1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-26 15:46:23 +00:00
Files
godot/editor/plugins/gizmos/collision_shape_3d_gizmo_plugin.cpp
2025-04-10 16:29:30 -05:00

670 lines
23 KiB
C++

/**************************************************************************/
/* collision_shape_3d_gizmo_plugin.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "collision_shape_3d_gizmo_plugin.h"
#include "core/math/convex_hull.h"
#include "core/math/geometry_3d.h"
#include "editor/editor_undo_redo_manager.h"
#include "editor/plugins/gizmos/gizmo_3d_helper.h"
#include "editor/plugins/node_3d_editor_plugin.h"
#include "scene/3d/physics/collision_shape_3d.h"
#include "scene/resources/3d/box_shape_3d.h"
#include "scene/resources/3d/capsule_shape_3d.h"
#include "scene/resources/3d/concave_polygon_shape_3d.h"
#include "scene/resources/3d/convex_polygon_shape_3d.h"
#include "scene/resources/3d/cylinder_shape_3d.h"
#include "scene/resources/3d/height_map_shape_3d.h"
#include "scene/resources/3d/separation_ray_shape_3d.h"
#include "scene/resources/3d/sphere_shape_3d.h"
#include "scene/resources/3d/world_boundary_shape_3d.h"
CollisionShape3DGizmoPlugin::CollisionShape3DGizmoPlugin() {
helper.instantiate();
create_collision_material("shape_material", 2.0);
create_collision_material("shape_material_arraymesh", 0.0625);
create_collision_material("shape_material_disabled", 0.0625);
create_collision_material("shape_material_arraymesh_disabled", 0.015625);
create_handle_material("handles");
}
void CollisionShape3DGizmoPlugin::create_collision_material(const String &p_name, float p_alpha) {
Vector<Ref<StandardMaterial3D>> mats;
const Color collision_color(1.0, 1.0, 1.0, p_alpha);
for (int i = 0; i < 4; i++) {
bool instantiated = i < 2;
Ref<StandardMaterial3D> material = memnew(StandardMaterial3D);
Color color = collision_color;
color.a *= instantiated ? 0.25 : 1.0;
material->set_albedo(color);
material->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED);
material->set_transparency(StandardMaterial3D::TRANSPARENCY_ALPHA);
material->set_render_priority(StandardMaterial3D::RENDER_PRIORITY_MIN + 1);
material->set_cull_mode(StandardMaterial3D::CULL_BACK);
material->set_flag(StandardMaterial3D::FLAG_DISABLE_FOG, true);
material->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
material->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true);
mats.push_back(material);
}
materials[p_name] = mats;
}
bool CollisionShape3DGizmoPlugin::has_gizmo(Node3D *p_spatial) {
return Object::cast_to<CollisionShape3D>(p_spatial) != nullptr;
}
String CollisionShape3DGizmoPlugin::get_gizmo_name() const {
return "CollisionShape3D";
}
int CollisionShape3DGizmoPlugin::get_priority() const {
return -1;
}
String CollisionShape3DGizmoPlugin::get_handle_name(const EditorNode3DGizmo *p_gizmo, int p_id, bool p_secondary) const {
const CollisionShape3D *cs = Object::cast_to<CollisionShape3D>(p_gizmo->get_node_3d());
Ref<Shape3D> s = cs->get_shape();
if (s.is_null()) {
return "";
}
if (Object::cast_to<SphereShape3D>(*s)) {
return "Radius";
}
if (Object::cast_to<BoxShape3D>(*s)) {
return helper->box_get_handle_name(p_id);
}
if (Object::cast_to<CapsuleShape3D>(*s)) {
return helper->capsule_get_handle_name(p_id);
}
if (Object::cast_to<CylinderShape3D>(*s)) {
return helper->cylinder_get_handle_name(p_id);
}
if (Object::cast_to<SeparationRayShape3D>(*s)) {
return "Length";
}
return "";
}
Variant CollisionShape3DGizmoPlugin::get_handle_value(const EditorNode3DGizmo *p_gizmo, int p_id, bool p_secondary) const {
CollisionShape3D *cs = Object::cast_to<CollisionShape3D>(p_gizmo->get_node_3d());
Ref<Shape3D> s = cs->get_shape();
if (s.is_null()) {
return Variant();
}
if (Object::cast_to<SphereShape3D>(*s)) {
Ref<SphereShape3D> ss = s;
return ss->get_radius();
}
if (Object::cast_to<BoxShape3D>(*s)) {
Ref<BoxShape3D> bs = s;
return bs->get_size();
}
if (Object::cast_to<CapsuleShape3D>(*s)) {
Ref<CapsuleShape3D> cs2 = s;
return Vector2(cs2->get_radius(), cs2->get_height());
}
if (Object::cast_to<CylinderShape3D>(*s)) {
Ref<CylinderShape3D> cs2 = s;
return Vector2(cs2->get_radius(), cs2->get_height());
}
if (Object::cast_to<SeparationRayShape3D>(*s)) {
Ref<SeparationRayShape3D> cs2 = s;
return cs2->get_length();
}
return Variant();
}
void CollisionShape3DGizmoPlugin::begin_handle_action(const EditorNode3DGizmo *p_gizmo, int p_id, bool p_secondary) {
helper->initialize_handle_action(get_handle_value(p_gizmo, p_id, p_secondary), p_gizmo->get_node_3d()->get_global_transform());
}
void CollisionShape3DGizmoPlugin::set_handle(const EditorNode3DGizmo *p_gizmo, int p_id, bool p_secondary, Camera3D *p_camera, const Point2 &p_point) {
CollisionShape3D *cs = Object::cast_to<CollisionShape3D>(p_gizmo->get_node_3d());
Ref<Shape3D> s = cs->get_shape();
if (s.is_null()) {
return;
}
Vector3 sg[2];
helper->get_segment(p_camera, p_point, sg);
if (Object::cast_to<SphereShape3D>(*s)) {
Ref<SphereShape3D> ss = s;
Vector3 ra, rb;
Geometry3D::get_closest_points_between_segments(Vector3(), Vector3(4096, 0, 0), sg[0], sg[1], ra, rb);
float d = ra.x;
if (Node3DEditor::get_singleton()->is_snap_enabled()) {
d = Math::snapped(d, Node3DEditor::get_singleton()->get_translate_snap());
}
if (d < 0.001) {
d = 0.001;
}
ss->set_radius(d);
}
if (Object::cast_to<SeparationRayShape3D>(*s)) {
Ref<SeparationRayShape3D> rs = s;
Vector3 ra, rb;
Geometry3D::get_closest_points_between_segments(Vector3(), Vector3(0, 0, 4096), sg[0], sg[1], ra, rb);
float d = ra.z;
if (Node3DEditor::get_singleton()->is_snap_enabled()) {
d = Math::snapped(d, Node3DEditor::get_singleton()->get_translate_snap());
}
if (d < 0.001) {
d = 0.001;
}
rs->set_length(d);
}
if (Object::cast_to<BoxShape3D>(*s)) {
Ref<BoxShape3D> bs = s;
Vector3 size = bs->get_size();
Vector3 position;
helper->box_set_handle(sg, p_id, size, position);
bs->set_size(size);
cs->set_global_position(position);
}
if (Object::cast_to<CapsuleShape3D>(*s)) {
Ref<CapsuleShape3D> cs2 = s;
real_t height = cs2->get_height();
real_t radius = cs2->get_radius();
Vector3 position;
helper->capsule_set_handle(sg, p_id, height, radius, position);
cs2->set_height(height);
cs2->set_radius(radius);
cs->set_global_position(position);
}
if (Object::cast_to<CylinderShape3D>(*s)) {
Ref<CylinderShape3D> cs2 = s;
real_t height = cs2->get_height();
real_t radius = cs2->get_radius();
Vector3 position;
helper->cylinder_set_handle(sg, p_id, height, radius, position);
cs2->set_height(height);
cs2->set_radius(radius);
cs->set_global_position(position);
}
}
void CollisionShape3DGizmoPlugin::commit_handle(const EditorNode3DGizmo *p_gizmo, int p_id, bool p_secondary, const Variant &p_restore, bool p_cancel) {
CollisionShape3D *cs = Object::cast_to<CollisionShape3D>(p_gizmo->get_node_3d());
Ref<Shape3D> s = cs->get_shape();
if (s.is_null()) {
return;
}
if (Object::cast_to<SphereShape3D>(*s)) {
Ref<SphereShape3D> ss = s;
if (p_cancel) {
ss->set_radius(p_restore);
return;
}
EditorUndoRedoManager *ur = EditorUndoRedoManager::get_singleton();
ur->create_action(TTR("Change Sphere Shape Radius"));
ur->add_do_method(ss.ptr(), "set_radius", ss->get_radius());
ur->add_undo_method(ss.ptr(), "set_radius", p_restore);
ur->commit_action();
}
if (Object::cast_to<BoxShape3D>(*s)) {
helper->box_commit_handle(TTR("Change Box Shape Size"), p_cancel, cs, s.ptr());
}
if (Object::cast_to<CapsuleShape3D>(*s)) {
Ref<CapsuleShape3D> ss = s;
helper->cylinder_commit_handle(p_id, TTR("Change Capsule Shape Radius"), TTR("Change Capsule Shape Height"), p_cancel, cs, *ss, *ss);
}
if (Object::cast_to<CylinderShape3D>(*s)) {
Ref<CylinderShape3D> ss = s;
helper->cylinder_commit_handle(p_id, TTR("Change Cylinder Shape Radius"), TTR("Change Cylinder Shape Height"), p_cancel, cs, *ss, *ss);
}
if (Object::cast_to<SeparationRayShape3D>(*s)) {
Ref<SeparationRayShape3D> ss = s;
if (p_cancel) {
ss->set_length(p_restore);
return;
}
EditorUndoRedoManager *ur = EditorUndoRedoManager::get_singleton();
ur->create_action(TTR("Change Separation Ray Shape Length"));
ur->add_do_method(ss.ptr(), "set_length", ss->get_length());
ur->add_undo_method(ss.ptr(), "set_length", p_restore);
ur->commit_action();
}
}
void CollisionShape3DGizmoPlugin::redraw(EditorNode3DGizmo *p_gizmo) {
CollisionShape3D *cs = Object::cast_to<CollisionShape3D>(p_gizmo->get_node_3d());
p_gizmo->clear();
Ref<Shape3D> s = cs->get_shape();
if (s.is_null()) {
return;
}
const Ref<StandardMaterial3D> material =
get_material(!cs->is_disabled() ? "shape_material" : "shape_material_disabled", p_gizmo);
const Ref<StandardMaterial3D> material_arraymesh =
get_material(!cs->is_disabled() ? "shape_material_arraymesh" : "shape_material_arraymesh_disabled", p_gizmo);
const Ref<Material> handles_material = get_material("handles");
const Color collision_color = cs->is_disabled() ? Color(1.0, 1.0, 1.0, 0.75) : cs->get_debug_color();
if (cs->get_debug_fill_enabled()) {
Ref<ArrayMesh> array_mesh = s->get_debug_arraymesh_faces(collision_color);
if (array_mesh.is_valid() && array_mesh->get_surface_count() > 0) {
p_gizmo->add_mesh(array_mesh, material_arraymesh);
}
}
if (Object::cast_to<SphereShape3D>(*s)) {
Ref<SphereShape3D> sp = s;
float radius = sp->get_radius();
#define PUSH_QUARTER(from_x, from_y, to_x, to_y, y) \
points_ptrw[index++] = Vector3(from_x, y, from_y); \
points_ptrw[index++] = Vector3(to_x, y, to_y); \
points_ptrw[index++] = Vector3(from_x, y, -from_y); \
points_ptrw[index++] = Vector3(to_x, y, -to_y); \
points_ptrw[index++] = Vector3(-from_x, y, from_y); \
points_ptrw[index++] = Vector3(-to_x, y, to_y); \
points_ptrw[index++] = Vector3(-from_x, y, -from_y); \
points_ptrw[index++] = Vector3(-to_x, y, -to_y);
#define PUSH_QUARTER_XY(from_x, from_y, to_x, to_y, y) \
points_ptrw[index++] = Vector3(from_x, -from_y - y, 0); \
points_ptrw[index++] = Vector3(to_x, -to_y - y, 0); \
points_ptrw[index++] = Vector3(from_x, from_y + y, 0); \
points_ptrw[index++] = Vector3(to_x, to_y + y, 0); \
points_ptrw[index++] = Vector3(-from_x, -from_y - y, 0); \
points_ptrw[index++] = Vector3(-to_x, -to_y - y, 0); \
points_ptrw[index++] = Vector3(-from_x, from_y + y, 0); \
points_ptrw[index++] = Vector3(-to_x, to_y + y, 0);
#define PUSH_QUARTER_YZ(from_x, from_y, to_x, to_y, y) \
points_ptrw[index++] = Vector3(0, -from_y - y, from_x); \
points_ptrw[index++] = Vector3(0, -to_y - y, to_x); \
points_ptrw[index++] = Vector3(0, from_y + y, from_x); \
points_ptrw[index++] = Vector3(0, to_y + y, to_x); \
points_ptrw[index++] = Vector3(0, -from_y - y, -from_x); \
points_ptrw[index++] = Vector3(0, -to_y - y, -to_x); \
points_ptrw[index++] = Vector3(0, from_y + y, -from_x); \
points_ptrw[index++] = Vector3(0, to_y + y, -to_x);
// Number of points in an octant. So there will be 8 * points_in_octant * 2 points in total for one circle.
// This Corresponds to the smoothness of the circle.
const uint32_t points_in_octant = 16;
const real_t inc = (Math::PI / (4 * points_in_octant));
const real_t radius_squared = radius * radius;
real_t r = 0;
Vector<Vector3> points;
uint32_t index = 0;
// 3 full circles.
points.resize(3 * 8 * points_in_octant * 2);
Vector3 *points_ptrw = points.ptrw();
float previous_x = radius;
float previous_y = 0.f;
for (uint32_t i = 0; i < points_in_octant; ++i) {
r += inc;
real_t x = Math::cos(r) * radius;
real_t y = Math::sqrt(radius_squared - (x * x));
PUSH_QUARTER(previous_x, previous_y, x, y, 0);
PUSH_QUARTER(previous_y, previous_x, y, x, 0);
PUSH_QUARTER_XY(previous_x, previous_y, x, y, 0);
PUSH_QUARTER_XY(previous_y, previous_x, y, x, 0);
PUSH_QUARTER_YZ(previous_x, previous_y, x, y, 0);
PUSH_QUARTER_YZ(previous_y, previous_x, y, x, 0)
previous_x = x;
previous_y = y;
}
#undef PUSH_QUARTER
#undef PUSH_QUARTER_XY
#undef PUSH_QUARTER_YZ
p_gizmo->add_lines(points, material, false, collision_color);
p_gizmo->add_collision_segments(points);
Vector<Vector3> handles;
handles.push_back(Vector3(r, 0, 0));
p_gizmo->add_handles(handles, handles_material);
}
if (Object::cast_to<BoxShape3D>(*s)) {
Ref<BoxShape3D> bs = s;
Vector<Vector3> lines;
AABB aabb;
aabb.position = -bs->get_size() / 2;
aabb.size = bs->get_size();
for (int i = 0; i < 12; i++) {
Vector3 a, b;
aabb.get_edge(i, a, b);
lines.push_back(a);
lines.push_back(b);
}
const Vector<Vector3> handles = helper->box_get_handles(bs->get_size());
p_gizmo->add_lines(lines, material, false, collision_color);
p_gizmo->add_collision_segments(lines);
p_gizmo->add_handles(handles, handles_material);
}
if (Object::cast_to<CapsuleShape3D>(*s)) {
Ref<CapsuleShape3D> cs2 = s;
float radius = cs2->get_radius();
float height = cs2->get_height();
// Number of points in an octant. So there will be 8 * points_in_octant points in total.
// This corresponds to the smoothness of the circle.
const uint32_t points_in_octant = 16;
const real_t octant_angle = Math::PI / 4;
const real_t inc = (Math::PI / (4 * points_in_octant));
const real_t radius_squared = radius * radius;
real_t r = 0;
Vector<Vector3> points;
// 4 vertical lines and 4 full circles.
points.resize(4 * 2 + 4 * 8 * points_in_octant * 2);
Vector3 *points_ptrw = points.ptrw();
uint32_t index = 0;
float y_value = height * 0.5 - radius;
// Vertical Lines.
points_ptrw[index++] = Vector3(0.f, y_value, radius);
points_ptrw[index++] = Vector3(0.f, -y_value, radius);
points_ptrw[index++] = Vector3(0.f, y_value, -radius);
points_ptrw[index++] = Vector3(0.f, -y_value, -radius);
points_ptrw[index++] = Vector3(radius, y_value, 0.f);
points_ptrw[index++] = Vector3(radius, -y_value, 0.f);
points_ptrw[index++] = Vector3(-radius, y_value, 0.f);
points_ptrw[index++] = Vector3(-radius, -y_value, 0.f);
#define PUSH_QUARTER(from_x, from_y, to_x, to_y, y) \
points_ptrw[index++] = Vector3(from_x, y, from_y); \
points_ptrw[index++] = Vector3(to_x, y, to_y); \
points_ptrw[index++] = Vector3(from_x, y, -from_y); \
points_ptrw[index++] = Vector3(to_x, y, -to_y); \
points_ptrw[index++] = Vector3(-from_x, y, from_y); \
points_ptrw[index++] = Vector3(-to_x, y, to_y); \
points_ptrw[index++] = Vector3(-from_x, y, -from_y); \
points_ptrw[index++] = Vector3(-to_x, y, -to_y);
#define PUSH_QUARTER_XY(from_x, from_y, to_x, to_y, y) \
points_ptrw[index++] = Vector3(from_x, -from_y - y, 0); \
points_ptrw[index++] = Vector3(to_x, -to_y - y, 0); \
points_ptrw[index++] = Vector3(from_x, from_y + y, 0); \
points_ptrw[index++] = Vector3(to_x, to_y + y, 0); \
points_ptrw[index++] = Vector3(-from_x, -from_y - y, 0); \
points_ptrw[index++] = Vector3(-to_x, -to_y - y, 0); \
points_ptrw[index++] = Vector3(-from_x, from_y + y, 0); \
points_ptrw[index++] = Vector3(-to_x, to_y + y, 0);
#define PUSH_QUARTER_YZ(from_x, from_y, to_x, to_y, y) \
points_ptrw[index++] = Vector3(0, -from_y - y, from_x); \
points_ptrw[index++] = Vector3(0, -to_y - y, to_x); \
points_ptrw[index++] = Vector3(0, from_y + y, from_x); \
points_ptrw[index++] = Vector3(0, to_y + y, to_x); \
points_ptrw[index++] = Vector3(0, -from_y - y, -from_x); \
points_ptrw[index++] = Vector3(0, -to_y - y, -to_x); \
points_ptrw[index++] = Vector3(0, from_y + y, -from_x); \
points_ptrw[index++] = Vector3(0, to_y + y, -to_x);
float previous_x = radius;
float previous_y = 0.f;
for (uint32_t i = 0; i < points_in_octant; ++i) {
r += inc;
real_t x = Math::cos((i == points_in_octant - 1) ? octant_angle : r) * radius;
real_t y = Math::sqrt(radius_squared - (x * x));
// High circle ring.
PUSH_QUARTER(previous_x, previous_y, x, y, y_value);
PUSH_QUARTER(previous_y, previous_x, y, x, y_value);
// Low circle ring.
PUSH_QUARTER(previous_x, previous_y, x, y, -y_value);
PUSH_QUARTER(previous_y, previous_x, y, x, -y_value);
// Up and Low circle in X-Y plane.
PUSH_QUARTER_XY(previous_x, previous_y, x, y, y_value);
PUSH_QUARTER_XY(previous_y, previous_x, y, x, y_value);
// Up and Low circle in Y-Z plane.
PUSH_QUARTER_YZ(previous_x, previous_y, x, y, y_value);
PUSH_QUARTER_YZ(previous_y, previous_x, y, x, y_value)
previous_x = x;
previous_y = y;
}
#undef PUSH_QUARTER
#undef PUSH_QUARTER_XY
#undef PUSH_QUARTER_YZ
p_gizmo->add_lines(points, material, false, collision_color);
p_gizmo->add_collision_segments(points);
Vector<Vector3> handles = helper->capsule_get_handles(cs2->get_height(), cs2->get_radius());
p_gizmo->add_handles(handles, handles_material);
}
if (Object::cast_to<CylinderShape3D>(*s)) {
Ref<CylinderShape3D> cs2 = s;
float radius = cs2->get_radius();
float height = cs2->get_height();
#define PUSH_QUARTER(from_x, from_y, to_x, to_y, y) \
points_ptrw[index++] = Vector3(from_x, y, from_y); \
points_ptrw[index++] = Vector3(to_x, y, to_y); \
points_ptrw[index++] = Vector3(from_x, y, -from_y); \
points_ptrw[index++] = Vector3(to_x, y, -to_y); \
points_ptrw[index++] = Vector3(-from_x, y, from_y); \
points_ptrw[index++] = Vector3(-to_x, y, to_y); \
points_ptrw[index++] = Vector3(-from_x, y, -from_y); \
points_ptrw[index++] = Vector3(-to_x, y, -to_y);
// Number of points in an octant. So there will be 8 * points_in_octant * 2 points in total for one circle.
// This corresponds to the smoothness of the circle.
const uint32_t points_in_octant = 16;
const real_t inc = (Math::PI / (4 * points_in_octant));
const real_t radius_squared = radius * radius;
real_t r = 0;
Vector<Vector3> points;
uint32_t index = 0;
// 4 vertical lines and 2 full circles.
points.resize(4 * 2 + 2 * 8 * points_in_octant * 2);
Vector3 *points_ptrw = points.ptrw();
float y_value = height * 0.5;
// Vertical lines.
points_ptrw[index++] = Vector3(0.f, y_value, radius);
points_ptrw[index++] = Vector3(0.f, -y_value, radius);
points_ptrw[index++] = Vector3(0.f, y_value, -radius);
points_ptrw[index++] = Vector3(0.f, -y_value, -radius);
points_ptrw[index++] = Vector3(radius, y_value, 0.f);
points_ptrw[index++] = Vector3(radius, -y_value, 0.f);
points_ptrw[index++] = Vector3(-radius, y_value, 0.f);
points_ptrw[index++] = Vector3(-radius, -y_value, 0.f);
float previous_x = radius;
float previous_y = 0.f;
for (uint32_t i = 0; i < points_in_octant; ++i) {
r += inc;
real_t x = Math::cos(r) * radius;
real_t y = Math::sqrt(radius_squared - (x * x));
// High circle ring.
PUSH_QUARTER(previous_x, previous_y, x, y, y_value);
PUSH_QUARTER(previous_y, previous_x, y, x, y_value);
// Low circle ring.
PUSH_QUARTER(previous_x, previous_y, x, y, -y_value);
PUSH_QUARTER(previous_y, previous_x, y, x, -y_value);
previous_x = x;
previous_y = y;
}
#undef PUSH_QUARTER
p_gizmo->add_lines(points, material, false, collision_color);
p_gizmo->add_collision_segments(points);
Vector<Vector3> handles = helper->cylinder_get_handles(cs2->get_height(), cs2->get_radius());
p_gizmo->add_handles(handles, handles_material);
}
if (Object::cast_to<WorldBoundaryShape3D>(*s)) {
Ref<WorldBoundaryShape3D> wbs = s;
const Plane &p = wbs->get_plane();
Vector3 n1 = p.get_any_perpendicular_normal();
Vector3 n2 = p.normal.cross(n1).normalized();
Vector3 pface[4] = {
p.normal * p.d + n1 * 10.0 + n2 * 10.0,
p.normal * p.d + n1 * 10.0 + n2 * -10.0,
p.normal * p.d + n1 * -10.0 + n2 * -10.0,
p.normal * p.d + n1 * -10.0 + n2 * 10.0,
};
Vector<Vector3> points = {
pface[0],
pface[1],
pface[1],
pface[2],
pface[2],
pface[3],
pface[3],
pface[0],
p.normal * p.d,
p.normal * p.d + p.normal * 3
};
p_gizmo->add_lines(points, material, false, collision_color);
p_gizmo->add_collision_segments(points);
}
if (Object::cast_to<ConvexPolygonShape3D>(*s)) {
Vector<Vector3> points = Object::cast_to<ConvexPolygonShape3D>(*s)->get_points();
if (points.size() > 1) { // Need at least 2 points for a line.
Vector<Vector3> varr = Variant(points);
Geometry3D::MeshData md;
Error err = ConvexHullComputer::convex_hull(varr, md);
if (err == OK) {
Vector<Vector3> lines;
lines.resize(md.edges.size() * 2);
for (uint32_t i = 0; i < md.edges.size(); i++) {
lines.write[i * 2 + 0] = md.vertices[md.edges[i].vertex_a];
lines.write[i * 2 + 1] = md.vertices[md.edges[i].vertex_b];
}
p_gizmo->add_lines(lines, material, false, collision_color);
p_gizmo->add_collision_segments(lines);
}
}
}
if (Object::cast_to<ConcavePolygonShape3D>(*s)) {
Ref<ConcavePolygonShape3D> cs2 = s;
Ref<ArrayMesh> mesh = cs2->get_debug_mesh();
p_gizmo->add_lines(cs2->get_debug_mesh_lines(), material, false, collision_color);
p_gizmo->add_collision_segments(cs2->get_debug_mesh_lines());
}
if (Object::cast_to<SeparationRayShape3D>(*s)) {
Ref<SeparationRayShape3D> rs = s;
Vector<Vector3> points = {
Vector3(),
Vector3(0, 0, rs->get_length())
};
p_gizmo->add_lines(points, material, false, collision_color);
p_gizmo->add_collision_segments(points);
Vector<Vector3> handles;
handles.push_back(Vector3(0, 0, rs->get_length()));
p_gizmo->add_handles(handles, handles_material);
}
if (Object::cast_to<HeightMapShape3D>(*s)) {
Ref<HeightMapShape3D> hms = s;
Vector<Vector3> lines = hms->get_debug_mesh_lines();
p_gizmo->add_lines(lines, material, false, collision_color);
}
}