You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-11-05 12:10:55 +00:00
Made possible by EIREXE, xsellier and the SDL team. This commit includes statically linked SDL3 for Windows, Linux and macOS. The vendored copy of SDL3 was setup to only build the required subsystems for gamepad/joystick support, with some patches to be able to make it as minimal as possible and reduce the impact on binary size and code size. Co-authored-by: Álex Román Núñez <eirexe123@gmail.com> Co-authored-by: Xavier Sellier <xsellier@gmail.com> Co-authored-by: Rémi Verschelde <rverschelde@gmail.com>
349 lines
11 KiB
C
349 lines
11 KiB
C
#include "SDL_internal.h"
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* __ieee754_pow(x,y) return x**y
|
|
*
|
|
* n
|
|
* Method: Let x = 2 * (1+f)
|
|
* 1. Compute and return log2(x) in two pieces:
|
|
* log2(x) = w1 + w2,
|
|
* where w1 has 53-24 = 29 bit trailing zeros.
|
|
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
|
* arithmetic, where |y'|<=0.5.
|
|
* 3. Return x**y = 2**n*exp(y'*log2)
|
|
*
|
|
* Special cases:
|
|
* 1. +-1 ** anything is 1.0
|
|
* 2. +-1 ** +-INF is 1.0
|
|
* 3. (anything) ** 0 is 1
|
|
* 4. (anything) ** 1 is itself
|
|
* 5. (anything) ** NAN is NAN
|
|
* 6. NAN ** (anything except 0) is NAN
|
|
* 7. +-(|x| > 1) ** +INF is +INF
|
|
* 8. +-(|x| > 1) ** -INF is +0
|
|
* 9. +-(|x| < 1) ** +INF is +0
|
|
* 10 +-(|x| < 1) ** -INF is +INF
|
|
* 11. +0 ** (+anything except 0, NAN) is +0
|
|
* 12. -0 ** (+anything except 0, NAN, odd integer) is +0
|
|
* 13. +0 ** (-anything except 0, NAN) is +INF
|
|
* 14. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
|
* 15. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
|
* 16. +INF ** (+anything except 0,NAN) is +INF
|
|
* 17. +INF ** (-anything except 0,NAN) is +0
|
|
* 18. -INF ** (anything) = -0 ** (-anything)
|
|
* 19. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
|
* 20. (-anything except 0 and inf) ** (non-integer) is NAN
|
|
*
|
|
* Accuracy:
|
|
* pow(x,y) returns x**y nearly rounded. In particular
|
|
* pow(integer,integer)
|
|
* always returns the correct integer provided it is
|
|
* representable.
|
|
*
|
|
* Constants :
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
|
|
#include "math_libm.h"
|
|
#include "math_private.h"
|
|
|
|
#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */
|
|
/* C4756: overflow in constant arithmetic */
|
|
#pragma warning ( disable : 4756 )
|
|
#endif
|
|
|
|
#ifdef __WATCOMC__ /* Watcom defines huge=__huge */
|
|
#undef huge
|
|
#endif
|
|
|
|
static const double
|
|
bp[] = {1.0, 1.5,},
|
|
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
|
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
|
zero = 0.0,
|
|
one = 1.0,
|
|
two = 2.0,
|
|
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
|
|
huge = 1.0e300,
|
|
tiny = 1.0e-300,
|
|
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
|
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
|
|
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
|
|
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
|
|
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
|
|
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
|
|
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
|
|
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
|
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
|
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
|
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
|
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
|
|
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
|
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
|
|
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
|
|
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
|
|
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
|
|
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
|
|
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
|
|
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
|
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
|
|
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
|
|
|
double attribute_hidden __ieee754_pow(double x, double y)
|
|
{
|
|
double z,ax,z_h,z_l,p_h,p_l;
|
|
double y1,t1,t2,r,s,t,u,v,w;
|
|
int32_t i,j,k,yisint,n;
|
|
int32_t hx,hy,ix,iy;
|
|
u_int32_t lx,ly;
|
|
|
|
EXTRACT_WORDS(hx,lx,x);
|
|
/* x==1: 1**y = 1 (even if y is NaN) */
|
|
if (hx==0x3ff00000 && lx==0) {
|
|
return x;
|
|
}
|
|
ix = hx&0x7fffffff;
|
|
|
|
EXTRACT_WORDS(hy,ly,y);
|
|
iy = hy&0x7fffffff;
|
|
|
|
/* y==zero: x**0 = 1 */
|
|
if((iy|ly)==0) return one;
|
|
|
|
/* +-NaN return x+y */
|
|
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
|
|
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
|
|
return x+y;
|
|
|
|
/* determine if y is an odd int when x < 0
|
|
* yisint = 0 ... y is not an integer
|
|
* yisint = 1 ... y is an odd int
|
|
* yisint = 2 ... y is an even int
|
|
*/
|
|
yisint = 0;
|
|
if(hx<0) {
|
|
if(iy>=0x43400000) yisint = 2; /* even integer y */
|
|
else if(iy>=0x3ff00000) {
|
|
k = (iy>>20)-0x3ff; /* exponent */
|
|
if(k>20) {
|
|
j = ly>>(52-k);
|
|
if(((u_int32_t)j<<(52-k))==ly) yisint = 2-(j&1);
|
|
} else if(ly==0) {
|
|
j = iy>>(20-k);
|
|
if((j<<(20-k))==iy) yisint = 2-(j&1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* special value of y */
|
|
if(ly==0) {
|
|
if (iy==0x7ff00000) { /* y is +-inf */
|
|
if (((ix-0x3ff00000)|lx)==0)
|
|
return one; /* +-1**+-inf is 1 (yes, weird rule) */
|
|
if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
|
|
return (hy>=0) ? y : zero;
|
|
/* (|x|<1)**-,+inf = inf,0 */
|
|
return (hy<0) ? -y : zero;
|
|
}
|
|
if(iy==0x3ff00000) { /* y is +-1 */
|
|
if(hy<0) return one/x; else return x;
|
|
}
|
|
if(hy==0x40000000) return x*x; /* y is 2 */
|
|
if(hy==0x3fe00000) { /* y is 0.5 */
|
|
if(hx>=0) /* x >= +0 */
|
|
return __ieee754_sqrt(x);
|
|
}
|
|
}
|
|
|
|
ax = fabs(x);
|
|
/* special value of x */
|
|
if(lx==0) {
|
|
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
|
|
z = ax; /*x is +-0,+-inf,+-1*/
|
|
if(hy<0) z = one/z; /* z = (1/|x|) */
|
|
if(hx<0) {
|
|
if(((ix-0x3ff00000)|yisint)==0) {
|
|
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
|
} else if(yisint==1)
|
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
|
}
|
|
return z;
|
|
}
|
|
}
|
|
|
|
/* (x<0)**(non-int) is NaN */
|
|
if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
|
|
|
|
/* |y| is huge */
|
|
if(iy>0x41e00000) { /* if |y| > 2**31 */
|
|
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
|
|
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
|
|
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
|
|
}
|
|
/* over/underflow if x is not close to one */
|
|
if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
|
|
if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
|
|
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
|
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
|
t = x-1; /* t has 20 trailing zeros */
|
|
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
|
|
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
|
|
v = t*ivln2_l-w*ivln2;
|
|
t1 = u+v;
|
|
SET_LOW_WORD(t1,0);
|
|
t2 = v-(t1-u);
|
|
} else {
|
|
double s2,s_h,s_l,t_h,t_l;
|
|
n = 0;
|
|
/* take care subnormal number */
|
|
if(ix<0x00100000)
|
|
{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
|
|
n += ((ix)>>20)-0x3ff;
|
|
j = ix&0x000fffff;
|
|
/* determine interval */
|
|
ix = j|0x3ff00000; /* normalize ix */
|
|
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
|
|
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
|
|
else {k=0;n+=1;ix -= 0x00100000;}
|
|
SET_HIGH_WORD(ax,ix);
|
|
|
|
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
|
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
|
v = one/(ax+bp[k]);
|
|
s = u*v;
|
|
s_h = s;
|
|
SET_LOW_WORD(s_h,0);
|
|
/* t_h=ax+bp[k] High */
|
|
t_h = zero;
|
|
SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
|
|
t_l = ax - (t_h-bp[k]);
|
|
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
|
/* compute log(ax) */
|
|
s2 = s*s;
|
|
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
|
r += s_l*(s_h+s);
|
|
s2 = s_h*s_h;
|
|
t_h = 3.0+s2+r;
|
|
SET_LOW_WORD(t_h,0);
|
|
t_l = r-((t_h-3.0)-s2);
|
|
/* u+v = s*(1+...) */
|
|
u = s_h*t_h;
|
|
v = s_l*t_h+t_l*s;
|
|
/* 2/(3log2)*(s+...) */
|
|
p_h = u+v;
|
|
SET_LOW_WORD(p_h,0);
|
|
p_l = v-(p_h-u);
|
|
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
|
z_l = cp_l*p_h+p_l*cp+dp_l[k];
|
|
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
|
t = (double)n;
|
|
t1 = (((z_h+z_l)+dp_h[k])+t);
|
|
SET_LOW_WORD(t1,0);
|
|
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
|
|
}
|
|
|
|
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
|
if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
|
|
s = -one;/* (-ve)**(odd int) */
|
|
|
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
|
y1 = y;
|
|
SET_LOW_WORD(y1,0);
|
|
p_l = (y-y1)*t1+y*t2;
|
|
p_h = y1*t1;
|
|
z = p_l+p_h;
|
|
EXTRACT_WORDS(j,i,z);
|
|
if (j>=0x40900000) { /* z >= 1024 */
|
|
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
|
|
return s*huge*huge; /* overflow */
|
|
else {
|
|
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
|
|
}
|
|
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
|
|
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
|
|
return s*tiny*tiny; /* underflow */
|
|
else {
|
|
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
|
|
}
|
|
}
|
|
/*
|
|
* compute 2**(p_h+p_l)
|
|
*/
|
|
i = j&0x7fffffff;
|
|
k = (i>>20)-0x3ff;
|
|
n = 0;
|
|
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
|
n = j+(0x00100000>>(k+1));
|
|
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
|
|
t = zero;
|
|
SET_HIGH_WORD(t,n&~(0x000fffff>>k));
|
|
n = ((n&0x000fffff)|0x00100000)>>(20-k);
|
|
if(j<0) n = -n;
|
|
p_h -= t;
|
|
}
|
|
t = p_l+p_h;
|
|
SET_LOW_WORD(t,0);
|
|
u = t*lg2_h;
|
|
v = (p_l-(t-p_h))*lg2+t*lg2_l;
|
|
z = u+v;
|
|
w = v-(z-u);
|
|
t = z*z;
|
|
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
r = (z*t1)/(t1-two)-(w+z*w);
|
|
z = one-(r-z);
|
|
GET_HIGH_WORD(j,z);
|
|
j += (n<<20);
|
|
if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
|
|
else SET_HIGH_WORD(z,j);
|
|
return s*z;
|
|
}
|
|
|
|
/*
|
|
* wrapper pow(x,y) return x**y
|
|
*/
|
|
#ifndef _IEEE_LIBM
|
|
double pow(double x, double y)
|
|
{
|
|
double z = __ieee754_pow(x, y);
|
|
if (_LIB_VERSION == _IEEE_|| isnan(y))
|
|
return z;
|
|
if (isnan(x)) {
|
|
if (y == 0.0)
|
|
return __kernel_standard(x, y, 42); /* pow(NaN,0.0) */
|
|
return z;
|
|
}
|
|
if (x == 0.0) {
|
|
if (y == 0.0)
|
|
return __kernel_standard(x, y, 20); /* pow(0.0,0.0) */
|
|
if (isfinite(y) && y < 0.0)
|
|
return __kernel_standard(x,y,23); /* pow(0.0,negative) */
|
|
return z;
|
|
}
|
|
if (!isfinite(z)) {
|
|
if (isfinite(x) && isfinite(y)) {
|
|
if (isnan(z))
|
|
return __kernel_standard(x, y, 24); /* pow neg**non-int */
|
|
return __kernel_standard(x, y, 21); /* pow overflow */
|
|
}
|
|
}
|
|
if (z == 0.0 && isfinite(x) && isfinite(y))
|
|
return __kernel_standard(x, y, 22); /* pow underflow */
|
|
return z;
|
|
}
|
|
#else
|
|
strong_alias(__ieee754_pow, pow)
|
|
#endif
|
|
libm_hidden_def(pow)
|