You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-11-04 12:00:25 +00:00
This is mostly a maintenance update that brings the compressor inline with the recently published Khronos Data Format Specification 1.4 release which clarified some ambiguity in the specification. This update also gives minor codec optimizations, bug fixes, and image quality improvements. The biggest improvement for Godot is that builds using MSVC cl.exe will now correctly default to the SSE2-optimized backend rather than the reference C backend. This makes compression more than 3 times faster. Builds using other compilers (GCC, LLVM/Clang) were not impacted by the underlying issue, and see no performance uplift.
1341 lines
32 KiB
C++
1341 lines
32 KiB
C++
// SPDX-License-Identifier: Apache-2.0
|
|
// ----------------------------------------------------------------------------
|
|
// Copyright 2019-2024 Arm Limited
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
|
// use this file except in compliance with the License. You may obtain a copy
|
|
// of the License at:
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
// License for the specific language governing permissions and limitations
|
|
// under the License.
|
|
// ----------------------------------------------------------------------------
|
|
|
|
/**
|
|
* @brief 4x32-bit vectors, implemented using SSE.
|
|
*
|
|
* This module implements 4-wide 32-bit float, int, and mask vectors for x86
|
|
* SSE. The implementation requires at least SSE2, but higher levels of SSE can
|
|
* be selected at compile time to improve performance.
|
|
*
|
|
* There is a baseline level of functionality provided by all vector widths and
|
|
* implementations. This is implemented using identical function signatures,
|
|
* modulo data type, so we can use them as substitutable implementations in VLA
|
|
* code.
|
|
*
|
|
* The 4-wide vectors are also used as a fixed-width type, and significantly
|
|
* extend the functionality above that available to VLA code.
|
|
*/
|
|
|
|
#ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
|
|
#define ASTC_VECMATHLIB_SSE_4_H_INCLUDED
|
|
|
|
#ifndef ASTCENC_SIMD_INLINE
|
|
#error "Include astcenc_vecmathlib.h, do not include directly"
|
|
#endif
|
|
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
|
|
// ============================================================================
|
|
// vfloat4 data type
|
|
// ============================================================================
|
|
|
|
/**
|
|
* @brief Data type for 4-wide floats.
|
|
*/
|
|
struct vfloat4
|
|
{
|
|
/**
|
|
* @brief Construct from zero-initialized value.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4() = default;
|
|
|
|
/**
|
|
* @brief Construct from 4 values loaded from an unaligned address.
|
|
*
|
|
* Consider using loada() which is better with vectors if data is aligned
|
|
* to vector length.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vfloat4(const float *p)
|
|
{
|
|
m = _mm_loadu_ps(p);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 1 scalar value replicated across all lanes.
|
|
*
|
|
* Consider using zero() for constexpr zeros.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vfloat4(float a)
|
|
{
|
|
m = _mm_set1_ps(a);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 4 scalar values.
|
|
*
|
|
* The value of @c a is stored to lane 0 (LSB) in the SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d)
|
|
{
|
|
m = _mm_set_ps(d, c, b, a);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from an existing SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vfloat4(__m128 a)
|
|
{
|
|
m = a;
|
|
}
|
|
|
|
/**
|
|
* @brief Get the scalar value of a single lane.
|
|
*/
|
|
template <int l> ASTCENC_SIMD_INLINE float lane() const
|
|
{
|
|
return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l));
|
|
}
|
|
|
|
/**
|
|
* @brief Set the scalar value of a single lane.
|
|
*/
|
|
template <int l> ASTCENC_SIMD_INLINE void set_lane(float a)
|
|
{
|
|
#if ASTCENC_SSE >= 41
|
|
__m128 v = _mm_set1_ps(a);
|
|
m = _mm_insert_ps(m, v, l << 6 | l << 4);
|
|
#else
|
|
alignas(16) float idx[4];
|
|
_mm_store_ps(idx, m);
|
|
idx[l] = a;
|
|
m = _mm_load_ps(idx);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector of zeros.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vfloat4 zero()
|
|
{
|
|
return vfloat4(_mm_setzero_ps());
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a replicated scalar loaded from memory.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p)
|
|
{
|
|
return vfloat4(_mm_load_ps1(p));
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector loaded from 16B aligned memory.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p)
|
|
{
|
|
return vfloat4(_mm_load_ps(p));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a swizzled float 2.
|
|
*/
|
|
template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const
|
|
{
|
|
vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2));
|
|
result.set_lane<2>(0.0f);
|
|
result.set_lane<3>(0.0f);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* @brief Return a swizzled float 3.
|
|
*/
|
|
template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const
|
|
{
|
|
vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4));
|
|
result.set_lane<3>(0.0f);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* @brief Return a swizzled float 4.
|
|
*/
|
|
template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const
|
|
{
|
|
return vfloat4(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4 | l3 << 6));
|
|
}
|
|
|
|
/**
|
|
* @brief The vector ...
|
|
*/
|
|
__m128 m;
|
|
};
|
|
|
|
// ============================================================================
|
|
// vint4 data type
|
|
// ============================================================================
|
|
|
|
/**
|
|
* @brief Data type for 4-wide ints.
|
|
*/
|
|
struct vint4
|
|
{
|
|
/**
|
|
* @brief Construct from zero-initialized value.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4() = default;
|
|
|
|
/**
|
|
* @brief Construct from 4 values loaded from an unaligned address.
|
|
*
|
|
* Consider using loada() which is better with vectors if data is aligned
|
|
* to vector length.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vint4(const int *p)
|
|
{
|
|
m = _mm_loadu_si128(reinterpret_cast<const __m128i*>(p));
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 4 uint8_t loaded from an unaligned address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p)
|
|
{
|
|
// _mm_loadu_si32 would be nicer syntax, but missing on older GCC
|
|
__m128i t = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(p));
|
|
|
|
#if ASTCENC_SSE >= 41
|
|
m = _mm_cvtepu8_epi32(t);
|
|
#else
|
|
t = _mm_unpacklo_epi8(t, _mm_setzero_si128());
|
|
m = _mm_unpacklo_epi16(t, _mm_setzero_si128());
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 1 scalar value replicated across all lanes.
|
|
*
|
|
* Consider using zero() for constexpr zeros.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vint4(int a)
|
|
{
|
|
m = _mm_set1_epi32(a);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 4 scalar values.
|
|
*
|
|
* The value of @c a is stored to lane 0 (LSB) in the SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d)
|
|
{
|
|
m = _mm_set_epi32(d, c, b, a);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from an existing SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vint4(__m128i a)
|
|
{
|
|
m = a;
|
|
}
|
|
|
|
/**
|
|
* @brief Get the scalar from a single lane.
|
|
*/
|
|
template <int l> ASTCENC_SIMD_INLINE int lane() const
|
|
{
|
|
return _mm_cvtsi128_si32(_mm_shuffle_epi32(m, l));
|
|
}
|
|
|
|
/**
|
|
* @brief Set the scalar value of a single lane.
|
|
*/
|
|
template <int l> ASTCENC_SIMD_INLINE void set_lane(int a)
|
|
{
|
|
#if ASTCENC_SSE >= 41
|
|
m = _mm_insert_epi32(m, a, l);
|
|
#else
|
|
alignas(16) int idx[4];
|
|
_mm_store_si128(reinterpret_cast<__m128i*>(idx), m);
|
|
idx[l] = a;
|
|
m = _mm_load_si128(reinterpret_cast<const __m128i*>(idx));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector of zeros.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vint4 zero()
|
|
{
|
|
return vint4(_mm_setzero_si128());
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a replicated scalar loaded from memory.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vint4 load1(const int* p)
|
|
{
|
|
return vint4(*p);
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector loaded from unaligned memory.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vint4 load(const uint8_t* p)
|
|
{
|
|
#if ASTCENC_SSE >= 41
|
|
return vint4(_mm_lddqu_si128(reinterpret_cast<const __m128i*>(p)));
|
|
#else
|
|
return vint4(_mm_loadu_si128(reinterpret_cast<const __m128i*>(p)));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector loaded from 16B aligned memory.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vint4 loada(const int* p)
|
|
{
|
|
return vint4(_mm_load_si128(reinterpret_cast<const __m128i*>(p)));
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector containing the lane IDs.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vint4 lane_id()
|
|
{
|
|
return vint4(_mm_set_epi32(3, 2, 1, 0));
|
|
}
|
|
|
|
/**
|
|
* @brief The vector ...
|
|
*/
|
|
__m128i m;
|
|
};
|
|
|
|
// ============================================================================
|
|
// vmask4 data type
|
|
// ============================================================================
|
|
|
|
/**
|
|
* @brief Data type for 4-wide control plane masks.
|
|
*/
|
|
struct vmask4
|
|
{
|
|
/**
|
|
* @brief Construct from an existing SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vmask4(__m128 a)
|
|
{
|
|
m = a;
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from an existing SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vmask4(__m128i a)
|
|
{
|
|
m = _mm_castsi128_ps(a);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 1 scalar value.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vmask4(bool a)
|
|
{
|
|
vint4 mask(a == false ? 0 : -1);
|
|
m = _mm_castsi128_ps(mask.m);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 4 scalar values.
|
|
*
|
|
* The value of @c a is stored to lane 0 (LSB) in the SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d)
|
|
{
|
|
vint4 mask(a == false ? 0 : -1,
|
|
b == false ? 0 : -1,
|
|
c == false ? 0 : -1,
|
|
d == false ? 0 : -1);
|
|
|
|
m = _mm_castsi128_ps(mask.m);
|
|
}
|
|
|
|
/**
|
|
* @brief Get the scalar value of a single lane.
|
|
*/
|
|
template <int l> ASTCENC_SIMD_INLINE bool lane() const
|
|
{
|
|
return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l)) != 0.0f;
|
|
}
|
|
|
|
/**
|
|
* @brief The vector ...
|
|
*/
|
|
__m128 m;
|
|
};
|
|
|
|
// ============================================================================
|
|
// vmask4 operators and functions
|
|
// ============================================================================
|
|
|
|
/**
|
|
* @brief Overload: mask union (or).
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b)
|
|
{
|
|
return vmask4(_mm_or_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: mask intersect (and).
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b)
|
|
{
|
|
return vmask4(_mm_and_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: mask difference (xor).
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b)
|
|
{
|
|
return vmask4(_mm_xor_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: mask invert (not).
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a)
|
|
{
|
|
return vmask4(_mm_xor_si128(_mm_castps_si128(a.m), _mm_set1_epi32(-1)));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a 4-bit mask code indicating mask status.
|
|
*
|
|
* bit0 = lane 0
|
|
*/
|
|
ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a)
|
|
{
|
|
return static_cast<unsigned int>(_mm_movemask_ps(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief True if any lanes are enabled, false otherwise.
|
|
*/
|
|
ASTCENC_SIMD_INLINE bool any(vmask4 a)
|
|
{
|
|
return mask(a) != 0;
|
|
}
|
|
|
|
/**
|
|
* @brief True if all lanes are enabled, false otherwise.
|
|
*/
|
|
ASTCENC_SIMD_INLINE bool all(vmask4 a)
|
|
{
|
|
return mask(a) == 0xF;
|
|
}
|
|
|
|
// ============================================================================
|
|
// vint4 operators and functions
|
|
// ============================================================================
|
|
|
|
/**
|
|
* @brief Overload: vector by vector addition.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b)
|
|
{
|
|
return vint4(_mm_add_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector subtraction.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b)
|
|
{
|
|
return vint4(_mm_sub_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector multiplication.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b)
|
|
{
|
|
#if ASTCENC_SSE >= 41
|
|
return vint4(_mm_mullo_epi32 (a.m, b.m));
|
|
#else
|
|
__m128i t1 = _mm_mul_epu32(a.m, b.m);
|
|
__m128i t2 = _mm_mul_epu32(
|
|
_mm_srli_si128(a.m, 4),
|
|
_mm_srli_si128(b.m, 4));
|
|
__m128i r = _mm_unpacklo_epi32(
|
|
_mm_shuffle_epi32(t1, _MM_SHUFFLE (0, 0, 2, 0)),
|
|
_mm_shuffle_epi32(t2, _MM_SHUFFLE (0, 0, 2, 0)));
|
|
return vint4(r);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector bit invert.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 operator~(vint4 a)
|
|
{
|
|
return vint4(_mm_xor_si128(a.m, _mm_set1_epi32(-1)));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector bitwise or.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b)
|
|
{
|
|
return vint4(_mm_or_si128(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector bitwise and.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b)
|
|
{
|
|
return vint4(_mm_and_si128(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector bitwise xor.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b)
|
|
{
|
|
return vint4(_mm_xor_si128(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector equality.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b)
|
|
{
|
|
return vmask4(_mm_cmpeq_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector inequality.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b)
|
|
{
|
|
return ~vmask4(_mm_cmpeq_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector less than.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b)
|
|
{
|
|
return vmask4(_mm_cmplt_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector greater than.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b)
|
|
{
|
|
return vmask4(_mm_cmpgt_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Logical shift left.
|
|
*/
|
|
template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a)
|
|
{
|
|
return vint4(_mm_slli_epi32(a.m, s));
|
|
}
|
|
|
|
/**
|
|
* @brief Logical shift right.
|
|
*/
|
|
template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a)
|
|
{
|
|
return vint4(_mm_srli_epi32(a.m, s));
|
|
}
|
|
|
|
/**
|
|
* @brief Arithmetic shift right.
|
|
*/
|
|
template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a)
|
|
{
|
|
return vint4(_mm_srai_epi32(a.m, s));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the min vector of two vectors.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b)
|
|
{
|
|
#if ASTCENC_SSE >= 41
|
|
return vint4(_mm_min_epi32(a.m, b.m));
|
|
#else
|
|
vmask4 d = a < b;
|
|
__m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
|
|
__m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
|
|
return vint4(_mm_or_si128(ap,bp));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Return the max vector of two vectors.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b)
|
|
{
|
|
#if ASTCENC_SSE >= 41
|
|
return vint4(_mm_max_epi32(a.m, b.m));
|
|
#else
|
|
vmask4 d = a > b;
|
|
__m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
|
|
__m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
|
|
return vint4(_mm_or_si128(ap,bp));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Return the horizontal minimum of a vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 hmin(vint4 a)
|
|
{
|
|
a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(2, 3, 0, 1))));
|
|
a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(1, 0, 3, 2))));
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* @brief Return the horizontal maximum of a vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 hmax(vint4 a)
|
|
{
|
|
a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(2, 3, 0, 1))));
|
|
a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(1, 0, 3, 2))));
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* @brief Store a vector to a 16B aligned memory address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void storea(vint4 a, int* p)
|
|
{
|
|
_mm_store_si128(reinterpret_cast<__m128i*>(p), a.m);
|
|
}
|
|
|
|
/**
|
|
* @brief Store a vector to an unaligned memory address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void store(vint4 a, int* p)
|
|
{
|
|
// Cast due to missing intrinsics
|
|
_mm_storeu_ps(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Store a vector to an unaligned memory address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void store(vint4 a, uint8_t* p)
|
|
{
|
|
std::memcpy(p, &a.m, sizeof(int) * 4);
|
|
}
|
|
|
|
/**
|
|
* @brief Store lowest N (vector width) bytes into an unaligned address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p)
|
|
{
|
|
// Cast due to missing intrinsics
|
|
_mm_store_ss(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void pack_and_store_low_bytes(vint4 a, uint8_t* p)
|
|
{
|
|
#if ASTCENC_SSE >= 41
|
|
__m128i shuf = _mm_set_epi8(0,0,0,0, 0,0,0,0, 0,0,0,0, 12,8,4,0);
|
|
a = vint4(_mm_shuffle_epi8(a.m, shuf));
|
|
store_nbytes(a, p);
|
|
#else
|
|
__m128i va = _mm_unpacklo_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(1,1,1,1)));
|
|
__m128i vb = _mm_unpackhi_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(3,3,3,3)));
|
|
a = vint4(_mm_unpacklo_epi16(va, vb));
|
|
store_nbytes(a, p);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Return lanes from @c b if @c cond is set, else @c a.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond)
|
|
{
|
|
__m128i condi = _mm_castps_si128(cond.m);
|
|
|
|
#if ASTCENC_SSE >= 41
|
|
return vint4(_mm_blendv_epi8(a.m, b.m, condi));
|
|
#else
|
|
return vint4(_mm_or_si128(_mm_and_si128(condi, b.m), _mm_andnot_si128(condi, a.m)));
|
|
#endif
|
|
}
|
|
|
|
// ============================================================================
|
|
// vfloat4 operators and functions
|
|
// ============================================================================
|
|
|
|
/**
|
|
* @brief Overload: vector by vector addition.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vfloat4(_mm_add_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector subtraction.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vfloat4(_mm_sub_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector multiplication.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vfloat4(_mm_mul_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector division.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vfloat4(_mm_div_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector equality.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vmask4(_mm_cmpeq_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector inequality.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vmask4(_mm_cmpneq_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector less than.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vmask4(_mm_cmplt_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector greater than.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vmask4(_mm_cmpgt_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector less than or equal.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vmask4(_mm_cmple_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector greater than or equal.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vmask4(_mm_cmpge_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the min vector of two vectors.
|
|
*
|
|
* If either lane value is NaN, @c b will be returned for that lane.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b)
|
|
{
|
|
// Do not reorder - second operand will return if either is NaN
|
|
return vfloat4(_mm_min_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the max vector of two vectors.
|
|
*
|
|
* If either lane value is NaN, @c b will be returned for that lane.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b)
|
|
{
|
|
// Do not reorder - second operand will return if either is NaN
|
|
return vfloat4(_mm_max_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the absolute value of the float vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a)
|
|
{
|
|
return vfloat4(_mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a.m), a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a float rounded to the nearest integer value.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a)
|
|
{
|
|
#if ASTCENC_SSE >= 41
|
|
constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
|
|
return vfloat4(_mm_round_ps(a.m, flags));
|
|
#else
|
|
__m128 v = a.m;
|
|
__m128 neg_zero = _mm_castsi128_ps(_mm_set1_epi32(static_cast<int>(0x80000000)));
|
|
__m128 no_fraction = _mm_set1_ps(8388608.0f);
|
|
__m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF));
|
|
__m128 sign = _mm_and_ps(v, neg_zero);
|
|
__m128 s_magic = _mm_or_ps(no_fraction, sign);
|
|
__m128 r1 = _mm_add_ps(v, s_magic);
|
|
r1 = _mm_sub_ps(r1, s_magic);
|
|
__m128 r2 = _mm_and_ps(v, abs_mask);
|
|
__m128 mask = _mm_cmple_ps(r2, no_fraction);
|
|
r2 = _mm_andnot_ps(mask, v);
|
|
r1 = _mm_and_ps(r1, mask);
|
|
return vfloat4(_mm_xor_ps(r1, r2));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Return the horizontal minimum of a vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a)
|
|
{
|
|
a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
|
|
a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
|
|
return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the horizontal maximum of a vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a)
|
|
{
|
|
a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
|
|
a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
|
|
return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the horizontal sum of a vector as a scalar.
|
|
*/
|
|
ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a)
|
|
{
|
|
// Add top and bottom halves, lane 1/0
|
|
__m128 t = _mm_add_ps(a.m, _mm_movehl_ps(a.m, a.m));
|
|
|
|
// Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow)
|
|
t = _mm_add_ss(t, _mm_shuffle_ps(t, t, 0x55));
|
|
|
|
return _mm_cvtss_f32(t);
|
|
}
|
|
|
|
/**
|
|
* @brief Return the sqrt of the lanes in the vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a)
|
|
{
|
|
return vfloat4(_mm_sqrt_ps(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return lanes from @c b if @c cond is set, else @c a.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond)
|
|
{
|
|
#if ASTCENC_SSE >= 41
|
|
return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m));
|
|
#else
|
|
return vfloat4(_mm_or_ps(_mm_and_ps(cond.m, b.m), _mm_andnot_ps(cond.m, a.m)));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Load a vector of gathered results from an array;
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices)
|
|
{
|
|
#if ASTCENC_AVX >= 2 && ASTCENC_X86_GATHERS != 0
|
|
return vfloat4(_mm_i32gather_ps(base, indices.m, 4));
|
|
#else
|
|
alignas(16) int idx[4];
|
|
storea(indices, idx);
|
|
return vfloat4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Load a vector of gathered results from an array using byte indices from memory
|
|
*/
|
|
template<>
|
|
ASTCENC_SIMD_INLINE vfloat4 gatherf_byte_inds<vfloat4>(const float* base, const uint8_t* indices)
|
|
{
|
|
// Experimentally, in this particular use case (byte indices in memory),
|
|
// using 4 separate scalar loads is appreciably faster than using gathers
|
|
// even if they're available, on every x86 uArch tried, so always do the
|
|
// separate loads even when ASTCENC_X86_GATHERS is enabled.
|
|
//
|
|
// Tested on:
|
|
// - Intel Skylake-X, Coffee Lake, Crestmont, Redwood Cove
|
|
// - AMD Zen 2, Zen 4
|
|
return vfloat4(base[indices[0]], base[indices[1]], base[indices[2]], base[indices[3]]);
|
|
}
|
|
|
|
/**
|
|
* @brief Store a vector to an unaligned memory address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p)
|
|
{
|
|
_mm_storeu_ps(p, a.m);
|
|
}
|
|
|
|
/**
|
|
* @brief Store a vector to a 16B aligned memory address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p)
|
|
{
|
|
_mm_store_ps(p, a.m);
|
|
}
|
|
|
|
/**
|
|
* @brief Return a integer value for a float vector, using truncation.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a)
|
|
{
|
|
return vint4(_mm_cvttps_epi32(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a integer value for a float vector, using round-to-nearest.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a)
|
|
{
|
|
a = a + vfloat4(0.5f);
|
|
return vint4(_mm_cvttps_epi32(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a float value for an integer vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a)
|
|
{
|
|
return vfloat4(_mm_cvtepi32_ps(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a float16 value for a float vector, using round-to-nearest.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a)
|
|
{
|
|
#if ASTCENC_F16C >= 1
|
|
__m128i packedf16 = _mm_cvtps_ph(a.m, 0);
|
|
__m128i f16 = _mm_cvtepu16_epi32(packedf16);
|
|
return vint4(f16);
|
|
#else
|
|
return vint4(
|
|
float_to_sf16(a.lane<0>()),
|
|
float_to_sf16(a.lane<1>()),
|
|
float_to_sf16(a.lane<2>()),
|
|
float_to_sf16(a.lane<3>()));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Return a float16 value for a float scalar, using round-to-nearest.
|
|
*/
|
|
static inline uint16_t float_to_float16(float a)
|
|
{
|
|
#if ASTCENC_F16C >= 1
|
|
__m128i f16 = _mm_cvtps_ph(_mm_set1_ps(a), 0);
|
|
return static_cast<uint16_t>(_mm_cvtsi128_si32(f16));
|
|
#else
|
|
return float_to_sf16(a);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Return a float value for a float16 vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a)
|
|
{
|
|
#if ASTCENC_F16C >= 1
|
|
__m128i packed = _mm_packs_epi32(a.m, a.m);
|
|
__m128 f32 = _mm_cvtph_ps(packed);
|
|
return vfloat4(f32);
|
|
#else
|
|
return vfloat4(
|
|
sf16_to_float(static_cast<uint16_t>(a.lane<0>())),
|
|
sf16_to_float(static_cast<uint16_t>(a.lane<1>())),
|
|
sf16_to_float(static_cast<uint16_t>(a.lane<2>())),
|
|
sf16_to_float(static_cast<uint16_t>(a.lane<3>())));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Return a float value for a float16 scalar.
|
|
*/
|
|
ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a)
|
|
{
|
|
#if ASTCENC_F16C >= 1
|
|
__m128i packed = _mm_set1_epi16(static_cast<short>(a));
|
|
__m128 f32 = _mm_cvtph_ps(packed);
|
|
return _mm_cvtss_f32(f32);
|
|
#else
|
|
return sf16_to_float(a);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Return a float value as an integer bit pattern (i.e. no conversion).
|
|
*
|
|
* It is a common trick to convert floats into integer bit patterns, perform
|
|
* some bit hackery based on knowledge they are IEEE 754 layout, and then
|
|
* convert them back again. This is the first half of that flip.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a)
|
|
{
|
|
return vint4(_mm_castps_si128(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a integer value as a float bit pattern (i.e. no conversion).
|
|
*
|
|
* It is a common trick to convert floats into integer bit patterns, perform
|
|
* some bit hackery based on knowledge they are IEEE 754 layout, and then
|
|
* convert them back again. This is the second half of that flip.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v)
|
|
{
|
|
return vfloat4(_mm_castsi128_ps(v.m));
|
|
}
|
|
|
|
/*
|
|
* Table structure for a 16x 8-bit entry table.
|
|
*/
|
|
struct vtable4_16x8 {
|
|
#if ASTCENC_SSE >= 41
|
|
vint4 t0;
|
|
#else
|
|
const uint8_t* data;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Table structure for a 32x 8-bit entry table.
|
|
*/
|
|
struct vtable4_32x8 {
|
|
#if ASTCENC_SSE >= 41
|
|
vint4 t0;
|
|
vint4 t1;
|
|
#else
|
|
const uint8_t* data;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Table structure for a 64x 8-bit entry table.
|
|
*/
|
|
struct vtable4_64x8 {
|
|
#if ASTCENC_SSE >= 41
|
|
vint4 t0;
|
|
vint4 t1;
|
|
vint4 t2;
|
|
vint4 t3;
|
|
#else
|
|
const uint8_t* data;
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* @brief Prepare a vtable lookup table for 16x 8-bit entry table.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void vtable_prepare(
|
|
vtable4_16x8& table,
|
|
const uint8_t* data
|
|
) {
|
|
#if ASTCENC_SSE >= 41
|
|
table.t0 = vint4::load(data);
|
|
#else
|
|
table.data = data;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Prepare a vtable lookup table for 32x 8-bit entry table.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void vtable_prepare(
|
|
vtable4_32x8& table,
|
|
const uint8_t* data
|
|
) {
|
|
#if ASTCENC_SSE >= 41
|
|
table.t0 = vint4::load(data);
|
|
table.t1 = vint4::load(data + 16);
|
|
|
|
table.t1 = table.t1 ^ table.t0;
|
|
#else
|
|
table.data = data;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Prepare a vtable lookup table 64x 8-bit entry table.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void vtable_prepare(
|
|
vtable4_64x8& table,
|
|
const uint8_t* data
|
|
) {
|
|
#if ASTCENC_SSE >= 41
|
|
table.t0 = vint4::load(data);
|
|
table.t1 = vint4::load(data + 16);
|
|
table.t2 = vint4::load(data + 32);
|
|
table.t3 = vint4::load(data + 48);
|
|
|
|
table.t3 = table.t3 ^ table.t2;
|
|
table.t2 = table.t2 ^ table.t1;
|
|
table.t1 = table.t1 ^ table.t0;
|
|
#else
|
|
table.data = data;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Perform a vtable lookup in a 16x 8-bit table with 32-bit indices.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 vtable_lookup_32bit(
|
|
const vtable4_16x8& tbl,
|
|
vint4 idx
|
|
) {
|
|
#if ASTCENC_SSE >= 41
|
|
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
|
|
__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
|
|
|
|
__m128i result = _mm_shuffle_epi8(tbl.t0.m, idxx);
|
|
return vint4(result);
|
|
#else
|
|
return vint4(tbl.data[idx.lane<0>()],
|
|
tbl.data[idx.lane<1>()],
|
|
tbl.data[idx.lane<2>()],
|
|
tbl.data[idx.lane<3>()]);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Perform a vtable lookup in a 32x 8-bit table with 32-bit indices.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 vtable_lookup_32bit(
|
|
const vtable4_32x8& tbl,
|
|
vint4 idx
|
|
) {
|
|
#if ASTCENC_SSE >= 41
|
|
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
|
|
__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
|
|
|
|
__m128i result = _mm_shuffle_epi8(tbl.t0.m, idxx);
|
|
idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
|
|
|
|
__m128i result2 = _mm_shuffle_epi8(tbl.t1.m, idxx);
|
|
result = _mm_xor_si128(result, result2);
|
|
|
|
return vint4(result);
|
|
#else
|
|
return vint4(tbl.data[idx.lane<0>()],
|
|
tbl.data[idx.lane<1>()],
|
|
tbl.data[idx.lane<2>()],
|
|
tbl.data[idx.lane<3>()]);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Perform a vtable lookup in a 64x 8-bit table with 32-bit indices.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 vtable_lookup_32bit(
|
|
const vtable4_64x8& tbl,
|
|
vint4 idx
|
|
) {
|
|
#if ASTCENC_SSE >= 41
|
|
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
|
|
__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
|
|
|
|
__m128i result = _mm_shuffle_epi8(tbl.t0.m, idxx);
|
|
idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
|
|
|
|
__m128i result2 = _mm_shuffle_epi8(tbl.t1.m, idxx);
|
|
result = _mm_xor_si128(result, result2);
|
|
idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
|
|
|
|
result2 = _mm_shuffle_epi8(tbl.t2.m, idxx);
|
|
result = _mm_xor_si128(result, result2);
|
|
idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
|
|
|
|
result2 = _mm_shuffle_epi8(tbl.t3.m, idxx);
|
|
result = _mm_xor_si128(result, result2);
|
|
|
|
return vint4(result);
|
|
#else
|
|
return vint4(tbl.data[idx.lane<0>()],
|
|
tbl.data[idx.lane<1>()],
|
|
tbl.data[idx.lane<2>()],
|
|
tbl.data[idx.lane<3>()]);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Return a vector of interleaved RGBA data.
|
|
*
|
|
* Input vectors have the value stored in the bottom 8 bits of each lane,
|
|
* with high bits set to zero.
|
|
*
|
|
* Output vector stores a single RGBA texel packed in each lane.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a)
|
|
{
|
|
// Workaround an XCode compiler internal fault; note is slower than slli_epi32
|
|
// so we should revert this when we get the opportunity
|
|
#if defined(__APPLE__)
|
|
__m128i value = r.m;
|
|
value = _mm_add_epi32(value, _mm_bslli_si128(g.m, 1));
|
|
value = _mm_add_epi32(value, _mm_bslli_si128(b.m, 2));
|
|
value = _mm_add_epi32(value, _mm_bslli_si128(a.m, 3));
|
|
return vint4(value);
|
|
#else
|
|
__m128i value = r.m;
|
|
value = _mm_add_epi32(value, _mm_slli_epi32(g.m, 8));
|
|
value = _mm_add_epi32(value, _mm_slli_epi32(b.m, 16));
|
|
value = _mm_add_epi32(value, _mm_slli_epi32(a.m, 24));
|
|
return vint4(value);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Store a single vector lane to an unaligned address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void store_lane(uint8_t* base, int data)
|
|
{
|
|
std::memcpy(base, &data, sizeof(int));
|
|
}
|
|
|
|
/**
|
|
* @brief Store a vector, skipping masked lanes.
|
|
*
|
|
* All masked lanes must be at the end of vector, after all non-masked lanes.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void store_lanes_masked(uint8_t* base, vint4 data, vmask4 mask)
|
|
{
|
|
#if ASTCENC_AVX >= 2
|
|
_mm_maskstore_epi32(reinterpret_cast<int*>(base), _mm_castps_si128(mask.m), data.m);
|
|
#else
|
|
// Note - we cannot use _mm_maskmoveu_si128 as the underlying hardware doesn't guarantee
|
|
// fault suppression on masked lanes so we can get page faults at the end of an image.
|
|
if (mask.lane<3>() != 0.0f)
|
|
{
|
|
store(data, base);
|
|
}
|
|
else if (mask.lane<2>() != 0.0f)
|
|
{
|
|
store_lane(base + 0, data.lane<0>());
|
|
store_lane(base + 4, data.lane<1>());
|
|
store_lane(base + 8, data.lane<2>());
|
|
}
|
|
else if (mask.lane<1>() != 0.0f)
|
|
{
|
|
store_lane(base + 0, data.lane<0>());
|
|
store_lane(base + 4, data.lane<1>());
|
|
}
|
|
else if (mask.lane<0>() != 0.0f)
|
|
{
|
|
store_lane(base + 0, data.lane<0>());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
|
|
|
|
#define ASTCENC_USE_NATIVE_DOT_PRODUCT 1
|
|
|
|
/**
|
|
* @brief Return the dot product for the full 4 lanes, returning scalar.
|
|
*/
|
|
ASTCENC_SIMD_INLINE float dot_s(vfloat4 a, vfloat4 b)
|
|
{
|
|
return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0xFF));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the dot product for the full 4 lanes, returning vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 dot(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vfloat4(_mm_dp_ps(a.m, b.m, 0xFF));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the dot product for the bottom 3 lanes, returning scalar.
|
|
*/
|
|
ASTCENC_SIMD_INLINE float dot3_s(vfloat4 a, vfloat4 b)
|
|
{
|
|
return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0x77));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the dot product for the bottom 3 lanes, returning vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat4 dot3(vfloat4 a, vfloat4 b)
|
|
{
|
|
return vfloat4(_mm_dp_ps(a.m, b.m, 0x77));
|
|
}
|
|
|
|
#endif // #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
|
|
|
|
#if ASTCENC_POPCNT >= 1
|
|
|
|
#define ASTCENC_USE_NATIVE_POPCOUNT 1
|
|
|
|
/**
|
|
* @brief Population bit count.
|
|
*
|
|
* @param v The value to population count.
|
|
*
|
|
* @return The number of 1 bits.
|
|
*/
|
|
ASTCENC_SIMD_INLINE int popcount(uint64_t v)
|
|
{
|
|
#if !defined(__x86_64__) && !defined(_M_AMD64)
|
|
return static_cast<int>(__builtin_popcountll(v));
|
|
#else
|
|
return static_cast<int>(_mm_popcnt_u64(v));
|
|
#endif
|
|
}
|
|
|
|
#endif // ASTCENC_POPCNT >= 1
|
|
|
|
#endif // #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
|