1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-21 14:57:09 +00:00
Files
godot/drivers/gles3/storage/light_storage.h
clayjohn aa8bc0b56d Prompt editor restart when reflection probe size is updated
Also formally deprecate the RS function for updating an individual probes size. The functionality was removed in 4.0, but the function itself was mistakenly left exposed.
2025-09-29 18:35:34 -07:00

910 lines
35 KiB
C++

/**************************************************************************/
/* light_storage.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#pragma once
#ifdef GLES3_ENABLED
#include "platform_gl.h"
#include "render_scene_buffers_gles3.h"
#include "core/templates/local_vector.h"
#include "core/templates/rid_owner.h"
#include "drivers/gles3/storage/texture_storage.h"
#include "servers/rendering/storage/light_storage.h"
#include "servers/rendering/storage/utilities.h"
namespace GLES3 {
/* LIGHT */
struct Light {
RS::LightType type;
float param[RS::LIGHT_PARAM_MAX];
Color color = Color(1, 1, 1, 1);
RID projector;
bool shadow = false;
bool negative = false;
bool reverse_cull = false;
RS::LightBakeMode bake_mode = RS::LIGHT_BAKE_DYNAMIC;
uint32_t max_sdfgi_cascade = 2;
uint32_t cull_mask = 0xFFFFFFFF;
uint32_t shadow_caster_mask = 0xFFFFFFFF;
bool distance_fade = false;
real_t distance_fade_begin = 40.0;
real_t distance_fade_shadow = 50.0;
real_t distance_fade_length = 10.0;
RS::LightOmniShadowMode omni_shadow_mode = RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
RS::LightDirectionalShadowMode directional_shadow_mode = RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
bool directional_blend_splits = false;
RS::LightDirectionalSkyMode directional_sky_mode = RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY;
uint64_t version = 0;
Dependency dependency;
};
/* Light instance */
struct LightInstance {
struct ShadowTransform {
Projection camera;
Transform3D transform;
float farplane;
float split;
float bias_scale;
float shadow_texel_size;
float range_begin;
Rect2 atlas_rect;
Vector2 uv_scale;
};
ShadowTransform shadow_transform[6];
RS::LightType light_type = RS::LIGHT_DIRECTIONAL;
AABB aabb;
RID self;
RID light;
Transform3D transform;
uint64_t shadow_pass = 0;
uint64_t last_scene_pass = 0;
uint64_t last_scene_shadow_pass = 0;
uint64_t last_pass = 0;
uint32_t cull_mask = 0;
uint32_t light_directional_index = 0;
Rect2 directional_rect;
HashSet<RID> shadow_atlases; // Shadow atlases where this light is registered.
int32_t gl_id = -1;
int32_t shadow_id = -1;
LightInstance() {}
};
/* REFLECTION PROBE */
struct ReflectionProbe {
RS::ReflectionProbeUpdateMode update_mode = RS::REFLECTION_PROBE_UPDATE_ONCE;
float intensity = 1.0;
float blend_distance = 1.0;
RS::ReflectionProbeAmbientMode ambient_mode = RS::REFLECTION_PROBE_AMBIENT_ENVIRONMENT;
Color ambient_color;
float ambient_color_energy = 1.0;
float max_distance = 0;
Vector3 size = Vector3(20, 20, 20);
Vector3 origin_offset;
bool interior = false;
bool box_projection = false;
bool enable_shadows = false;
uint32_t cull_mask = (1 << 20) - 1;
uint32_t reflection_mask = (1 << 20) - 1;
float mesh_lod_threshold = 0.01;
float baked_exposure = 1.0;
Dependency dependency;
};
/* REFLECTION ATLAS */
struct ReflectionAtlas {
int count = 0;
int size = 0;
int mipmap_count = 1; // number of mips, including original
int mipmap_size[8];
GLuint depth = 0;
struct Reflection {
RID owner;
GLuint color = 0;
GLuint radiance = 0;
GLuint fbos[7];
};
Vector<Reflection> reflections;
Ref<RenderSceneBuffersGLES3> render_buffers; // Further render buffers used.
};
/* REFLECTION PROBE INSTANCE */
struct ReflectionProbeInstance {
RID probe;
int atlas_index = -1;
RID atlas;
bool dirty = true;
bool rendering = false;
int processing_layer = 0;
uint64_t last_pass = 0;
uint32_t cull_mask = 0;
Transform3D transform;
};
/* LIGHTMAP */
struct Lightmap {
RID light_texture;
RID shadow_texture;
bool uses_spherical_harmonics = false;
bool interior = false;
AABB bounds = AABB(Vector3(), Vector3(1, 1, 1));
float baked_exposure = 1.0;
Vector2i light_texture_size;
int32_t array_index = -1; //unassigned
RS::ShadowmaskMode shadowmask_mode = RS::SHADOWMASK_MODE_NONE;
PackedVector3Array points;
PackedColorArray point_sh;
PackedInt32Array tetrahedra;
PackedInt32Array bsp_tree;
struct BSP {
static const int32_t EMPTY_LEAF = INT32_MIN;
float plane[4];
int32_t over = EMPTY_LEAF, under = EMPTY_LEAF;
};
Dependency dependency;
};
struct LightmapInstance {
RID lightmap;
Transform3D transform;
};
class LightStorage : public RendererLightStorage {
public:
enum ShadowAtlastQuadrant : uint32_t {
QUADRANT_SHIFT = 27,
OMNI_LIGHT_FLAG = 1 << 26,
SHADOW_INDEX_MASK = OMNI_LIGHT_FLAG - 1,
SHADOW_INVALID = 0xFFFFFFFF
};
private:
static LightStorage *singleton;
/* LIGHT */
mutable RID_Owner<Light, true> light_owner;
/* Light instance */
mutable RID_Owner<LightInstance> light_instance_owner;
/* REFLECTION PROBE */
mutable RID_Owner<ReflectionProbe, true> reflection_probe_owner;
/* REFLECTION ATLAS */
mutable RID_Owner<ReflectionAtlas> reflection_atlas_owner;
/* REFLECTION PROBE INSTANCE */
mutable RID_Owner<ReflectionProbeInstance> reflection_probe_instance_owner;
/* LIGHTMAP */
float lightmap_probe_capture_update_speed = 4;
mutable RID_Owner<Lightmap, true> lightmap_owner;
/* LIGHTMAP INSTANCE */
mutable RID_Owner<LightmapInstance> lightmap_instance_owner;
/* SHADOW ATLAS */
// Note: The ShadowAtlas in the OpenGL is virtual. Each light gets assigned its
// own texture which is the same size as it would be if it were in a real atlas.
// This allows us to maintain the same behavior as the other renderers.
struct ShadowAtlas {
struct Quadrant {
uint32_t subdivision = 0;
struct Shadow {
RID owner;
bool owner_is_omni = false;
uint64_t version = 0;
uint64_t alloc_tick = 0;
Shadow() {}
};
Vector<Shadow> shadows;
LocalVector<GLuint> textures;
LocalVector<GLuint> fbos;
Quadrant() {}
} quadrants[4];
// Ordered from smallest (worst) shadow size to largest (best).
int size_order[4] = { 0, 1, 2, 3 };
uint32_t smallest_subdiv = 0;
int size = 0;
bool use_16_bits = true;
GLuint debug_texture = 0;
GLuint debug_fbo = 0;
HashMap<RID, uint32_t> shadow_owners;
};
uint64_t shadow_atlas_realloc_tolerance_msec = 500;
RID_Owner<ShadowAtlas> shadow_atlas_owner;
void _shadow_atlas_invalidate_shadow(ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx);
bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, bool p_omni, int &r_quadrant, int &r_shadow);
/* DIRECTIONAL SHADOW */
struct DirectionalShadow {
GLuint depth = 0;
GLuint fbo = 0;
int light_count = 0;
int size = 0;
bool use_16_bits = true;
int current_light = 0;
} directional_shadow;
public:
static LightStorage *get_singleton();
LightStorage();
virtual ~LightStorage();
/* Light API */
Light *get_light(RID p_rid) { return light_owner.get_or_null(p_rid); }
bool owns_light(RID p_rid) { return light_owner.owns(p_rid); }
void _light_initialize(RID p_rid, RS::LightType p_type);
virtual RID directional_light_allocate() override;
virtual void directional_light_initialize(RID p_rid) override;
virtual RID omni_light_allocate() override;
virtual void omni_light_initialize(RID p_rid) override;
virtual RID spot_light_allocate() override;
virtual void spot_light_initialize(RID p_rid) override;
virtual void light_free(RID p_rid) override;
virtual void light_set_color(RID p_light, const Color &p_color) override;
virtual void light_set_param(RID p_light, RS::LightParam p_param, float p_value) override;
virtual void light_set_shadow(RID p_light, bool p_enabled) override;
virtual void light_set_projector(RID p_light, RID p_texture) override;
virtual void light_set_negative(RID p_light, bool p_enable) override;
virtual void light_set_cull_mask(RID p_light, uint32_t p_mask) override;
virtual void light_set_distance_fade(RID p_light, bool p_enabled, float p_begin, float p_shadow, float p_length) override;
virtual void light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) override;
virtual void light_set_shadow_caster_mask(RID p_light, uint32_t p_caster_mask) override;
virtual uint32_t light_get_shadow_caster_mask(RID p_light) const override;
virtual void light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) override;
virtual void light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade) override {}
virtual void light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) override;
virtual void light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) override;
virtual void light_directional_set_blend_splits(RID p_light, bool p_enable) override;
virtual bool light_directional_get_blend_splits(RID p_light) const override;
virtual void light_directional_set_sky_mode(RID p_light, RS::LightDirectionalSkyMode p_mode) override;
virtual RS::LightDirectionalSkyMode light_directional_get_sky_mode(RID p_light) const override;
virtual RS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light) override;
virtual RS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light) override;
virtual RS::LightType light_get_type(RID p_light) const override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL);
return light->type;
}
virtual AABB light_get_aabb(RID p_light) const override;
virtual float light_get_param(RID p_light, RS::LightParam p_param) override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, 0);
return light->param[p_param];
}
_FORCE_INLINE_ RID light_get_projector(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, RID());
return light->projector;
}
virtual Color light_get_color(RID p_light) override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, Color());
return light->color;
}
_FORCE_INLINE_ bool light_is_distance_fade_enabled(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
return light->distance_fade;
}
_FORCE_INLINE_ float light_get_distance_fade_begin(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
return light->distance_fade_begin;
}
_FORCE_INLINE_ float light_get_distance_fade_shadow(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
return light->distance_fade_shadow;
}
_FORCE_INLINE_ float light_get_distance_fade_length(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
return light->distance_fade_length;
}
virtual bool light_has_shadow(RID p_light) const override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL);
return light->shadow;
}
virtual bool light_has_projector(RID p_light) const override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL);
return TextureStorage::get_singleton()->owns_texture(light->projector);
}
_FORCE_INLINE_ bool light_is_negative(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL);
return light->negative;
}
_FORCE_INLINE_ float light_get_transmittance_bias(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, 0.0);
return light->param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS];
}
virtual bool light_get_reverse_cull_face_mode(RID p_light) const override {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_NULL_V(light, false);
return light->reverse_cull;
}
virtual RS::LightBakeMode light_get_bake_mode(RID p_light) override;
virtual uint32_t light_get_max_sdfgi_cascade(RID p_light) override { return 0; }
virtual uint64_t light_get_version(RID p_light) const override;
virtual uint32_t light_get_cull_mask(RID p_light) const override;
/* LIGHT INSTANCE API */
LightInstance *get_light_instance(RID p_rid) { return light_instance_owner.get_or_null(p_rid); }
bool owns_light_instance(RID p_rid) { return light_instance_owner.owns(p_rid); }
virtual RID light_instance_create(RID p_light) override;
virtual void light_instance_free(RID p_light_instance) override;
virtual void light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) override;
virtual void light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) override;
virtual void light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2()) override;
virtual void light_instance_mark_visible(RID p_light_instance) override;
virtual bool light_instance_is_shadow_visible_at_position(RID p_light_instance, const Vector3 &p_position) const override {
const LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_NULL_V(light_instance, false);
const Light *light = light_owner.get_or_null(light_instance->light);
ERR_FAIL_NULL_V(light, false);
if (!light->shadow) {
return false;
}
if (!light->distance_fade) {
return true;
}
real_t distance = p_position.distance_to(light_instance->transform.origin);
if (distance > light->distance_fade_shadow + light->distance_fade_length) {
return false;
}
return true;
}
_FORCE_INLINE_ RID light_instance_get_base_light(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->light;
}
_FORCE_INLINE_ Transform3D light_instance_get_base_transform(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->transform;
}
_FORCE_INLINE_ AABB light_instance_get_base_aabb(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->aabb;
}
_FORCE_INLINE_ void light_instance_set_cull_mask(RID p_light_instance, uint32_t p_cull_mask) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
li->cull_mask = p_cull_mask;
}
_FORCE_INLINE_ uint32_t light_instance_get_cull_mask(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->cull_mask;
}
_FORCE_INLINE_ GLuint light_instance_get_shadow_texture(RID p_light_instance, RID p_shadow_atlas) {
#ifdef DEBUG_ENABLED
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0);
#endif
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
ERR_FAIL_NULL_V(shadow_atlas, 0);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0);
#endif
uint32_t key = shadow_atlas->shadow_owners[p_light_instance];
uint32_t quadrant = (key >> QUADRANT_SHIFT) & 0x3;
uint32_t shadow = key & SHADOW_INDEX_MASK;
ERR_FAIL_COND_V(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size(), 0);
return shadow_atlas_get_quadrant_shadow_texture(p_shadow_atlas, quadrant, shadow);
}
_FORCE_INLINE_ bool light_instance_has_shadow_atlas(RID p_light_instance, RID p_shadow_atlas) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_atlases.has(p_shadow_atlas);
}
_FORCE_INLINE_ float light_instance_get_shadow_texel_size(RID p_light_instance, RID p_shadow_atlas) {
#ifdef DEBUG_ENABLED
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0);
#endif
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
ERR_FAIL_NULL_V(shadow_atlas, 0);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0);
#endif
uint32_t key = shadow_atlas->shadow_owners[p_light_instance];
uint32_t quadrant = (key >> QUADRANT_SHIFT) & 0x3;
uint32_t quadrant_size = shadow_atlas->size >> 1;
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
return float(1.0) / shadow_size;
}
_FORCE_INLINE_ Projection light_instance_get_shadow_camera(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].camera;
}
_FORCE_INLINE_ Transform3D light_instance_get_shadow_transform(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].transform;
}
_FORCE_INLINE_ float light_instance_get_shadow_bias_scale(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].bias_scale;
}
_FORCE_INLINE_ float light_instance_get_shadow_range(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].farplane;
}
_FORCE_INLINE_ float light_instance_get_shadow_range_begin(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].range_begin;
}
_FORCE_INLINE_ Vector2 light_instance_get_shadow_uv_scale(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].uv_scale;
}
_FORCE_INLINE_ void light_instance_set_directional_shadow_atlas_rect(RID p_light_instance, int p_index, const Rect2 p_atlas_rect) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
li->shadow_transform[p_index].atlas_rect = p_atlas_rect;
}
_FORCE_INLINE_ Rect2 light_instance_get_directional_shadow_atlas_rect(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].atlas_rect;
}
_FORCE_INLINE_ float light_instance_get_directional_shadow_split(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].split;
}
_FORCE_INLINE_ float light_instance_get_directional_shadow_texel_size(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_transform[p_index].shadow_texel_size;
}
_FORCE_INLINE_ void light_instance_set_render_pass(RID p_light_instance, uint64_t p_pass) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
li->last_pass = p_pass;
}
_FORCE_INLINE_ uint64_t light_instance_get_render_pass(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->last_pass;
}
_FORCE_INLINE_ void light_instance_set_shadow_pass(RID p_light_instance, uint64_t p_pass) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
li->last_scene_shadow_pass = p_pass;
}
_FORCE_INLINE_ uint64_t light_instance_get_shadow_pass(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->last_scene_shadow_pass;
}
_FORCE_INLINE_ void light_instance_set_directional_rect(RID p_light_instance, const Rect2 &p_directional_rect) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
li->directional_rect = p_directional_rect;
}
_FORCE_INLINE_ Rect2 light_instance_get_directional_rect(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->directional_rect;
}
_FORCE_INLINE_ RS::LightType light_instance_get_type(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->light_type;
}
_FORCE_INLINE_ int32_t light_instance_get_gl_id(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->gl_id;
}
_FORCE_INLINE_ int32_t light_instance_get_shadow_id(RID p_light_instance) {
LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
return li->shadow_id;
}
/* PROBE API */
ReflectionProbe *get_reflection_probe(RID p_rid) { return reflection_probe_owner.get_or_null(p_rid); }
bool owns_reflection_probe(RID p_rid) { return reflection_probe_owner.owns(p_rid); }
virtual RID reflection_probe_allocate() override;
virtual void reflection_probe_initialize(RID p_rid) override;
virtual void reflection_probe_free(RID p_rid) override;
virtual void reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) override;
virtual void reflection_probe_set_intensity(RID p_probe, float p_intensity) override;
virtual void reflection_probe_set_blend_distance(RID p_probe, float p_blend_distance) override;
virtual void reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) override;
virtual void reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) override;
virtual void reflection_probe_set_ambient_energy(RID p_probe, float p_energy) override;
virtual void reflection_probe_set_max_distance(RID p_probe, float p_distance) override;
virtual void reflection_probe_set_size(RID p_probe, const Vector3 &p_size) override;
virtual void reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) override;
virtual void reflection_probe_set_as_interior(RID p_probe, bool p_enable) override;
virtual void reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) override;
virtual void reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) override;
virtual void reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) override;
virtual void reflection_probe_set_reflection_mask(RID p_probe, uint32_t p_layers) override;
virtual void reflection_probe_set_resolution(RID p_probe, int p_resolution) override;
virtual void reflection_probe_set_mesh_lod_threshold(RID p_probe, float p_ratio) override;
virtual float reflection_probe_get_mesh_lod_threshold(RID p_probe) const override;
virtual AABB reflection_probe_get_aabb(RID p_probe) const override;
virtual RS::ReflectionProbeUpdateMode reflection_probe_get_update_mode(RID p_probe) const override;
virtual uint32_t reflection_probe_get_cull_mask(RID p_probe) const override;
virtual uint32_t reflection_probe_get_reflection_mask(RID p_probe) const override;
virtual Vector3 reflection_probe_get_size(RID p_probe) const override;
virtual Vector3 reflection_probe_get_origin_offset(RID p_probe) const override;
virtual float reflection_probe_get_origin_max_distance(RID p_probe) const override;
virtual bool reflection_probe_renders_shadows(RID p_probe) const override;
Dependency *reflection_probe_get_dependency(RID p_probe) const;
/* REFLECTION ATLAS */
bool owns_reflection_atlas(RID p_rid) { return reflection_atlas_owner.owns(p_rid); }
virtual RID reflection_atlas_create() override;
virtual void reflection_atlas_free(RID p_ref_atlas) override;
virtual int reflection_atlas_get_size(RID p_ref_atlas) const override;
virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) override;
/* REFLECTION PROBE INSTANCE */
bool owns_reflection_probe_instance(RID p_rid) { return reflection_probe_instance_owner.owns(p_rid); }
virtual RID reflection_probe_instance_create(RID p_probe) override;
virtual void reflection_probe_instance_free(RID p_instance) override;
virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) override;
virtual bool reflection_probe_has_atlas_index(RID p_instance) override;
virtual void reflection_probe_release_atlas_index(RID p_instance) override;
virtual bool reflection_probe_instance_needs_redraw(RID p_instance) override;
virtual bool reflection_probe_instance_has_reflection(RID p_instance) override;
virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) override;
virtual Ref<RenderSceneBuffers> reflection_probe_atlas_get_render_buffers(RID p_reflection_atlas) override;
virtual bool reflection_probe_instance_postprocess_step(RID p_instance) override;
_FORCE_INLINE_ RID reflection_probe_instance_get_probe(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
ERR_FAIL_NULL_V(rpi, RID());
return rpi->probe;
}
_FORCE_INLINE_ RID reflection_probe_instance_get_atlas(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
ERR_FAIL_NULL_V(rpi, RID());
return rpi->atlas;
}
Transform3D reflection_probe_instance_get_transform(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
ERR_FAIL_NULL_V(rpi, Transform3D());
return rpi->transform;
}
GLuint reflection_probe_instance_get_texture(RID p_instance);
GLuint reflection_probe_instance_get_framebuffer(RID p_instance, int p_index);
/* LIGHTMAP CAPTURE */
Lightmap *get_lightmap(RID p_rid) { return lightmap_owner.get_or_null(p_rid); }
bool owns_lightmap(RID p_rid) { return lightmap_owner.owns(p_rid); }
virtual RID lightmap_allocate() override;
virtual void lightmap_initialize(RID p_rid) override;
virtual void lightmap_free(RID p_rid) override;
virtual void lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) override;
virtual void lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) override;
virtual void lightmap_set_probe_interior(RID p_lightmap, bool p_interior) override;
virtual void lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) override;
virtual void lightmap_set_baked_exposure_normalization(RID p_lightmap, float p_exposure) override;
virtual PackedVector3Array lightmap_get_probe_capture_points(RID p_lightmap) const override;
virtual PackedColorArray lightmap_get_probe_capture_sh(RID p_lightmap) const override;
virtual PackedInt32Array lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const override;
virtual PackedInt32Array lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const override;
virtual AABB lightmap_get_aabb(RID p_lightmap) const override;
virtual void lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) override;
virtual bool lightmap_is_interior(RID p_lightmap) const override;
virtual void lightmap_set_probe_capture_update_speed(float p_speed) override;
virtual float lightmap_get_probe_capture_update_speed() const override;
virtual void lightmap_set_shadowmask_textures(RID p_lightmap, RID p_shadow) override;
virtual RS::ShadowmaskMode lightmap_get_shadowmask_mode(RID p_lightmap) override;
virtual void lightmap_set_shadowmask_mode(RID p_lightmap, RS::ShadowmaskMode p_mode) override;
/* LIGHTMAP INSTANCE */
LightmapInstance *get_lightmap_instance(RID p_rid) { return lightmap_instance_owner.get_or_null(p_rid); }
bool owns_lightmap_instance(RID p_rid) { return lightmap_instance_owner.owns(p_rid); }
virtual RID lightmap_instance_create(RID p_lightmap) override;
virtual void lightmap_instance_free(RID p_lightmap) override;
virtual void lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) override;
/* SHADOW ATLAS API */
bool owns_shadow_atlas(RID p_rid) { return shadow_atlas_owner.owns(p_rid); }
virtual RID shadow_atlas_create() override;
virtual void shadow_atlas_free(RID p_atlas) override;
virtual void shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits = true) override;
virtual void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) override;
virtual bool shadow_atlas_update_light(RID p_atlas, RID p_light_instance, float p_coverage, uint64_t p_light_version) override;
_FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_instance) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, false);
return atlas->shadow_owners.has(p_light_instance);
}
_FORCE_INLINE_ uint32_t shadow_atlas_get_light_instance_key(RID p_atlas, RID p_light_instance) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, -1);
return atlas->shadow_owners[p_light_instance];
}
_FORCE_INLINE_ int shadow_atlas_get_size(RID p_atlas) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
return atlas->size;
}
_FORCE_INLINE_ GLuint shadow_atlas_get_debug_fb(RID p_atlas) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
if (atlas->debug_fbo != 0) {
return atlas->debug_fbo;
}
glGenFramebuffers(1, &atlas->debug_fbo);
glBindFramebuffer(GL_FRAMEBUFFER, atlas->debug_fbo);
if (atlas->debug_texture == 0) {
atlas->debug_texture = shadow_atlas_get_debug_texture(p_atlas);
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, atlas->debug_texture);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, atlas->debug_texture, 0);
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
return atlas->debug_fbo;
}
_FORCE_INLINE_ GLuint shadow_atlas_get_debug_texture(RID p_atlas) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
if (atlas->debug_texture != 0) {
return atlas->debug_texture;
}
glGenTextures(1, &atlas->debug_texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, atlas->debug_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, atlas->size, atlas->size, 0, GL_RED, GL_UNSIGNED_INT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_RED);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_RED);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_ONE);
glBindTexture(GL_TEXTURE_2D, 0);
return atlas->debug_texture;
}
_FORCE_INLINE_ int shadow_atlas_get_quadrant_shadows_length(RID p_atlas, uint32_t p_quadrant) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
return atlas->quadrants[p_quadrant].shadows.size();
}
_FORCE_INLINE_ uint32_t shadow_atlas_get_quadrant_shadows_allocated(RID p_atlas, uint32_t p_quadrant) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
return atlas->quadrants[p_quadrant].textures.size();
}
_FORCE_INLINE_ uint32_t shadow_atlas_get_quadrant_subdivision(RID p_atlas, uint32_t p_quadrant) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
return atlas->quadrants[p_quadrant].subdivision;
}
_FORCE_INLINE_ GLuint shadow_atlas_get_quadrant_shadow_texture(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, atlas->quadrants[p_quadrant].textures.size(), 0);
return atlas->quadrants[p_quadrant].textures[p_shadow];
}
_FORCE_INLINE_ GLuint shadow_atlas_get_quadrant_shadow_fb(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, atlas->quadrants[p_quadrant].fbos.size(), 0);
return atlas->quadrants[p_quadrant].fbos[p_shadow];
}
_FORCE_INLINE_ int shadow_atlas_get_quadrant_shadow_size(RID p_atlas, uint32_t p_quadrant) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, 0);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, 0);
return (atlas->size >> 1) / atlas->quadrants[p_quadrant].subdivision;
}
_FORCE_INLINE_ bool shadow_atlas_get_quadrant_shadow_is_omni(RID p_atlas, uint32_t p_quadrant, uint32_t p_shadow) {
ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas);
ERR_FAIL_NULL_V(atlas, false);
ERR_FAIL_UNSIGNED_INDEX_V(p_quadrant, 4, false);
ERR_FAIL_UNSIGNED_INDEX_V(p_shadow, (uint32_t)atlas->quadrants[p_quadrant].shadows.size(), false);
return atlas->quadrants[p_quadrant].shadows[p_shadow].owner_is_omni;
}
virtual void shadow_atlas_update(RID p_atlas) override;
virtual void directional_shadow_atlas_set_size(int p_size, bool p_16_bits = true) override;
virtual int get_directional_light_shadow_size(RID p_light_instance) override;
virtual void set_directional_shadow_count(int p_count) override;
Rect2i get_directional_shadow_rect();
void update_directional_shadow_atlas();
_FORCE_INLINE_ GLuint directional_shadow_get_texture() {
return directional_shadow.depth;
}
_FORCE_INLINE_ int directional_shadow_get_size() {
return directional_shadow.size;
}
_FORCE_INLINE_ GLuint direction_shadow_get_fb() {
return directional_shadow.fbo;
}
_FORCE_INLINE_ void directional_shadow_increase_current_light() {
directional_shadow.current_light++;
}
};
} // namespace GLES3
#endif // GLES3_ENABLED