 
			
		||||
static bool addSpan(rcHeightfield& hf,
 | 
			
		||||
                    const int x, const int z,
 | 
			
		||||
                    const unsigned short min, const unsigned short max,
 | 
			
		||||
                    const unsigned char areaID, const int flagMergeThreshold)
 | 
			
		||||
{
 | 
			
		||||
	// Create the new span.
 | 
			
		||||
	rcSpan* newSpan = allocSpan(hf);
 | 
			
		||||
	if (newSpan == NULL)
 | 
			
		||||
	{
 | 
			
		||||
		if (cur->smin > s->smax)
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
	newSpan->smin = min;
 | 
			
		||||
	newSpan->smax = max;
 | 
			
		||||
	newSpan->area = areaID;
 | 
			
		||||
	newSpan->next = NULL;
 | 
			
		||||
	
 | 
			
		||||
	const int columnIndex = x + z * hf.width;
 | 
			
		||||
	rcSpan* previousSpan = NULL;
 | 
			
		||||
	rcSpan* currentSpan = hf.spans[columnIndex];
 | 
			
		||||
	
 | 
			
		||||
	// Insert the new span, possibly merging it with existing spans.
 | 
			
		||||
	while (currentSpan != NULL)
 | 
			
		||||
	{
 | 
			
		||||
		if (currentSpan->smin > newSpan->smax)
 | 
			
		||||
		{
 | 
			
		||||
			// Current span is further than the new span, break.
 | 
			
		||||
			// Current span is completely after the new span, break.
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
		else if (cur->smax < s->smin)
 | 
			
		||||
		
 | 
			
		||||
		if (currentSpan->smax < newSpan->smin)
 | 
			
		||||
		{
 | 
			
		||||
			// Current span is before the new span advance.
 | 
			
		||||
			prev = cur;
 | 
			
		||||
			cur = cur->next;
 | 
			
		||||
			// Current span is completely before the new span.  Keep going.
 | 
			
		||||
			previousSpan = currentSpan;
 | 
			
		||||
			currentSpan = currentSpan->next;
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			// Merge spans.
 | 
			
		||||
			if (cur->smin < s->smin)
 | 
			
		||||
				s->smin = cur->smin;
 | 
			
		||||
			if (cur->smax > s->smax)
 | 
			
		||||
				s->smax = cur->smax;
 | 
			
		||||
			// The new span overlaps with an existing span.  Merge them.
 | 
			
		||||
			if (currentSpan->smin < newSpan->smin)
 | 
			
		||||
			{
 | 
			
		||||
				newSpan->smin = currentSpan->smin;
 | 
			
		||||
			}
 | 
			
		||||
			if (currentSpan->smax > newSpan->smax)
 | 
			
		||||
			{
 | 
			
		||||
				newSpan->smax = currentSpan->smax;
 | 
			
		||||
			}
 | 
			
		||||
			
 | 
			
		||||
			// Merge flags.
 | 
			
		||||
			if (rcAbs((int)s->smax - (int)cur->smax) <= flagMergeThr)
 | 
			
		||||
				s->area = rcMax(s->area, cur->area);
 | 
			
		||||
			if (rcAbs((int)newSpan->smax - (int)currentSpan->smax) <= flagMergeThreshold)
 | 
			
		||||
			{
 | 
			
		||||
				// Higher area ID numbers indicate higher resolution priority.
 | 
			
		||||
				newSpan->area = rcMax(newSpan->area, currentSpan->area);
 | 
			
		||||
			}
 | 
			
		||||
			
 | 
			
		||||
			// Remove current span.
 | 
			
		||||
			rcSpan* next = cur->next;
 | 
			
		||||
			freeSpan(hf, cur);
 | 
			
		||||
			if (prev)
 | 
			
		||||
				prev->next = next;
 | 
			
		||||
			// Remove the current span since it's now merged with newSpan.
 | 
			
		||||
			// Keep going because there might be other overlapping spans that also need to be merged.
 | 
			
		||||
			rcSpan* next = currentSpan->next;
 | 
			
		||||
			freeSpan(hf, currentSpan);
 | 
			
		||||
			if (previousSpan)
 | 
			
		||||
			{
 | 
			
		||||
				previousSpan->next = next;
 | 
			
		||||
			}
 | 
			
		||||
			else
 | 
			
		||||
				hf.spans[idx] = next;
 | 
			
		||||
			cur = next;
 | 
			
		||||
			{
 | 
			
		||||
				hf.spans[columnIndex] = next;
 | 
			
		||||
			}
 | 
			
		||||
			currentSpan = next;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	// Insert new span.
 | 
			
		||||
	if (prev)
 | 
			
		||||
	// Insert new span after prev
 | 
			
		||||
	if (previousSpan != NULL)
 | 
			
		||||
	{
 | 
			
		||||
		s->next = prev->next;
 | 
			
		||||
		prev->next = s;
 | 
			
		||||
		newSpan->next = previousSpan->next;
 | 
			
		||||
		previousSpan->next = newSpan;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		s->next = hf.spans[idx];
 | 
			
		||||
		hf.spans[idx] = s;
 | 
			
		||||
		// This span should go before the others in the list
 | 
			
		||||
		newSpan->next = hf.spans[columnIndex];
 | 
			
		||||
		hf.spans[columnIndex] = newSpan;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// The span addition can be set to favor flags. If the span is merged to
 | 
			
		||||
/// another span and the new @p smax is within @p flagMergeThr units
 | 
			
		||||
/// from the existing span, the span flags are merged.
 | 
			
		||||
///
 | 
			
		||||
/// @see rcHeightfield, rcSpan.
 | 
			
		||||
bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
 | 
			
		||||
			   const unsigned short smin, const unsigned short smax,
 | 
			
		||||
			   const unsigned char area, const int flagMergeThr)
 | 
			
		||||
bool rcAddSpan(rcContext* context, rcHeightfield& heightfield,
 | 
			
		||||
               const int x, const int z,
 | 
			
		||||
               const unsigned short spanMin, const unsigned short spanMax,
 | 
			
		||||
               const unsigned char areaID, const int flagMergeThreshold)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(ctx);
 | 
			
		||||
	rcAssert(context);
 | 
			
		||||
 | 
			
		||||
	if (!addSpan(hf, x, y, smin, smax, area, flagMergeThr))
 | 
			
		||||
	if (!addSpan(heightfield, x, z, spanMin, spanMax, areaID, flagMergeThreshold))
 | 
			
		||||
	{
 | 
			
		||||
		ctx->log(RC_LOG_ERROR, "rcAddSpan: Out of memory.");
 | 
			
		||||
		context->log(RC_LOG_ERROR, "rcAddSpan: Out of memory.");
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// divides a convex polygons into two convex polygons on both sides of a line
 | 
			
		||||
static void dividePoly(const float* in, int nin,
 | 
			
		||||
					  float* out1, int* nout1,
 | 
			
		||||
					  float* out2, int* nout2,
 | 
			
		||||
					  float x, int axis)
 | 
			
		||||
enum rcAxis
 | 
			
		||||
{
 | 
			
		||||
	float d[12];
 | 
			
		||||
	for (int i = 0; i < nin; ++i)
 | 
			
		||||
		d[i] = x - in[i*3+axis];
 | 
			
		||||
	RC_AXIS_X = 0,
 | 
			
		||||
	RC_AXIS_Y = 1,
 | 
			
		||||
	RC_AXIS_Z = 2
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
	int m = 0, n = 0;
 | 
			
		||||
	for (int i = 0, j = nin-1; i < nin; j=i, ++i)
 | 
			
		||||
/// Divides a convex polygon of max 12 vertices into two convex polygons
 | 
			
		||||
/// across a separating axis.
 | 
			
		||||
/// 
 | 
			
		||||
/// @param[in]	inVerts			The input polygon vertices
 | 
			
		||||
/// @param[in]	inVertsCount	The number of input polygon vertices
 | 
			
		||||
/// @param[out]	outVerts1		Resulting polygon 1's vertices
 | 
			
		||||
/// @param[out]	outVerts1Count	The number of resulting polygon 1 vertices
 | 
			
		||||
/// @param[out]	outVerts2		Resulting polygon 2's vertices
 | 
			
		||||
/// @param[out]	outVerts2Count	The number of resulting polygon 2 vertices
 | 
			
		||||
/// @param[in]	axisOffset		THe offset along the specified axis
 | 
			
		||||
/// @param[in]	axis			The separating axis
 | 
			
		||||
static void dividePoly(const float* inVerts, int inVertsCount,
 | 
			
		||||
                       float* outVerts1, int* outVerts1Count,
 | 
			
		||||
                       float* outVerts2, int* outVerts2Count,
 | 
			
		||||
                       float axisOffset, rcAxis axis)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(inVertsCount <= 12);
 | 
			
		||||
	
 | 
			
		||||
	// How far positive or negative away from the separating axis is each vertex.
 | 
			
		||||
	float inVertAxisDelta[12];
 | 
			
		||||
	for (int inVert = 0; inVert < inVertsCount; ++inVert)
 | 
			
		||||
	{
 | 
			
		||||
		bool ina = d[j] >= 0;
 | 
			
		||||
		bool inb = d[i] >= 0;
 | 
			
		||||
		if (ina != inb)
 | 
			
		||||
		inVertAxisDelta[inVert] = axisOffset - inVerts[inVert * 3 + axis];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	int poly1Vert = 0;
 | 
			
		||||
	int poly2Vert = 0;
 | 
			
		||||
	for (int inVertA = 0, inVertB = inVertsCount - 1; inVertA < inVertsCount; inVertB = inVertA, ++inVertA)
 | 
			
		||||
	{
 | 
			
		||||
		// If the two vertices are on the same side of the separating axis
 | 
			
		||||
		bool sameSide = (inVertAxisDelta[inVertA] >= 0) == (inVertAxisDelta[inVertB] >= 0);
 | 
			
		||||
 | 
			
		||||
		if (!sameSide)
 | 
			
		||||
		{
 | 
			
		||||
			float s = d[j] / (d[j] - d[i]);
 | 
			
		||||
			out1[m*3+0] = in[j*3+0] + (in[i*3+0] - in[j*3+0])*s;
 | 
			
		||||
			out1[m*3+1] = in[j*3+1] + (in[i*3+1] - in[j*3+1])*s;
 | 
			
		||||
			out1[m*3+2] = in[j*3+2] + (in[i*3+2] - in[j*3+2])*s;
 | 
			
		||||
			rcVcopy(out2 + n*3, out1 + m*3);
 | 
			
		||||
			m++;
 | 
			
		||||
			n++;
 | 
			
		||||
			// add the i'th point to the right polygon. Do NOT add points that are on the dividing line
 | 
			
		||||
			float s = inVertAxisDelta[inVertB] / (inVertAxisDelta[inVertB] - inVertAxisDelta[inVertA]);
 | 
			
		||||
			outVerts1[poly1Vert * 3 + 0] = inVerts[inVertB * 3 + 0] + (inVerts[inVertA * 3 + 0] - inVerts[inVertB * 3 + 0]) * s;
 | 
			
		||||
			outVerts1[poly1Vert * 3 + 1] = inVerts[inVertB * 3 + 1] + (inVerts[inVertA * 3 + 1] - inVerts[inVertB * 3 + 1]) * s;
 | 
			
		||||
			outVerts1[poly1Vert * 3 + 2] = inVerts[inVertB * 3 + 2] + (inVerts[inVertA * 3 + 2] - inVerts[inVertB * 3 + 2]) * s;
 | 
			
		||||
			rcVcopy(&outVerts2[poly2Vert * 3], &outVerts1[poly1Vert * 3]);
 | 
			
		||||
			poly1Vert++;
 | 
			
		||||
			poly2Vert++;
 | 
			
		||||
			
 | 
			
		||||
			// add the inVertA point to the right polygon. Do NOT add points that are on the dividing line
 | 
			
		||||
			// since these were already added above
 | 
			
		||||
			if (d[i] > 0)
 | 
			
		||||
			if (inVertAxisDelta[inVertA] > 0)
 | 
			
		||||
			{
 | 
			
		||||
				rcVcopy(out1 + m*3, in + i*3);
 | 
			
		||||
				m++;
 | 
			
		||||
				rcVcopy(&outVerts1[poly1Vert * 3], &inVerts[inVertA * 3]);
 | 
			
		||||
				poly1Vert++;
 | 
			
		||||
			}
 | 
			
		||||
			else if (d[i] < 0)
 | 
			
		||||
			else if (inVertAxisDelta[inVertA] < 0)
 | 
			
		||||
			{
 | 
			
		||||
				rcVcopy(out2 + n*3, in + i*3);
 | 
			
		||||
				n++;
 | 
			
		||||
				rcVcopy(&outVerts2[poly2Vert * 3], &inVerts[inVertA * 3]);
 | 
			
		||||
				poly2Vert++;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		else // same side
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			// add the i'th point to the right polygon. Addition is done even for points on the dividing line
 | 
			
		||||
			if (d[i] >= 0)
 | 
			
		||||
			// add the inVertA point to the right polygon. Addition is done even for points on the dividing line
 | 
			
		||||
			if (inVertAxisDelta[inVertA] >= 0)
 | 
			
		||||
			{
 | 
			
		||||
				rcVcopy(out1 + m*3, in + i*3);
 | 
			
		||||
				m++;
 | 
			
		||||
				if (d[i] != 0)
 | 
			
		||||
				rcVcopy(&outVerts1[poly1Vert * 3], &inVerts[inVertA * 3]);
 | 
			
		||||
				poly1Vert++;
 | 
			
		||||
				if (inVertAxisDelta[inVertA] != 0)
 | 
			
		||||
				{
 | 
			
		||||
					continue;
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
			rcVcopy(out2 + n*3, in + i*3);
 | 
			
		||||
			n++;
 | 
			
		||||
			rcVcopy(&outVerts2[poly2Vert * 3], &inVerts[inVertA * 3]);
 | 
			
		||||
			poly2Vert++;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	*nout1 = m;
 | 
			
		||||
	*nout2 = n;
 | 
			
		||||
	*outVerts1Count = poly1Vert;
 | 
			
		||||
	*outVerts2Count = poly2Vert;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
///	Rasterize a single triangle to the heightfield.
 | 
			
		||||
///
 | 
			
		||||
///	This code is extremely hot, so much care should be given to maintaining maximum perf here.
 | 
			
		||||
/// 
 | 
			
		||||
/// @param[in] 	v0					Triangle vertex 0
 | 
			
		||||
/// @param[in] 	v1					Triangle vertex 1
 | 
			
		||||
/// @param[in] 	v2					Triangle vertex 2
 | 
			
		||||
/// @param[in] 	areaID				The area ID to assign to the rasterized spans
 | 
			
		||||
/// @param[in] 	hf					Heightfield to rasterize into
 | 
			
		||||
/// @param[in] 	hfBBMin				The min extents of the heightfield bounding box
 | 
			
		||||
/// @param[in] 	hfBBMax				The max extents of the heightfield bounding box
 | 
			
		||||
/// @param[in] 	cellSize			The x and z axis size of a voxel in the heightfield
 | 
			
		||||
/// @param[in] 	inverseCellSize		1 / cellSize
 | 
			
		||||
/// @param[in] 	inverseCellHeight	1 / cellHeight
 | 
			
		||||
/// @param[in] 	flagMergeThreshold	The threshold in which area flags will be merged 
 | 
			
		||||
/// @returns true if the operation completes successfully.  false if there was an error adding spans to the heightfield.
 | 
			
		||||
static bool rasterizeTri(const float* v0, const float* v1, const float* v2,
 | 
			
		||||
						 const unsigned char area, rcHeightfield& hf,
 | 
			
		||||
						 const float* bmin, const float* bmax,
 | 
			
		||||
						 const float cs, const float ics, const float ich,
 | 
			
		||||
						 const int flagMergeThr)
 | 
			
		||||
                         const unsigned char areaID, rcHeightfield& hf,
 | 
			
		||||
                         const float* hfBBMin, const float* hfBBMax,
 | 
			
		||||
                         const float cellSize, const float inverseCellSize, const float inverseCellHeight,
 | 
			
		||||
                         const int flagMergeThreshold)
 | 
			
		||||
{
 | 
			
		||||
	// Calculate the bounding box of the triangle.
 | 
			
		||||
	float triBBMin[3];
 | 
			
		||||
	rcVcopy(triBBMin, v0);
 | 
			
		||||
	rcVmin(triBBMin, v1);
 | 
			
		||||
	rcVmin(triBBMin, v2);
 | 
			
		||||
 | 
			
		||||
	float triBBMax[3];
 | 
			
		||||
	rcVcopy(triBBMax, v0);
 | 
			
		||||
	rcVmax(triBBMax, v1);
 | 
			
		||||
	rcVmax(triBBMax, v2);
 | 
			
		||||
 | 
			
		||||
	// If the triangle does not touch the bounding box of the heightfield, skip the triangle.
 | 
			
		||||
	if (!overlapBounds(triBBMin, triBBMax, hfBBMin, hfBBMax))
 | 
			
		||||
	{
 | 
			
		||||
		return true;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	const int w = hf.width;
 | 
			
		||||
	const int h = hf.height;
 | 
			
		||||
	float tmin[3], tmax[3];
 | 
			
		||||
	const float by = bmax[1] - bmin[1];
 | 
			
		||||
	
 | 
			
		||||
	// Calculate the bounding box of the triangle.
 | 
			
		||||
	rcVcopy(tmin, v0);
 | 
			
		||||
	rcVcopy(tmax, v0);
 | 
			
		||||
	rcVmin(tmin, v1);
 | 
			
		||||
	rcVmin(tmin, v2);
 | 
			
		||||
	rcVmax(tmax, v1);
 | 
			
		||||
	rcVmax(tmax, v2);
 | 
			
		||||
	
 | 
			
		||||
	// If the triangle does not touch the bbox of the heightfield, skip the triagle.
 | 
			
		||||
	if (!overlapBounds(bmin, bmax, tmin, tmax))
 | 
			
		||||
		return true;
 | 
			
		||||
	
 | 
			
		||||
	// Calculate the footprint of the triangle on the grid's y-axis
 | 
			
		||||
	int y0 = (int)((tmin[2] - bmin[2])*ics);
 | 
			
		||||
	int y1 = (int)((tmax[2] - bmin[2])*ics);
 | 
			
		||||
	const float by = hfBBMax[1] - hfBBMin[1];
 | 
			
		||||
 | 
			
		||||
	// Calculate the footprint of the triangle on the grid's z-axis
 | 
			
		||||
	int z0 = (int)((triBBMin[2] - hfBBMin[2]) * inverseCellSize);
 | 
			
		||||
	int z1 = (int)((triBBMax[2] - hfBBMin[2]) * inverseCellSize);
 | 
			
		||||
 | 
			
		||||
	// use -1 rather than 0 to cut the polygon properly at the start of the tile
 | 
			
		||||
	y0 = rcClamp(y0, -1, h-1);
 | 
			
		||||
	y1 = rcClamp(y1, 0, h-1);
 | 
			
		||||
	
 | 
			
		||||
	z0 = rcClamp(z0, -1, h - 1);
 | 
			
		||||
	z1 = rcClamp(z1, 0, h - 1);
 | 
			
		||||
 | 
			
		||||
	// Clip the triangle into all grid cells it touches.
 | 
			
		||||
	float buf[7*3*4];
 | 
			
		||||
	float *in = buf, *inrow = buf+7*3, *p1 = inrow+7*3, *p2 = p1+7*3;
 | 
			
		||||
	float buf[7 * 3 * 4];
 | 
			
		||||
	float* in = buf;
 | 
			
		||||
	float* inRow = buf + 7 * 3;
 | 
			
		||||
	float* p1 = inRow + 7 * 3;
 | 
			
		||||
	float* p2 = p1 + 7 * 3;
 | 
			
		||||
 | 
			
		||||
	rcVcopy(&in[0], v0);
 | 
			
		||||
	rcVcopy(&in[1*3], v1);
 | 
			
		||||
	rcVcopy(&in[2*3], v2);
 | 
			
		||||
	int nvrow, nvIn = 3;
 | 
			
		||||
	
 | 
			
		||||
	for (int y = y0; y <= y1; ++y)
 | 
			
		||||
	rcVcopy(&in[1 * 3], v1);
 | 
			
		||||
	rcVcopy(&in[2 * 3], v2);
 | 
			
		||||
	int nvRow;
 | 
			
		||||
	int nvIn = 3;
 | 
			
		||||
 | 
			
		||||
	for (int z = z0; z <= z1; ++z)
 | 
			
		||||
	{
 | 
			
		||||
		// Clip polygon to row. Store the remaining polygon as well
 | 
			
		||||
		const float cz = bmin[2] + y*cs;
 | 
			
		||||
		dividePoly(in, nvIn, inrow, &nvrow, p1, &nvIn, cz+cs, 2);
 | 
			
		||||
		const float cellZ = hfBBMin[2] + (float)z * cellSize;
 | 
			
		||||
		dividePoly(in, nvIn, inRow, &nvRow, p1, &nvIn, cellZ + cellSize, RC_AXIS_Z);
 | 
			
		||||
		rcSwap(in, p1);
 | 
			
		||||
		if (nvrow < 3) continue;
 | 
			
		||||
		if (y < 0) continue;
 | 
			
		||||
		// find the horizontal bounds in the row
 | 
			
		||||
		float minX = inrow[0], maxX = inrow[0];
 | 
			
		||||
		for (int i=1; i<nvrow; ++i)
 | 
			
		||||
		
 | 
			
		||||
		if (nvRow < 3)
 | 
			
		||||
		{
 | 
			
		||||
			if (minX > inrow[i*3])	minX = inrow[i*3];
 | 
			
		||||
			if (maxX < inrow[i*3])	maxX = inrow[i*3];
 | 
			
		||||
		}
 | 
			
		||||
		int x0 = (int)((minX - bmin[0])*ics);
 | 
			
		||||
		int x1 = (int)((maxX - bmin[0])*ics);
 | 
			
		||||
		if (x1 < 0 || x0 >= w) {
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
		x0 = rcClamp(x0, -1, w-1);
 | 
			
		||||
		x1 = rcClamp(x1, 0, w-1);
 | 
			
		||||
		if (z < 0)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
		
 | 
			
		||||
		// find X-axis bounds of the row
 | 
			
		||||
		float minX = inRow[0];
 | 
			
		||||
		float maxX = inRow[0];
 | 
			
		||||
		for (int vert = 1; vert < nvRow; ++vert)
 | 
			
		||||
		{
 | 
			
		||||
			if (minX > inRow[vert * 3])
 | 
			
		||||
			{
 | 
			
		||||
				minX = inRow[vert * 3];
 | 
			
		||||
			}
 | 
			
		||||
			if (maxX < inRow[vert * 3])
 | 
			
		||||
			{
 | 
			
		||||
				maxX = inRow[vert * 3];
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		int x0 = (int)((minX - hfBBMin[0]) * inverseCellSize);
 | 
			
		||||
		int x1 = (int)((maxX - hfBBMin[0]) * inverseCellSize);
 | 
			
		||||
		if (x1 < 0 || x0 >= w)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
		x0 = rcClamp(x0, -1, w - 1);
 | 
			
		||||
		x1 = rcClamp(x1, 0, w - 1);
 | 
			
		||||
 | 
			
		||||
		int nv, nv2 = nvrow;
 | 
			
		||||
		int nv;
 | 
			
		||||
		int nv2 = nvRow;
 | 
			
		||||
 | 
			
		||||
		for (int x = x0; x <= x1; ++x)
 | 
			
		||||
		{
 | 
			
		||||
			// Clip polygon to column. store the remaining polygon as well
 | 
			
		||||
			const float cx = bmin[0] + x*cs;
 | 
			
		||||
			dividePoly(inrow, nv2, p1, &nv, p2, &nv2, cx+cs, 0);
 | 
			
		||||
			rcSwap(inrow, p2);
 | 
			
		||||
			if (nv < 3) continue;
 | 
			
		||||
			if (x < 0) continue;
 | 
			
		||||
			// Calculate min and max of the span.
 | 
			
		||||
			float smin = p1[1], smax = p1[1];
 | 
			
		||||
			for (int i = 1; i < nv; ++i)
 | 
			
		||||
			const float cx = hfBBMin[0] + (float)x * cellSize;
 | 
			
		||||
			dividePoly(inRow, nv2, p1, &nv, p2, &nv2, cx + cellSize, RC_AXIS_X);
 | 
			
		||||
			rcSwap(inRow, p2);
 | 
			
		||||
			
 | 
			
		||||
			if (nv < 3)
 | 
			
		||||
			{
 | 
			
		||||
				smin = rcMin(smin, p1[i*3+1]);
 | 
			
		||||
				smax = rcMax(smax, p1[i*3+1]);
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			if (x < 0)
 | 
			
		||||
			{
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			smin -= bmin[1];
 | 
			
		||||
			smax -= bmin[1];
 | 
			
		||||
			// Skip the span if it is outside the heightfield bbox
 | 
			
		||||
			if (smax < 0.0f) continue;
 | 
			
		||||
			if (smin > by) continue;
 | 
			
		||||
			// Clamp the span to the heightfield bbox.
 | 
			
		||||
			if (smin < 0.0f) smin = 0;
 | 
			
		||||
			if (smax > by) smax = by;
 | 
			
		||||
			
 | 
			
		||||
			// Calculate min and max of the span.
 | 
			
		||||
			float spanMin = p1[1];
 | 
			
		||||
			float spanMax = p1[1];
 | 
			
		||||
			for (int vert = 1; vert < nv; ++vert)
 | 
			
		||||
			{
 | 
			
		||||
				spanMin = rcMin(spanMin, p1[vert * 3 + 1]);
 | 
			
		||||
				spanMax = rcMax(spanMax, p1[vert * 3 + 1]);
 | 
			
		||||
			}
 | 
			
		||||
			spanMin -= hfBBMin[1];
 | 
			
		||||
			spanMax -= hfBBMin[1];
 | 
			
		||||
			
 | 
			
		||||
			// Skip the span if it's completely outside the heightfield bounding box
 | 
			
		||||
			if (spanMax < 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			if (spanMin > by)
 | 
			
		||||
			{
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
			
 | 
			
		||||
			// Clamp the span to the heightfield bounding box.
 | 
			
		||||
			if (spanMin < 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				spanMin = 0;
 | 
			
		||||
			}
 | 
			
		||||
			if (spanMax > by)
 | 
			
		||||
			{
 | 
			
		||||
				spanMax = by;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Snap the span to the heightfield height grid.
 | 
			
		||||
			unsigned short ismin = (unsigned short)rcClamp((int)floorf(smin * ich), 0, RC_SPAN_MAX_HEIGHT);
 | 
			
		||||
			unsigned short ismax = (unsigned short)rcClamp((int)ceilf(smax * ich), (int)ismin+1, RC_SPAN_MAX_HEIGHT);
 | 
			
		||||
			
 | 
			
		||||
			if (!addSpan(hf, x, y, ismin, ismax, area, flagMergeThr))
 | 
			
		||||
			unsigned short spanMinCellIndex = (unsigned short)rcClamp((int)floorf(spanMin * inverseCellHeight), 0, RC_SPAN_MAX_HEIGHT);
 | 
			
		||||
			unsigned short spanMaxCellIndex = (unsigned short)rcClamp((int)ceilf(spanMax * inverseCellHeight), (int)spanMinCellIndex + 1, RC_SPAN_MAX_HEIGHT);
 | 
			
		||||
 | 
			
		||||
			if (!addSpan(hf, x, z, spanMinCellIndex, spanMaxCellIndex, areaID, flagMergeThreshold))
 | 
			
		||||
			{
 | 
			
		||||
				return false;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// No spans will be added if the triangle does not overlap the heightfield grid.
 | 
			
		||||
///
 | 
			
		||||
/// @see rcHeightfield
 | 
			
		||||
bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
 | 
			
		||||
						 const unsigned char area, rcHeightfield& solid,
 | 
			
		||||
						 const int flagMergeThr)
 | 
			
		||||
bool rcRasterizeTriangle(rcContext* context,
 | 
			
		||||
                         const float* v0, const float* v1, const float* v2,
 | 
			
		||||
                         const unsigned char areaID, rcHeightfield& heightfield, const int flagMergeThreshold)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(ctx);
 | 
			
		||||
	rcAssert(context != NULL);
 | 
			
		||||
 | 
			
		||||
	rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
 | 
			
		||||
	rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
 | 
			
		||||
 | 
			
		||||
	const float ics = 1.0f/solid.cs;
 | 
			
		||||
	const float ich = 1.0f/solid.ch;
 | 
			
		||||
	if (!rasterizeTri(v0, v1, v2, area, solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
 | 
			
		||||
	// Rasterize the single triangle.
 | 
			
		||||
	const float inverseCellSize = 1.0f / heightfield.cs;
 | 
			
		||||
	const float inverseCellHeight = 1.0f / heightfield.ch;
 | 
			
		||||
	if (!rasterizeTri(v0, v1, v2, areaID, heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
 | 
			
		||||
	{
 | 
			
		||||
		ctx->log(RC_LOG_ERROR, "rcRasterizeTriangle: Out of memory.");
 | 
			
		||||
		context->log(RC_LOG_ERROR, "rcRasterizeTriangle: Out of memory.");
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// Spans will only be added for triangles that overlap the heightfield grid.
 | 
			
		||||
///
 | 
			
		||||
/// @see rcHeightfield
 | 
			
		||||
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
 | 
			
		||||
						  const int* tris, const unsigned char* areas, const int nt,
 | 
			
		||||
						  rcHeightfield& solid, const int flagMergeThr)
 | 
			
		||||
bool rcRasterizeTriangles(rcContext* context,
 | 
			
		||||
                          const float* verts, const int /*nv*/,
 | 
			
		||||
                          const int* tris, const unsigned char* triAreaIDs, const int numTris,
 | 
			
		||||
                          rcHeightfield& heightfield, const int flagMergeThreshold)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(ctx);
 | 
			
		||||
	rcAssert(context != NULL);
 | 
			
		||||
 | 
			
		||||
	rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
 | 
			
		||||
	rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
 | 
			
		||||
	
 | 
			
		||||
	const float ics = 1.0f/solid.cs;
 | 
			
		||||
	const float ich = 1.0f/solid.ch;
 | 
			
		||||
	// Rasterize triangles.
 | 
			
		||||
	for (int i = 0; i < nt; ++i)
 | 
			
		||||
	// Rasterize the triangles.
 | 
			
		||||
	const float inverseCellSize = 1.0f / heightfield.cs;
 | 
			
		||||
	const float inverseCellHeight = 1.0f / heightfield.ch;
 | 
			
		||||
	for (int triIndex = 0; triIndex < numTris; ++triIndex)
 | 
			
		||||
	{
 | 
			
		||||
		const float* v0 = &verts[tris[i*3+0]*3];
 | 
			
		||||
		const float* v1 = &verts[tris[i*3+1]*3];
 | 
			
		||||
		const float* v2 = &verts[tris[i*3+2]*3];
 | 
			
		||||
		// Rasterize.
 | 
			
		||||
		if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
 | 
			
		||||
		const float* v0 = &verts[tris[triIndex * 3 + 0] * 3];
 | 
			
		||||
		const float* v1 = &verts[tris[triIndex * 3 + 1] * 3];
 | 
			
		||||
		const float* v2 = &verts[tris[triIndex * 3 + 2] * 3];
 | 
			
		||||
		if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
 | 
			
		||||
		{
 | 
			
		||||
			ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
 | 
			
		||||
			context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
 | 
			
		||||
			return false;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
@@ -394,31 +502,26 @@ bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// Spans will only be added for triangles that overlap the heightfield grid.
 | 
			
		||||
///
 | 
			
		||||
/// @see rcHeightfield
 | 
			
		||||
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
 | 
			
		||||
						  const unsigned short* tris, const unsigned char* areas, const int nt,
 | 
			
		||||
						  rcHeightfield& solid, const int flagMergeThr)
 | 
			
		||||
bool rcRasterizeTriangles(rcContext* context,
 | 
			
		||||
                          const float* verts, const int /*nv*/,
 | 
			
		||||
                          const unsigned short* tris, const unsigned char* triAreaIDs, const int numTris,
 | 
			
		||||
                          rcHeightfield& heightfield, const int flagMergeThreshold)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(ctx);
 | 
			
		||||
	rcAssert(context != NULL);
 | 
			
		||||
 | 
			
		||||
	rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
 | 
			
		||||
	
 | 
			
		||||
	const float ics = 1.0f/solid.cs;
 | 
			
		||||
	const float ich = 1.0f/solid.ch;
 | 
			
		||||
	// Rasterize triangles.
 | 
			
		||||
	for (int i = 0; i < nt; ++i)
 | 
			
		||||
	rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
 | 
			
		||||
 | 
			
		||||
	// Rasterize the triangles.
 | 
			
		||||
	const float inverseCellSize = 1.0f / heightfield.cs;
 | 
			
		||||
	const float inverseCellHeight = 1.0f / heightfield.ch;
 | 
			
		||||
	for (int triIndex = 0; triIndex < numTris; ++triIndex)
 | 
			
		||||
	{
 | 
			
		||||
		const float* v0 = &verts[tris[i*3+0]*3];
 | 
			
		||||
		const float* v1 = &verts[tris[i*3+1]*3];
 | 
			
		||||
		const float* v2 = &verts[tris[i*3+2]*3];
 | 
			
		||||
		// Rasterize.
 | 
			
		||||
		if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
 | 
			
		||||
		const float* v0 = &verts[tris[triIndex * 3 + 0] * 3];
 | 
			
		||||
		const float* v1 = &verts[tris[triIndex * 3 + 1] * 3];
 | 
			
		||||
		const float* v2 = &verts[tris[triIndex * 3 + 2] * 3];
 | 
			
		||||
		if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
 | 
			
		||||
		{
 | 
			
		||||
			ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
 | 
			
		||||
			context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
 | 
			
		||||
			return false;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
@@ -426,30 +529,25 @@ bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// @par
 | 
			
		||||
///
 | 
			
		||||
/// Spans will only be added for triangles that overlap the heightfield grid.
 | 
			
		||||
///
 | 
			
		||||
/// @see rcHeightfield
 | 
			
		||||
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
 | 
			
		||||
						  rcHeightfield& solid, const int flagMergeThr)
 | 
			
		||||
bool rcRasterizeTriangles(rcContext* context,
 | 
			
		||||
                          const float* verts, const unsigned char* triAreaIDs, const int numTris,
 | 
			
		||||
                          rcHeightfield& heightfield, const int flagMergeThreshold)
 | 
			
		||||
{
 | 
			
		||||
	rcAssert(ctx);
 | 
			
		||||
	rcAssert(context != NULL);
 | 
			
		||||
 | 
			
		||||
	rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES);
 | 
			
		||||
	
 | 
			
		||||
	rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
 | 
			
		||||
	
 | 
			
		||||
	const float ics = 1.0f/solid.cs;
 | 
			
		||||
	const float ich = 1.0f/solid.ch;
 | 
			
		||||
	// Rasterize triangles.
 | 
			
		||||
	for (int i = 0; i < nt; ++i)
 | 
			
		||||
	// Rasterize the triangles.
 | 
			
		||||
	const float inverseCellSize = 1.0f / heightfield.cs;
 | 
			
		||||
	const float inverseCellHeight = 1.0f / heightfield.ch;
 | 
			
		||||
	for (int triIndex = 0; triIndex < numTris; ++triIndex)
 | 
			
		||||
	{
 | 
			
		||||
		const float* v0 = &verts[(i*3+0)*3];
 | 
			
		||||
		const float* v1 = &verts[(i*3+1)*3];
 | 
			
		||||
		const float* v2 = &verts[(i*3+2)*3];
 | 
			
		||||
		// Rasterize.
 | 
			
		||||
		if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
 | 
			
		||||
		const float* v0 = &verts[(triIndex * 3 + 0) * 3];
 | 
			
		||||
		const float* v1 = &verts[(triIndex * 3 + 1) * 3];
 | 
			
		||||
		const float* v2 = &verts[(triIndex * 3 + 2) * 3];
 | 
			
		||||
		if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold))
 | 
			
		||||
		{
 | 
			
		||||
			ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
 | 
			
		||||
			context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
 | 
			
		||||
			return false;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 
 | 
			
		||||
@@ -17,7 +17,6 @@
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
#include <float.h>
 | 
			
		||||
#define _USE_MATH_DEFINES
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user