You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-11-04 12:00:25 +00:00
652 lines
19 KiB
C++
652 lines
19 KiB
C++
/**************************************************************************/
|
|
/* hash_map.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#pragma once
|
|
|
|
#include "core/os/memory.h"
|
|
#include "core/string/print_string.h"
|
|
#include "core/templates/hashfuncs.h"
|
|
#include "core/templates/pair.h"
|
|
#include "core/templates/sort_list.h"
|
|
|
|
#include <initializer_list>
|
|
|
|
/**
|
|
* A HashMap implementation that uses open addressing with Robin Hood hashing.
|
|
* Robin Hood hashing swaps out entries that have a smaller probing distance
|
|
* than the to-be-inserted entry, that evens out the average probing distance
|
|
* and enables faster lookups. Backward shift deletion is employed to further
|
|
* improve the performance and to avoid infinite loops in rare cases.
|
|
*
|
|
* Keys and values are stored in a double linked list by insertion order. This
|
|
* has a slight performance overhead on lookup, which can be mostly compensated
|
|
* using a paged allocator if required.
|
|
*
|
|
* The assignment operator copy the pairs from one map to the other.
|
|
*/
|
|
|
|
template <typename TKey, typename TValue>
|
|
struct HashMapElement {
|
|
HashMapElement *next = nullptr;
|
|
HashMapElement *prev = nullptr;
|
|
KeyValue<TKey, TValue> data;
|
|
HashMapElement() {}
|
|
HashMapElement(const TKey &p_key, const TValue &p_value) :
|
|
data(p_key, p_value) {}
|
|
};
|
|
|
|
template <typename TKey, typename TValue,
|
|
typename Hasher = HashMapHasherDefault,
|
|
typename Comparator = HashMapComparatorDefault<TKey>,
|
|
typename Allocator = DefaultTypedAllocator<HashMapElement<TKey, TValue>>>
|
|
class HashMap : private Allocator {
|
|
public:
|
|
static constexpr uint32_t MIN_CAPACITY_INDEX = 2; // Use a prime.
|
|
static constexpr float MAX_OCCUPANCY = 0.75;
|
|
static constexpr uint32_t EMPTY_HASH = 0;
|
|
|
|
private:
|
|
HashMapElement<TKey, TValue> **_elements = nullptr;
|
|
uint32_t *_hashes = nullptr;
|
|
HashMapElement<TKey, TValue> *_head_element = nullptr;
|
|
HashMapElement<TKey, TValue> *_tail_element = nullptr;
|
|
|
|
uint32_t _capacity_idx = 0;
|
|
uint32_t _size = 0;
|
|
|
|
_FORCE_INLINE_ static uint32_t _hash(const TKey &p_key) {
|
|
uint32_t hash = Hasher::hash(p_key);
|
|
|
|
if (unlikely(hash == EMPTY_HASH)) {
|
|
hash = EMPTY_HASH + 1;
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
_FORCE_INLINE_ static constexpr void _increment_mod(uint32_t &r_idx, const uint32_t p_capacity) {
|
|
r_idx++;
|
|
// `if` is faster than both fastmod and mod.
|
|
if (unlikely(r_idx == p_capacity)) {
|
|
r_idx = 0;
|
|
}
|
|
}
|
|
|
|
static _FORCE_INLINE_ uint32_t _get_probe_length(const uint32_t p_idx, const uint32_t p_hash, const uint32_t p_capacity, const uint64_t p_capacity_inv) {
|
|
const uint32_t original_idx = fastmod(p_hash, p_capacity_inv, p_capacity);
|
|
const uint32_t distance_idx = p_idx - original_idx + p_capacity;
|
|
// At most p_capacity over 0, so we can use an if (faster than fastmod).
|
|
return distance_idx >= p_capacity ? distance_idx - p_capacity : distance_idx;
|
|
}
|
|
|
|
bool _lookup_idx(const TKey &p_key, uint32_t &r_idx) const {
|
|
return _elements != nullptr && _size > 0 && _lookup_idx_unchecked(p_key, _hash(p_key), r_idx);
|
|
}
|
|
|
|
/// Note: Assumes that _elements != nullptr
|
|
bool _lookup_idx_unchecked(const TKey &p_key, uint32_t p_hash, uint32_t &r_idx) const {
|
|
const uint32_t capacity = hash_table_size_primes[_capacity_idx];
|
|
const uint64_t capacity_inv = hash_table_size_primes_inv[_capacity_idx];
|
|
uint32_t idx = fastmod(p_hash, capacity_inv, capacity);
|
|
uint32_t distance = 0;
|
|
|
|
while (true) {
|
|
if (_hashes[idx] == EMPTY_HASH) {
|
|
return false;
|
|
}
|
|
|
|
if (distance > _get_probe_length(idx, _hashes[idx], capacity, capacity_inv)) {
|
|
return false;
|
|
}
|
|
|
|
if (_hashes[idx] == p_hash && Comparator::compare(_elements[idx]->data.key, p_key)) {
|
|
r_idx = idx;
|
|
return true;
|
|
}
|
|
|
|
_increment_mod(idx, capacity);
|
|
distance++;
|
|
}
|
|
}
|
|
|
|
void _insert_element(uint32_t p_hash, HashMapElement<TKey, TValue> *p_value) {
|
|
const uint32_t capacity = hash_table_size_primes[_capacity_idx];
|
|
const uint64_t capacity_inv = hash_table_size_primes_inv[_capacity_idx];
|
|
uint32_t hash = p_hash;
|
|
HashMapElement<TKey, TValue> *value = p_value;
|
|
uint32_t distance = 0;
|
|
uint32_t idx = fastmod(hash, capacity_inv, capacity);
|
|
|
|
while (true) {
|
|
if (_hashes[idx] == EMPTY_HASH) {
|
|
_elements[idx] = value;
|
|
_hashes[idx] = hash;
|
|
|
|
_size++;
|
|
|
|
return;
|
|
}
|
|
|
|
// Not an empty slot, let's check the probing length of the existing one.
|
|
uint32_t existing_probe_len = _get_probe_length(idx, _hashes[idx], capacity, capacity_inv);
|
|
if (existing_probe_len < distance) {
|
|
SWAP(hash, _hashes[idx]);
|
|
SWAP(value, _elements[idx]);
|
|
distance = existing_probe_len;
|
|
}
|
|
|
|
_increment_mod(idx, capacity);
|
|
distance++;
|
|
}
|
|
}
|
|
|
|
void _resize_and_rehash(uint32_t p_new_capacity_idx) {
|
|
uint32_t old_capacity = hash_table_size_primes[_capacity_idx];
|
|
|
|
// Capacity can't be 0.
|
|
_capacity_idx = MAX((uint32_t)MIN_CAPACITY_INDEX, p_new_capacity_idx);
|
|
|
|
uint32_t capacity = hash_table_size_primes[_capacity_idx];
|
|
|
|
HashMapElement<TKey, TValue> **old_elements = _elements;
|
|
uint32_t *old_hashes = _hashes;
|
|
|
|
_size = 0;
|
|
static_assert(EMPTY_HASH == 0, "Assuming EMPTY_HASH = 0 for alloc_static_zeroed call");
|
|
_hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static_zeroed(sizeof(uint32_t) * capacity));
|
|
_elements = reinterpret_cast<HashMapElement<TKey, TValue> **>(Memory::alloc_static_zeroed(sizeof(HashMapElement<TKey, TValue> *) * capacity));
|
|
|
|
if (old_capacity == 0) {
|
|
// Nothing to do.
|
|
return;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < old_capacity; i++) {
|
|
if (old_hashes[i] == EMPTY_HASH) {
|
|
continue;
|
|
}
|
|
|
|
_insert_element(old_hashes[i], old_elements[i]);
|
|
}
|
|
|
|
Memory::free_static(old_elements);
|
|
Memory::free_static(old_hashes);
|
|
}
|
|
|
|
_FORCE_INLINE_ HashMapElement<TKey, TValue> *_insert(const TKey &p_key, const TValue &p_value, uint32_t p_hash, bool p_front_insert = false) {
|
|
uint32_t capacity = hash_table_size_primes[_capacity_idx];
|
|
if (unlikely(_elements == nullptr)) {
|
|
// Allocate on demand to save memory.
|
|
|
|
static_assert(EMPTY_HASH == 0, "Assuming EMPTY_HASH = 0 for alloc_static_zeroed call");
|
|
_hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static_zeroed(sizeof(uint32_t) * capacity));
|
|
_elements = reinterpret_cast<HashMapElement<TKey, TValue> **>(Memory::alloc_static_zeroed(sizeof(HashMapElement<TKey, TValue> *) * capacity));
|
|
}
|
|
|
|
if (_size + 1 > MAX_OCCUPANCY * capacity) {
|
|
ERR_FAIL_COND_V_MSG(_capacity_idx + 1 == HASH_TABLE_SIZE_MAX, nullptr, "Hash table maximum capacity reached, aborting insertion.");
|
|
_resize_and_rehash(_capacity_idx + 1);
|
|
}
|
|
|
|
HashMapElement<TKey, TValue> *elem = Allocator::new_allocation(HashMapElement<TKey, TValue>(p_key, p_value));
|
|
|
|
if (_tail_element == nullptr) {
|
|
_head_element = elem;
|
|
_tail_element = elem;
|
|
} else if (p_front_insert) {
|
|
_head_element->prev = elem;
|
|
elem->next = _head_element;
|
|
_head_element = elem;
|
|
} else {
|
|
_tail_element->next = elem;
|
|
elem->prev = _tail_element;
|
|
_tail_element = elem;
|
|
}
|
|
|
|
_insert_element(p_hash, elem);
|
|
return elem;
|
|
}
|
|
|
|
public:
|
|
_FORCE_INLINE_ uint32_t get_capacity() const { return hash_table_size_primes[_capacity_idx]; }
|
|
_FORCE_INLINE_ uint32_t size() const { return _size; }
|
|
|
|
/* Standard Godot Container API */
|
|
|
|
bool is_empty() const {
|
|
return _size == 0;
|
|
}
|
|
|
|
void clear() {
|
|
if (_elements == nullptr || _size == 0) {
|
|
return;
|
|
}
|
|
uint32_t capacity = hash_table_size_primes[_capacity_idx];
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
if (_hashes[i] == EMPTY_HASH) {
|
|
continue;
|
|
}
|
|
|
|
_hashes[i] = EMPTY_HASH;
|
|
Allocator::delete_allocation(_elements[i]);
|
|
_elements[i] = nullptr;
|
|
}
|
|
|
|
_tail_element = nullptr;
|
|
_head_element = nullptr;
|
|
_size = 0;
|
|
}
|
|
|
|
void sort() {
|
|
sort_custom<KeyValueSort<TKey, TValue>>();
|
|
}
|
|
|
|
template <typename C>
|
|
void sort_custom() {
|
|
if (size() < 2) {
|
|
return;
|
|
}
|
|
|
|
using E = HashMapElement<TKey, TValue>;
|
|
SortList<E, KeyValue<TKey, TValue>, &E::data, &E::prev, &E::next, C> sorter;
|
|
sorter.sort(_head_element, _tail_element);
|
|
}
|
|
|
|
TValue &get(const TKey &p_key) {
|
|
uint32_t idx = 0;
|
|
bool exists = _lookup_idx(p_key, idx);
|
|
CRASH_COND_MSG(!exists, "HashMap key not found.");
|
|
return _elements[idx]->data.value;
|
|
}
|
|
|
|
const TValue &get(const TKey &p_key) const {
|
|
uint32_t idx = 0;
|
|
bool exists = _lookup_idx(p_key, idx);
|
|
CRASH_COND_MSG(!exists, "HashMap key not found.");
|
|
return _elements[idx]->data.value;
|
|
}
|
|
|
|
const TValue *getptr(const TKey &p_key) const {
|
|
uint32_t idx = 0;
|
|
bool exists = _lookup_idx(p_key, idx);
|
|
|
|
if (exists) {
|
|
return &_elements[idx]->data.value;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
TValue *getptr(const TKey &p_key) {
|
|
uint32_t idx = 0;
|
|
bool exists = _lookup_idx(p_key, idx);
|
|
|
|
if (exists) {
|
|
return &_elements[idx]->data.value;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
_FORCE_INLINE_ bool has(const TKey &p_key) const {
|
|
uint32_t _idx = 0;
|
|
return _lookup_idx(p_key, _idx);
|
|
}
|
|
|
|
bool erase(const TKey &p_key) {
|
|
uint32_t idx = 0;
|
|
bool exists = _lookup_idx(p_key, idx);
|
|
|
|
if (!exists) {
|
|
return false;
|
|
}
|
|
|
|
const uint32_t capacity = hash_table_size_primes[_capacity_idx];
|
|
const uint64_t capacity_inv = hash_table_size_primes_inv[_capacity_idx];
|
|
uint32_t next_idx = fastmod((idx + 1), capacity_inv, capacity);
|
|
while (_hashes[next_idx] != EMPTY_HASH && _get_probe_length(next_idx, _hashes[next_idx], capacity, capacity_inv) != 0) {
|
|
SWAP(_hashes[next_idx], _hashes[idx]);
|
|
SWAP(_elements[next_idx], _elements[idx]);
|
|
idx = next_idx;
|
|
_increment_mod(next_idx, capacity);
|
|
}
|
|
|
|
_hashes[idx] = EMPTY_HASH;
|
|
|
|
if (_head_element == _elements[idx]) {
|
|
_head_element = _elements[idx]->next;
|
|
}
|
|
|
|
if (_tail_element == _elements[idx]) {
|
|
_tail_element = _elements[idx]->prev;
|
|
}
|
|
|
|
if (_elements[idx]->prev) {
|
|
_elements[idx]->prev->next = _elements[idx]->next;
|
|
}
|
|
|
|
if (_elements[idx]->next) {
|
|
_elements[idx]->next->prev = _elements[idx]->prev;
|
|
}
|
|
|
|
Allocator::delete_allocation(_elements[idx]);
|
|
_elements[idx] = nullptr;
|
|
|
|
_size--;
|
|
return true;
|
|
}
|
|
|
|
// Replace the key of an entry in-place, without invalidating iterators or changing the entries position during iteration.
|
|
// p_old_key must exist in the map and p_new_key must not, unless it is equal to p_old_key.
|
|
bool replace_key(const TKey &p_old_key, const TKey &p_new_key) {
|
|
ERR_FAIL_COND_V(_elements == nullptr || _size == 0, false);
|
|
if (p_old_key == p_new_key) {
|
|
return true;
|
|
}
|
|
const uint32_t new_hash = _hash(p_new_key);
|
|
uint32_t idx = 0;
|
|
ERR_FAIL_COND_V(_lookup_idx_unchecked(p_new_key, new_hash, idx), false);
|
|
ERR_FAIL_COND_V(!_lookup_idx(p_old_key, idx), false);
|
|
HashMapElement<TKey, TValue> *element = _elements[idx];
|
|
|
|
// Delete the old entries in _hashes and _elements.
|
|
const uint32_t capacity = hash_table_size_primes[_capacity_idx];
|
|
const uint64_t capacity_inv = hash_table_size_primes_inv[_capacity_idx];
|
|
uint32_t next_idx = fastmod((idx + 1), capacity_inv, capacity);
|
|
while (_hashes[next_idx] != EMPTY_HASH && _get_probe_length(next_idx, _hashes[next_idx], capacity, capacity_inv) != 0) {
|
|
SWAP(_hashes[next_idx], _hashes[idx]);
|
|
SWAP(_elements[next_idx], _elements[idx]);
|
|
idx = next_idx;
|
|
_increment_mod(next_idx, capacity);
|
|
}
|
|
_hashes[idx] = EMPTY_HASH;
|
|
_elements[idx] = nullptr;
|
|
// _insert_element will increment this again.
|
|
_size--;
|
|
|
|
// Update the HashMapElement with the new key and reinsert it.
|
|
const_cast<TKey &>(element->data.key) = p_new_key;
|
|
_insert_element(new_hash, element);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Reserves space for a number of elements, useful to avoid many resizes and rehashes.
|
|
// If adding a known (possibly large) number of elements at once, must be larger than old capacity.
|
|
void reserve(uint32_t p_new_capacity) {
|
|
uint32_t new_idx = _capacity_idx;
|
|
|
|
while (hash_table_size_primes[new_idx] < p_new_capacity) {
|
|
ERR_FAIL_COND_MSG(new_idx + 1 == (uint32_t)HASH_TABLE_SIZE_MAX, nullptr);
|
|
new_idx++;
|
|
}
|
|
|
|
if (new_idx == _capacity_idx) {
|
|
if (p_new_capacity < _size) {
|
|
WARN_VERBOSE("reserve() called with a capacity smaller than the current size. This is likely a mistake.");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (_elements == nullptr) {
|
|
_capacity_idx = new_idx;
|
|
return; // Unallocated yet.
|
|
}
|
|
_resize_and_rehash(new_idx);
|
|
}
|
|
|
|
/** Iterator API **/
|
|
|
|
struct ConstIterator {
|
|
_FORCE_INLINE_ const KeyValue<TKey, TValue> &operator*() const {
|
|
return E->data;
|
|
}
|
|
_FORCE_INLINE_ const KeyValue<TKey, TValue> *operator->() const { return &E->data; }
|
|
_FORCE_INLINE_ ConstIterator &operator++() {
|
|
if (E) {
|
|
E = E->next;
|
|
}
|
|
return *this;
|
|
}
|
|
_FORCE_INLINE_ ConstIterator &operator--() {
|
|
if (E) {
|
|
E = E->prev;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
_FORCE_INLINE_ bool operator==(const ConstIterator &b) const { return E == b.E; }
|
|
_FORCE_INLINE_ bool operator!=(const ConstIterator &b) const { return E != b.E; }
|
|
|
|
_FORCE_INLINE_ explicit operator bool() const {
|
|
return E != nullptr;
|
|
}
|
|
|
|
_FORCE_INLINE_ ConstIterator(const HashMapElement<TKey, TValue> *p_E) { E = p_E; }
|
|
_FORCE_INLINE_ ConstIterator() {}
|
|
_FORCE_INLINE_ ConstIterator(const ConstIterator &p_it) { E = p_it.E; }
|
|
_FORCE_INLINE_ void operator=(const ConstIterator &p_it) {
|
|
E = p_it.E;
|
|
}
|
|
|
|
private:
|
|
const HashMapElement<TKey, TValue> *E = nullptr;
|
|
};
|
|
|
|
struct Iterator {
|
|
_FORCE_INLINE_ KeyValue<TKey, TValue> &operator*() const {
|
|
return E->data;
|
|
}
|
|
_FORCE_INLINE_ KeyValue<TKey, TValue> *operator->() const { return &E->data; }
|
|
_FORCE_INLINE_ Iterator &operator++() {
|
|
if (E) {
|
|
E = E->next;
|
|
}
|
|
return *this;
|
|
}
|
|
_FORCE_INLINE_ Iterator &operator--() {
|
|
if (E) {
|
|
E = E->prev;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
_FORCE_INLINE_ bool operator==(const Iterator &b) const { return E == b.E; }
|
|
_FORCE_INLINE_ bool operator!=(const Iterator &b) const { return E != b.E; }
|
|
|
|
_FORCE_INLINE_ explicit operator bool() const {
|
|
return E != nullptr;
|
|
}
|
|
|
|
_FORCE_INLINE_ Iterator(HashMapElement<TKey, TValue> *p_E) { E = p_E; }
|
|
_FORCE_INLINE_ Iterator() {}
|
|
_FORCE_INLINE_ Iterator(const Iterator &p_it) { E = p_it.E; }
|
|
_FORCE_INLINE_ void operator=(const Iterator &p_it) {
|
|
E = p_it.E;
|
|
}
|
|
|
|
operator ConstIterator() const {
|
|
return ConstIterator(E);
|
|
}
|
|
|
|
private:
|
|
HashMapElement<TKey, TValue> *E = nullptr;
|
|
};
|
|
|
|
_FORCE_INLINE_ Iterator begin() {
|
|
return Iterator(_head_element);
|
|
}
|
|
_FORCE_INLINE_ Iterator end() {
|
|
return Iterator(nullptr);
|
|
}
|
|
_FORCE_INLINE_ Iterator last() {
|
|
return Iterator(_tail_element);
|
|
}
|
|
|
|
_FORCE_INLINE_ Iterator find(const TKey &p_key) {
|
|
uint32_t idx = 0;
|
|
bool exists = _lookup_idx(p_key, idx);
|
|
if (!exists) {
|
|
return end();
|
|
}
|
|
return Iterator(_elements[idx]);
|
|
}
|
|
|
|
_FORCE_INLINE_ void remove(const Iterator &p_iter) {
|
|
if (p_iter) {
|
|
erase(p_iter->key);
|
|
}
|
|
}
|
|
|
|
_FORCE_INLINE_ ConstIterator begin() const {
|
|
return ConstIterator(_head_element);
|
|
}
|
|
_FORCE_INLINE_ ConstIterator end() const {
|
|
return ConstIterator(nullptr);
|
|
}
|
|
_FORCE_INLINE_ ConstIterator last() const {
|
|
return ConstIterator(_tail_element);
|
|
}
|
|
|
|
_FORCE_INLINE_ ConstIterator find(const TKey &p_key) const {
|
|
uint32_t idx = 0;
|
|
bool exists = _lookup_idx(p_key, idx);
|
|
if (!exists) {
|
|
return end();
|
|
}
|
|
return ConstIterator(_elements[idx]);
|
|
}
|
|
|
|
/* Indexing */
|
|
|
|
const TValue &operator[](const TKey &p_key) const {
|
|
uint32_t idx = 0;
|
|
bool exists = _lookup_idx(p_key, idx);
|
|
CRASH_COND(!exists);
|
|
return _elements[idx]->data.value;
|
|
}
|
|
|
|
TValue &operator[](const TKey &p_key) {
|
|
const uint32_t hash = _hash(p_key);
|
|
uint32_t idx = 0;
|
|
bool exists = _elements && _size > 0 && _lookup_idx_unchecked(p_key, hash, idx);
|
|
if (!exists) {
|
|
return _insert(p_key, TValue(), hash)->data.value;
|
|
} else {
|
|
return _elements[idx]->data.value;
|
|
}
|
|
}
|
|
|
|
/* Insert */
|
|
|
|
Iterator insert(const TKey &p_key, const TValue &p_value, bool p_front_insert = false) {
|
|
const uint32_t hash = _hash(p_key);
|
|
uint32_t idx = 0;
|
|
bool exists = _elements && _size > 0 && _lookup_idx_unchecked(p_key, hash, idx);
|
|
if (!exists) {
|
|
return Iterator(_insert(p_key, p_value, hash, p_front_insert));
|
|
} else {
|
|
_elements[idx]->data.value = p_value;
|
|
return Iterator(_elements[idx]);
|
|
}
|
|
}
|
|
|
|
/* Constructors */
|
|
|
|
HashMap(const HashMap &p_other) {
|
|
reserve(hash_table_size_primes[p_other._capacity_idx]);
|
|
|
|
if (p_other._size == 0) {
|
|
return;
|
|
}
|
|
|
|
for (const KeyValue<TKey, TValue> &E : p_other) {
|
|
insert(E.key, E.value);
|
|
}
|
|
}
|
|
|
|
void operator=(const HashMap &p_other) {
|
|
if (this == &p_other) {
|
|
return; // Ignore self assignment.
|
|
}
|
|
if (_size != 0) {
|
|
clear();
|
|
}
|
|
|
|
reserve(hash_table_size_primes[p_other._capacity_idx]);
|
|
|
|
if (p_other._elements == nullptr) {
|
|
return; // Nothing to copy.
|
|
}
|
|
|
|
for (const KeyValue<TKey, TValue> &E : p_other) {
|
|
insert(E.key, E.value);
|
|
}
|
|
}
|
|
|
|
HashMap(uint32_t p_initial_capacity) {
|
|
// Capacity can't be 0.
|
|
_capacity_idx = 0;
|
|
reserve(p_initial_capacity);
|
|
}
|
|
HashMap() {
|
|
_capacity_idx = MIN_CAPACITY_INDEX;
|
|
}
|
|
|
|
HashMap(std::initializer_list<KeyValue<TKey, TValue>> p_init) {
|
|
reserve(p_init.size());
|
|
for (const KeyValue<TKey, TValue> &E : p_init) {
|
|
insert(E.key, E.value);
|
|
}
|
|
}
|
|
|
|
uint32_t debug_get_hash(uint32_t p_idx) {
|
|
if (_size == 0) {
|
|
return 0;
|
|
}
|
|
ERR_FAIL_INDEX_V(p_idx, get_capacity(), 0);
|
|
return _hashes[p_idx];
|
|
}
|
|
Iterator debug_get_element(uint32_t p_idx) {
|
|
if (_size == 0) {
|
|
return Iterator();
|
|
}
|
|
ERR_FAIL_INDEX_V(p_idx, get_capacity(), Iterator());
|
|
return Iterator(_elements[p_idx]);
|
|
}
|
|
|
|
~HashMap() {
|
|
clear();
|
|
|
|
if (_elements != nullptr) {
|
|
Memory::free_static(_elements);
|
|
Memory::free_static(_hashes);
|
|
}
|
|
}
|
|
};
|