1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-21 14:57:09 +00:00
Files
godot/scene/3d/iterate_ik_3d.h
Silc Lizard (Tokage) Renew bf22eb25e3 Add IKModifier3D
2025-11-04 02:38:48 +09:00

316 lines
13 KiB
C++

/**************************************************************************/
/* iterate_ik_3d.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#pragma once
#include "scene/3d/chain_ik_3d.h"
#include "scene/resources/3d/joint_limitation_3d.h"
class IterateIK3D : public ChainIK3D {
GDCLASS(IterateIK3D, ChainIK3D);
public:
struct IterateIK3DJointSetting {
// To limit rotation.
RotationAxis rotation_axis = ROTATION_AXIS_ALL;
Vector3 rotation_axis_vector = Vector3(1, 0, 0);
Ref<JointLimitation3D> limitation;
SecondaryDirection limitation_right_axis = SECONDARY_DIRECTION_NONE;
Vector3 limitation_right_axis_vector = Vector3(1, 0, 0);
Quaternion limitation_rotation_offset;
// Rotation axis.
Vector3 get_rotation_axis_vector() const {
Vector3 ret;
switch (rotation_axis) {
case ROTATION_AXIS_X:
ret = Vector3(1, 0, 0);
break;
case ROTATION_AXIS_Y:
ret = Vector3(0, 1, 0);
break;
case ROTATION_AXIS_Z:
ret = Vector3(0, 0, 1);
break;
case ROTATION_AXIS_ALL:
ret = Vector3(0, 0, 0);
break;
case ROTATION_AXIS_CUSTOM:
ret = rotation_axis_vector;
break;
}
return ret;
}
Vector3 get_limitation_right_axis_vector() const {
Vector3 ret;
switch (limitation_right_axis) {
case SECONDARY_DIRECTION_NONE:
ret = Vector3(0, 0, 0);
break;
case SECONDARY_DIRECTION_PLUS_X:
ret = Vector3(1, 0, 0);
break;
case SECONDARY_DIRECTION_MINUS_X:
ret = Vector3(-1, 0, 0);
break;
case SECONDARY_DIRECTION_PLUS_Y:
ret = Vector3(0, 1, 0);
break;
case SECONDARY_DIRECTION_MINUS_Y:
ret = Vector3(0, -1, 0);
break;
case SECONDARY_DIRECTION_PLUS_Z:
ret = Vector3(0, 0, 1);
break;
case SECONDARY_DIRECTION_MINUS_Z:
ret = Vector3(0, 0, -1);
break;
case SECONDARY_DIRECTION_CUSTOM:
ret = limitation_right_axis_vector;
break;
}
return ret;
}
Quaternion get_limitation_space(const Vector3 &p_local_forward) const {
if (limitation.is_null()) {
return Quaternion();
}
return limitation->make_space(p_local_forward, get_limitation_right_axis_vector(), limitation_rotation_offset);
}
// Get rotation around normal vector (normal vector is rotation axis).
Vector3 get_projected_rotation(const Quaternion &p_offset, const Vector3 &p_vector) const {
ERR_FAIL_COND_V(rotation_axis == ROTATION_AXIS_ALL, p_vector);
const double ALMOST_ONE = 1.0 - CMP_EPSILON;
Vector3 axis = get_rotation_axis_vector().normalized();
Vector3 local_vector = p_offset.xform_inv(p_vector);
double length = local_vector.length();
Vector3 projected = snap_vector_to_plane(axis, local_vector.normalized());
if (!Math::is_zero_approx(length)) {
projected = projected.normalized() * length;
}
if (Math::abs(local_vector.normalized().dot(axis)) > ALMOST_ONE) {
return p_vector;
}
return p_offset.xform(projected);
}
// Get limited rotation from forward axis in local rest space.
Vector3 get_limited_rotation(const Quaternion &p_offset, const Vector3 &p_vector, const Vector3 &p_forward) const {
ERR_FAIL_COND_V(limitation.is_null(), p_vector);
Vector3 local_vector = p_offset.xform_inv(p_vector);
float length = local_vector.length();
if (Math::is_zero_approx(length)) {
return p_vector;
}
Vector3 limited = limitation->solve(p_forward, get_limitation_right_axis_vector(), limitation_rotation_offset, local_vector.normalized()) * length;
return p_offset.xform(limited);
}
~IterateIK3DJointSetting() {
limitation.unref();
}
};
struct IterateIK3DSetting : public ChainIK3DSetting {
NodePath target_node;
LocalVector<IterateIK3DJointSetting *> joint_settings;
bool simulated = false;
bool is_penetrated(const Vector3 &p_destination) {
bool ret = false;
Vector3 chain_dir = (chain[chain.size() - 1] - chain[0]).normalized();
bool is_straight = true;
for (uint32_t i = 1; i < chain.size() - 1; i++) {
Vector3 dir = (chain[i] - chain[0]).normalized();
if (!dir.is_equal_approx(chain_dir)) {
is_straight = false;
break;
}
}
if (is_straight) {
Vector3 to_target = (p_destination - chain[0]);
double proj = to_target.dot(chain_dir);
double total_length = 0;
for (uint32_t i = 0; i < solver_info_list.size(); i++) {
if (solver_info_list[i]) {
total_length += solver_info_list[i]->length;
}
}
ret = proj >= 0 && proj <= total_length && (to_target.normalized().is_equal_approx(chain_dir));
}
return ret;
}
// Make rotation as bone pose from chain coordinates.
// p_extra is delta angle limitation.
void cache_current_joint_rotations(Skeleton3D *p_skeleton, double p_angular_delta_limit = Math::PI) {
Transform3D parent_gpose_tr;
int parent = p_skeleton->get_bone_parent(root_bone.bone);
if (parent >= 0) {
parent_gpose_tr = p_skeleton->get_bone_global_pose(parent);
}
Quaternion parent_gpose = parent_gpose_tr.basis.get_rotation_quaternion();
for (uint32_t i = 0; i < joints.size(); i++) {
int HEAD = i;
IKModifier3DSolverInfo *solver_info = solver_info_list[HEAD];
if (!solver_info) {
continue;
}
solver_info->current_lrest = p_skeleton->get_bone_pose(joints[HEAD].bone).basis.get_rotation_quaternion();
solver_info->current_grest = parent_gpose * solver_info->current_lrest;
solver_info->current_grest.normalize();
Vector3 from = solver_info->forward_vector;
Vector3 to = solver_info->current_grest.xform_inv(solver_info->current_vector).normalized();
Quaternion prev = solver_info->current_lpose;
if (joint_settings[HEAD]->rotation_axis == ROTATION_AXIS_ALL) {
solver_info->current_lpose = solver_info->current_lrest * get_swing(Quaternion(from, to), from);
} else {
// To stabilize rotation path especially nearely 180deg.
solver_info->current_lpose = solver_info->current_lrest * get_from_to_rotation_by_axis(from, to, joint_settings[HEAD]->get_rotation_axis_vector().normalized());
}
double diff = prev.angle_to(solver_info->current_lpose);
if (!Math::is_zero_approx(diff)) {
solver_info->current_lpose = prev.slerp(solver_info->current_lpose, MIN(1.0, p_angular_delta_limit / diff));
}
solver_info->current_gpose = parent_gpose * solver_info->current_lpose;
solver_info->current_gpose.normalize();
parent_gpose = solver_info->current_gpose;
}
// Apply back angular_delta_limit to chain coordinates.
if (chain.is_empty()) {
return;
}
chain[0] = p_skeleton->get_bone_global_pose(root_bone.bone).origin;
for (uint32_t i = 0; i < solver_info_list.size(); i++) {
int HEAD = i;
int TAIL = i + 1;
IKModifier3DSolverInfo *solver_info = solver_info_list[HEAD];
if (!solver_info) {
continue;
}
chain[TAIL] = chain[HEAD] + solver_info->current_gpose.xform(solver_info->forward_vector) * solver_info->length;
}
cache_current_vectors(p_skeleton);
}
~IterateIK3DSetting() {
for (uint32_t i = 0; i < joint_settings.size(); i++) {
if (joint_settings[i]) {
memdelete(joint_settings[i]);
joint_settings[i] = nullptr;
}
}
joint_settings.clear();
}
};
protected:
LocalVector<IterateIK3DSetting *> iterate_settings; // For caching.
int max_iterations = 4;
double min_distance = 0.001; // If distance between end joint and target is less than min_distance, finish iteration.
double min_distance_squared = min_distance * min_distance; // For cache.
double angular_delta_limit = Math::deg_to_rad(2.0); // If the delta is too large, the results before and after iterating can change significantly, and divergence of calculations can easily occur.
bool _get(const StringName &p_path, Variant &r_ret) const;
bool _set(const StringName &p_path, const Variant &p_value);
void _get_property_list(List<PropertyInfo> *p_list) const;
void _validate_dynamic_prop(PropertyInfo &p_property) const;
static void _bind_methods();
virtual void _validate_axis(Skeleton3D *p_skeleton, int p_index, int p_joint) const override;
virtual void _init_joints(Skeleton3D *p_skeleton, int p_index) override;
virtual void _make_simulation_dirty(int p_index) override;
virtual void _process_ik(Skeleton3D *p_skeleton, double p_delta) override;
void _process_joints(double p_delta, Skeleton3D *p_skeleton, IterateIK3DSetting *p_setting, const Vector3 &p_target_destination);
virtual void _solve_iteration(double p_delta, Skeleton3D *p_skeleton, IterateIK3DSetting *p_setting, const Vector3 &p_destination);
virtual void _set_joint_count(int p_index, int p_count) override;
void _update_joint_limitation(int p_index, int p_joint);
void _bind_joint_limitation(int p_index, int p_joint);
void _unbind_joint_limitation(int p_index, int p_joint);
void _bind_joint_limitations(int p_index);
void _unbind_joint_limitations(int p_index);
public:
virtual PackedStringArray get_configuration_warnings() const override;
virtual void set_setting_count(int p_count) override {
_set_setting_count<IterateIK3DSetting>(p_count);
iterate_settings = _cast_settings<IterateIK3DSetting>();
chain_settings = _cast_settings<ChainIK3DSetting>(); // Don't forget to sync super class settings.
}
virtual void clear_settings() override {
_set_setting_count<IterateIK3DSetting>(0);
iterate_settings.clear();
chain_settings.clear(); // Don't forget to sync super class settings.
}
void set_max_iterations(int p_max_iterations);
int get_max_iterations() const;
void set_min_distance(double p_min_distance);
double get_min_distance() const;
void set_angular_delta_limit(double p_angular_delta_limit);
double get_angular_delta_limit() const;
// Setting.
void set_target_node(int p_index, const NodePath &p_target_node);
NodePath get_target_node(int p_index) const;
// Individual joints.
void set_joint_rotation_axis(int p_index, int p_joint, RotationAxis p_axis);
RotationAxis get_joint_rotation_axis(int p_index, int p_joint) const;
void set_joint_rotation_axis_vector(int p_index, int p_joint, const Vector3 &p_vector);
Vector3 get_joint_rotation_axis_vector(int p_index, int p_joint) const;
void set_joint_limitation(int p_index, int p_joint, const Ref<JointLimitation3D> &p_limitation);
Ref<JointLimitation3D> get_joint_limitation(int p_index, int p_joint) const;
void set_joint_limitation_right_axis(int p_index, int p_joint, SecondaryDirection p_direction);
SecondaryDirection get_joint_limitation_right_axis(int p_index, int p_joint) const;
void set_joint_limitation_right_axis_vector(int p_index, int p_joint, const Vector3 &p_vector);
Vector3 get_joint_limitation_right_axis_vector(int p_index, int p_joint) const;
void set_joint_limitation_rotation_offset(int p_index, int p_joint, const Quaternion &p_offset);
Quaternion get_joint_limitation_rotation_offset(int p_index, int p_joint) const;
// Helper.
Quaternion get_joint_limitation_space(int p_index, int p_joint, const Vector3 &p_forward) const;
~IterateIK3D();
};