You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-11-07 12:30:27 +00:00
* Manifold does not have a snap property. * Tolerance means simplification amount. * CSG snap has been removed * Add better error messages. * Verbose print manifold meshgl64 properties as json. * Update manifold for error fixes
663 lines
27 KiB
C++
663 lines
27 KiB
C++
// Copyright 2022 The Manifold Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#if (MANIFOLD_PAR == 1) && __has_include(<tbb/concurrent_priority_queue.h>)
|
|
#include <tbb/tbb.h>
|
|
#define TBB_PREVIEW_CONCURRENT_ORDERED_CONTAINERS 1
|
|
#include <tbb/concurrent_priority_queue.h>
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
|
|
#include "./boolean3.h"
|
|
#include "./csg_tree.h"
|
|
#include "./impl.h"
|
|
#include "./mesh_fixes.h"
|
|
#include "./parallel.h"
|
|
|
|
constexpr int kParallelThreshold = 4096;
|
|
|
|
namespace {
|
|
using namespace manifold;
|
|
struct MeshCompare {
|
|
bool operator()(const std::shared_ptr<CsgLeafNode> &a,
|
|
const std::shared_ptr<CsgLeafNode> &b) {
|
|
return a->GetImpl()->NumVert() < b->GetImpl()->NumVert();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
namespace manifold {
|
|
|
|
std::shared_ptr<CsgNode> CsgNode::Boolean(
|
|
const std::shared_ptr<CsgNode> &second, OpType op) {
|
|
if (second->GetNodeType() != CsgNodeType::Leaf) {
|
|
// "this" is not a CsgOpNode (which overrides Boolean), but if "second" is
|
|
// and the operation is commutative, we let it built the tree.
|
|
if ((op == OpType::Add || op == OpType::Intersect)) {
|
|
return std::static_pointer_cast<CsgOpNode>(second)->Boolean(
|
|
shared_from_this(), op);
|
|
}
|
|
}
|
|
std::vector<std::shared_ptr<CsgNode>> children({shared_from_this(), second});
|
|
return std::make_shared<CsgOpNode>(children, op);
|
|
}
|
|
|
|
std::shared_ptr<CsgNode> CsgNode::Translate(const vec3 &t) const {
|
|
mat3x4 transform = la::identity;
|
|
transform[3] += t;
|
|
return Transform(transform);
|
|
}
|
|
|
|
std::shared_ptr<CsgNode> CsgNode::Scale(const vec3 &v) const {
|
|
mat3x4 transform;
|
|
for (int i : {0, 1, 2}) transform[i][i] = v[i];
|
|
return Transform(transform);
|
|
}
|
|
|
|
std::shared_ptr<CsgNode> CsgNode::Rotate(double xDegrees, double yDegrees,
|
|
double zDegrees) const {
|
|
mat3 rX({1.0, 0.0, 0.0}, //
|
|
{0.0, cosd(xDegrees), sind(xDegrees)}, //
|
|
{0.0, -sind(xDegrees), cosd(xDegrees)});
|
|
mat3 rY({cosd(yDegrees), 0.0, -sind(yDegrees)}, //
|
|
{0.0, 1.0, 0.0}, //
|
|
{sind(yDegrees), 0.0, cosd(yDegrees)});
|
|
mat3 rZ({cosd(zDegrees), sind(zDegrees), 0.0}, //
|
|
{-sind(zDegrees), cosd(zDegrees), 0.0}, //
|
|
{0.0, 0.0, 1.0});
|
|
mat3x4 transform(rZ * rY * rX, vec3());
|
|
return Transform(transform);
|
|
}
|
|
|
|
CsgLeafNode::CsgLeafNode() : pImpl_(std::make_shared<Manifold::Impl>()) {}
|
|
|
|
CsgLeafNode::CsgLeafNode(std::shared_ptr<const Manifold::Impl> pImpl_)
|
|
: pImpl_(pImpl_) {}
|
|
|
|
CsgLeafNode::CsgLeafNode(std::shared_ptr<const Manifold::Impl> pImpl_,
|
|
mat3x4 transform_)
|
|
: pImpl_(pImpl_), transform_(transform_) {}
|
|
|
|
std::shared_ptr<const Manifold::Impl> CsgLeafNode::GetImpl() const {
|
|
if (transform_ == mat3x4(la::identity)) return pImpl_;
|
|
pImpl_ =
|
|
std::make_shared<const Manifold::Impl>(pImpl_->Transform(transform_));
|
|
transform_ = la::identity;
|
|
return pImpl_;
|
|
}
|
|
|
|
std::shared_ptr<CsgLeafNode> CsgLeafNode::ToLeafNode() const {
|
|
return std::make_shared<CsgLeafNode>(*this);
|
|
}
|
|
|
|
std::shared_ptr<CsgNode> CsgLeafNode::Transform(const mat3x4 &m) const {
|
|
return std::make_shared<CsgLeafNode>(pImpl_, m * Mat4(transform_));
|
|
}
|
|
|
|
CsgNodeType CsgLeafNode::GetNodeType() const { return CsgNodeType::Leaf; }
|
|
|
|
std::shared_ptr<CsgLeafNode> ImplToLeaf(Manifold::Impl &&impl) {
|
|
return std::make_shared<CsgLeafNode>(std::make_shared<Manifold::Impl>(impl));
|
|
}
|
|
|
|
/**
|
|
* Efficient union of a set of pairwise disjoint meshes.
|
|
*/
|
|
std::shared_ptr<CsgLeafNode> CsgLeafNode::Compose(
|
|
const std::vector<std::shared_ptr<CsgLeafNode>> &nodes) {
|
|
ZoneScoped;
|
|
double epsilon = -1;
|
|
double tolerance = -1;
|
|
int numVert = 0;
|
|
int numEdge = 0;
|
|
int numTri = 0;
|
|
int numPropVert = 0;
|
|
std::vector<int> vertIndices;
|
|
std::vector<int> edgeIndices;
|
|
std::vector<int> triIndices;
|
|
std::vector<int> propVertIndices;
|
|
int numPropOut = 0;
|
|
for (auto &node : nodes) {
|
|
if (node->pImpl_->status_ != Manifold::Error::NoError) {
|
|
Manifold::Impl impl;
|
|
impl.status_ = node->pImpl_->status_;
|
|
return ImplToLeaf(std::move(impl));
|
|
}
|
|
double nodeOldScale = node->pImpl_->bBox_.Scale();
|
|
double nodeNewScale =
|
|
node->pImpl_->bBox_.Transform(node->transform_).Scale();
|
|
double nodeEpsilon = node->pImpl_->epsilon_;
|
|
nodeEpsilon *= std::max(1.0, nodeNewScale / nodeOldScale);
|
|
nodeEpsilon = std::max(nodeEpsilon, kPrecision * nodeNewScale);
|
|
if (!std::isfinite(nodeEpsilon)) nodeEpsilon = -1;
|
|
epsilon = std::max(epsilon, nodeEpsilon);
|
|
tolerance = std::max(tolerance, node->pImpl_->tolerance_);
|
|
|
|
vertIndices.push_back(numVert);
|
|
edgeIndices.push_back(numEdge * 2);
|
|
triIndices.push_back(numTri);
|
|
propVertIndices.push_back(numPropVert);
|
|
numVert += node->pImpl_->NumVert();
|
|
numEdge += node->pImpl_->NumEdge();
|
|
numTri += node->pImpl_->NumTri();
|
|
const int numProp = node->pImpl_->NumProp();
|
|
numPropOut = std::max(numPropOut, numProp);
|
|
numPropVert +=
|
|
numProp == 0 ? 1
|
|
: node->pImpl_->meshRelation_.properties.size() / numProp;
|
|
}
|
|
|
|
Manifold::Impl combined;
|
|
combined.epsilon_ = epsilon;
|
|
combined.tolerance_ = tolerance;
|
|
combined.vertPos_.resize(numVert);
|
|
combined.halfedge_.resize(2 * numEdge);
|
|
combined.faceNormal_.resize(numTri);
|
|
combined.halfedgeTangent_.resize(2 * numEdge);
|
|
combined.meshRelation_.triRef.resize(numTri);
|
|
if (numPropOut > 0) {
|
|
combined.meshRelation_.numProp = numPropOut;
|
|
combined.meshRelation_.properties.resize(numPropOut * numPropVert, 0);
|
|
combined.meshRelation_.triProperties.resize(numTri);
|
|
}
|
|
auto policy = autoPolicy(numTri);
|
|
|
|
// if we are already parallelizing for each node, do not perform multithreaded
|
|
// copying as it will slightly hurt performance
|
|
if (nodes.size() > 1 && policy == ExecutionPolicy::Par)
|
|
policy = ExecutionPolicy::Seq;
|
|
|
|
for_each_n(
|
|
nodes.size() > 1 ? ExecutionPolicy::Par : ExecutionPolicy::Seq,
|
|
countAt(0), nodes.size(),
|
|
[&nodes, &vertIndices, &edgeIndices, &triIndices, &propVertIndices,
|
|
numPropOut, &combined, policy](int i) {
|
|
auto &node = nodes[i];
|
|
copy(node->pImpl_->halfedgeTangent_.begin(),
|
|
node->pImpl_->halfedgeTangent_.end(),
|
|
combined.halfedgeTangent_.begin() + edgeIndices[i]);
|
|
const int nextVert = vertIndices[i];
|
|
const int nextEdge = edgeIndices[i];
|
|
const int nextFace = triIndices[i];
|
|
transform(node->pImpl_->halfedge_.begin(),
|
|
node->pImpl_->halfedge_.end(),
|
|
combined.halfedge_.begin() + edgeIndices[i],
|
|
[nextVert, nextEdge, nextFace](Halfedge edge) {
|
|
edge.startVert += nextVert;
|
|
edge.endVert += nextVert;
|
|
edge.pairedHalfedge += nextEdge;
|
|
return edge;
|
|
});
|
|
|
|
if (numPropOut > 0) {
|
|
auto start =
|
|
combined.meshRelation_.triProperties.begin() + triIndices[i];
|
|
if (node->pImpl_->NumProp() > 0) {
|
|
auto &triProp = node->pImpl_->meshRelation_.triProperties;
|
|
const int nextProp = propVertIndices[i];
|
|
transform(triProp.begin(), triProp.end(), start,
|
|
[nextProp](ivec3 tri) {
|
|
tri += nextProp;
|
|
return tri;
|
|
});
|
|
|
|
const int numProp = node->pImpl_->NumProp();
|
|
auto &oldProp = node->pImpl_->meshRelation_.properties;
|
|
auto &newProp = combined.meshRelation_.properties;
|
|
for (int p = 0; p < numProp; ++p) {
|
|
auto oldRange =
|
|
StridedRange(oldProp.cbegin() + p, oldProp.cend(), numProp);
|
|
auto newRange = StridedRange(
|
|
newProp.begin() + numPropOut * propVertIndices[i] + p,
|
|
newProp.end(), numPropOut);
|
|
copy(oldRange.begin(), oldRange.end(), newRange.begin());
|
|
}
|
|
} else {
|
|
// point all triangles at single new property of zeros.
|
|
fill(start, start + node->pImpl_->NumTri(),
|
|
ivec3(propVertIndices[i]));
|
|
}
|
|
}
|
|
|
|
if (node->transform_ == mat3x4(la::identity)) {
|
|
copy(node->pImpl_->vertPos_.begin(), node->pImpl_->vertPos_.end(),
|
|
combined.vertPos_.begin() + vertIndices[i]);
|
|
copy(node->pImpl_->faceNormal_.begin(),
|
|
node->pImpl_->faceNormal_.end(),
|
|
combined.faceNormal_.begin() + triIndices[i]);
|
|
} else {
|
|
// no need to apply the transform to the node, just copy the vertices
|
|
// and face normals and apply transform on the fly
|
|
const mat3x4 transform = node->transform_;
|
|
auto vertPosBegin = TransformIterator(
|
|
node->pImpl_->vertPos_.begin(), [&transform](vec3 position) {
|
|
return transform * vec4(position, 1.0);
|
|
});
|
|
mat3 normalTransform =
|
|
la::inverse(la::transpose(mat3(node->transform_)));
|
|
auto faceNormalBegin =
|
|
TransformIterator(node->pImpl_->faceNormal_.begin(),
|
|
TransformNormals({normalTransform}));
|
|
copy_n(vertPosBegin, node->pImpl_->vertPos_.size(),
|
|
combined.vertPos_.begin() + vertIndices[i]);
|
|
copy_n(faceNormalBegin, node->pImpl_->faceNormal_.size(),
|
|
combined.faceNormal_.begin() + triIndices[i]);
|
|
|
|
const bool invert = la::determinant(mat3(node->transform_)) < 0;
|
|
for_each_n(policy, countAt(0), node->pImpl_->halfedgeTangent_.size(),
|
|
TransformTangents{combined.halfedgeTangent_,
|
|
edgeIndices[i], mat3(node->transform_),
|
|
invert, node->pImpl_->halfedgeTangent_,
|
|
node->pImpl_->halfedge_});
|
|
if (invert)
|
|
for_each_n(policy, countAt(triIndices[i]), node->pImpl_->NumTri(),
|
|
FlipTris({combined.halfedge_}));
|
|
}
|
|
// Since the nodes may be copies containing the same meshIDs, it is
|
|
// important to add an offset so that each node instance gets
|
|
// unique meshIDs.
|
|
const int offset = i * Manifold::Impl::meshIDCounter_;
|
|
transform(node->pImpl_->meshRelation_.triRef.begin(),
|
|
node->pImpl_->meshRelation_.triRef.end(),
|
|
combined.meshRelation_.triRef.begin() + triIndices[i],
|
|
[offset](TriRef ref) {
|
|
ref.meshID += offset;
|
|
return ref;
|
|
});
|
|
});
|
|
|
|
for (size_t i = 0; i < nodes.size(); i++) {
|
|
auto &node = nodes[i];
|
|
const int offset = i * Manifold::Impl::meshIDCounter_;
|
|
|
|
for (const auto &pair : node->pImpl_->meshRelation_.meshIDtransform) {
|
|
combined.meshRelation_.meshIDtransform[pair.first + offset] = pair.second;
|
|
}
|
|
}
|
|
|
|
// required to remove parts that are smaller than the tolerance
|
|
combined.SimplifyTopology();
|
|
combined.Finish();
|
|
combined.IncrementMeshIDs();
|
|
return ImplToLeaf(std::move(combined));
|
|
}
|
|
|
|
/**
|
|
* Efficient boolean operation on a set of nodes utilizing commutativity of the
|
|
* operation. Only supports union and intersection.
|
|
*/
|
|
std::shared_ptr<CsgLeafNode> BatchBoolean(
|
|
OpType operation, std::vector<std::shared_ptr<CsgLeafNode>> &results) {
|
|
ZoneScoped;
|
|
DEBUG_ASSERT(operation != OpType::Subtract, logicErr,
|
|
"BatchBoolean doesn't support Difference.");
|
|
// common cases
|
|
if (results.size() == 0) return std::make_shared<CsgLeafNode>();
|
|
if (results.size() == 1) return results.front();
|
|
if (results.size() == 2) {
|
|
Boolean3 boolean(*results[0]->GetImpl(), *results[1]->GetImpl(), operation);
|
|
return ImplToLeaf(boolean.Result(operation));
|
|
}
|
|
#if (MANIFOLD_PAR == 1) && __has_include(<tbb/tbb.h>)
|
|
tbb::task_group group;
|
|
tbb::concurrent_priority_queue<std::shared_ptr<CsgLeafNode>, MeshCompare>
|
|
queue(results.size());
|
|
for (auto result : results) {
|
|
queue.emplace(result);
|
|
}
|
|
results.clear();
|
|
std::function<void()> process = [&]() {
|
|
while (queue.size() > 1) {
|
|
std::shared_ptr<CsgLeafNode> a, b;
|
|
if (!queue.try_pop(a)) continue;
|
|
if (!queue.try_pop(b)) {
|
|
queue.push(a);
|
|
continue;
|
|
}
|
|
group.run([&, a, b]() {
|
|
Boolean3 boolean(*a->GetImpl(), *b->GetImpl(), operation);
|
|
queue.emplace(ImplToLeaf(boolean.Result(operation)));
|
|
return group.run(process);
|
|
});
|
|
}
|
|
};
|
|
group.run_and_wait(process);
|
|
std::shared_ptr<CsgLeafNode> r;
|
|
queue.try_pop(r);
|
|
return r;
|
|
#endif
|
|
// apply boolean operations starting from smaller meshes
|
|
// the assumption is that boolean operations on smaller meshes is faster,
|
|
// due to less data being copied and processed
|
|
auto cmpFn = MeshCompare();
|
|
std::make_heap(results.begin(), results.end(), cmpFn);
|
|
while (results.size() > 1) {
|
|
std::pop_heap(results.begin(), results.end(), cmpFn);
|
|
auto a = std::move(results.back());
|
|
results.pop_back();
|
|
std::pop_heap(results.begin(), results.end(), cmpFn);
|
|
auto b = std::move(results.back());
|
|
results.pop_back();
|
|
// boolean operation
|
|
Boolean3 boolean(*a->GetImpl(), *b->GetImpl(), operation);
|
|
auto result = ImplToLeaf(boolean.Result(operation));
|
|
if (results.size() == 0) {
|
|
return result;
|
|
}
|
|
results.push_back(result);
|
|
std::push_heap(results.begin(), results.end(), cmpFn);
|
|
}
|
|
return results.front();
|
|
}
|
|
|
|
/**
|
|
* Efficient union operation on a set of nodes by doing Compose as much as
|
|
* possible.
|
|
*/
|
|
std::shared_ptr<CsgLeafNode> BatchUnion(
|
|
std::vector<std::shared_ptr<CsgLeafNode>> &children) {
|
|
ZoneScoped;
|
|
// INVARIANT: children_ is a vector of leaf nodes
|
|
// this kMaxUnionSize is a heuristic to avoid the pairwise disjoint check
|
|
// with O(n^2) complexity to take too long.
|
|
// If the number of children exceeded this limit, we will operate on chunks
|
|
// with size kMaxUnionSize.
|
|
constexpr size_t kMaxUnionSize = 1000;
|
|
DEBUG_ASSERT(!children.empty(), logicErr,
|
|
"BatchUnion should not have empty children");
|
|
while (children.size() > 1) {
|
|
const size_t start = (children.size() > kMaxUnionSize)
|
|
? (children.size() - kMaxUnionSize)
|
|
: 0;
|
|
Vec<Box> boxes;
|
|
boxes.reserve(children.size() - start);
|
|
for (size_t i = start; i < children.size(); i++) {
|
|
boxes.push_back(children[i]->GetImpl()->bBox_);
|
|
}
|
|
// partition the children into a set of disjoint sets
|
|
// each set contains a set of children that are pairwise disjoint
|
|
std::vector<Vec<size_t>> disjointSets;
|
|
for (size_t i = 0; i < boxes.size(); i++) {
|
|
auto lambda = [&boxes, i](const Vec<size_t> &set) {
|
|
return std::find_if(set.begin(), set.end(), [&boxes, i](size_t j) {
|
|
return boxes[i].DoesOverlap(boxes[j]);
|
|
}) == set.end();
|
|
};
|
|
auto it = std::find_if(disjointSets.begin(), disjointSets.end(), lambda);
|
|
if (it == disjointSets.end()) {
|
|
disjointSets.push_back(std::vector<size_t>{i});
|
|
} else {
|
|
it->push_back(i);
|
|
}
|
|
}
|
|
// compose each set of disjoint children
|
|
std::vector<std::shared_ptr<CsgLeafNode>> impls;
|
|
for (auto &set : disjointSets) {
|
|
if (set.size() == 1) {
|
|
impls.push_back(children[start + set[0]]);
|
|
} else {
|
|
std::vector<std::shared_ptr<CsgLeafNode>> tmp;
|
|
for (size_t j : set) {
|
|
tmp.push_back(children[start + j]);
|
|
}
|
|
impls.push_back(CsgLeafNode::Compose(tmp));
|
|
}
|
|
}
|
|
|
|
children.erase(children.begin() + start, children.end());
|
|
children.push_back(BatchBoolean(OpType::Add, impls));
|
|
// move it to the front as we process from the back, and the newly added
|
|
// child should be quite complicated
|
|
std::swap(children.front(), children.back());
|
|
}
|
|
return children.front();
|
|
}
|
|
|
|
CsgOpNode::CsgOpNode() {}
|
|
|
|
CsgOpNode::CsgOpNode(const std::vector<std::shared_ptr<CsgNode>> &children,
|
|
OpType op)
|
|
: impl_(Impl{}), op_(op) {
|
|
auto impl = impl_.GetGuard();
|
|
impl->children_ = children;
|
|
}
|
|
|
|
std::shared_ptr<CsgNode> CsgOpNode::Boolean(
|
|
const std::shared_ptr<CsgNode> &second, OpType op) {
|
|
std::vector<std::shared_ptr<CsgNode>> children;
|
|
children.push_back(shared_from_this());
|
|
children.push_back(second);
|
|
|
|
return std::make_shared<CsgOpNode>(children, op);
|
|
}
|
|
|
|
std::shared_ptr<CsgNode> CsgOpNode::Transform(const mat3x4 &m) const {
|
|
auto node = std::make_shared<CsgOpNode>();
|
|
node->impl_ = impl_;
|
|
node->transform_ = m * Mat4(transform_);
|
|
node->op_ = op_;
|
|
return node;
|
|
}
|
|
|
|
struct CsgStackFrame {
|
|
bool finalize;
|
|
OpType parent_op;
|
|
mat3x4 transform;
|
|
std::vector<std::shared_ptr<CsgLeafNode>> *destination;
|
|
std::shared_ptr<const CsgOpNode> op_node;
|
|
std::vector<std::shared_ptr<CsgLeafNode>> positive_children;
|
|
std::vector<std::shared_ptr<CsgLeafNode>> negative_children;
|
|
|
|
CsgStackFrame(bool finalize, OpType parent_op, mat3x4 transform,
|
|
std::vector<std::shared_ptr<CsgLeafNode>> *parent,
|
|
std::shared_ptr<const CsgOpNode> op_node)
|
|
: finalize(finalize),
|
|
parent_op(parent_op),
|
|
transform(transform),
|
|
destination(parent),
|
|
op_node(op_node) {}
|
|
};
|
|
|
|
std::shared_ptr<CsgLeafNode> CsgOpNode::ToLeafNode() const {
|
|
if (cache_ != nullptr) return cache_;
|
|
|
|
// Note: We do need a pointer here to avoid vector pointers from being
|
|
// invalidated after pushing elements into the explicit stack.
|
|
// It is a `shared_ptr` because we may want to drop the stack frame while
|
|
// still referring to some of the elements inside the old frame.
|
|
// It is possible to use `unique_ptr`, extending the lifetime of the frame
|
|
// when we remove it from the stack, but it is a bit more complicated and
|
|
// there is no measurable overhead from using `shared_ptr` here...
|
|
std::vector<std::shared_ptr<CsgStackFrame>> stack;
|
|
// initial node, destination is a nullptr because we don't need to put the
|
|
// result anywhere else (except in the cache_).
|
|
stack.push_back(std::make_shared<CsgStackFrame>(
|
|
false, op_, la::identity, nullptr,
|
|
std::static_pointer_cast<const CsgOpNode>(shared_from_this())));
|
|
|
|
// Instead of actually using recursion in the algorithm, we use an explicit
|
|
// stack, do DFS and store the intermediate states into `CsgStackFrame` to
|
|
// avoid stack overflow.
|
|
//
|
|
// Before performing boolean operations, we should make sure that all children
|
|
// are `CsgLeafNodes`, i.e. are actual meshes that can be operated on. Hence,
|
|
// we do it in two steps:
|
|
// 1. Populate `children` (`left_children` and `right_children`, see below)
|
|
// If the child is a `CsgOpNode`, we either collapse it or compute its
|
|
// boolean operation result.
|
|
// 2. Performs boolean after populating the `children` set.
|
|
// After a boolean operation is completed, we put the result back to its
|
|
// parent's `children` set.
|
|
//
|
|
// When we populate `children`, we perform collapsing on-the-fly.
|
|
// For example, we want to turn `(Union a (Union b c))` into `(Union a b c)`.
|
|
// This allows more efficient `BatchBoolean`/`BatchUnion` calls.
|
|
// We can do this when the child operation is the same as the parent
|
|
// operation, except when the operation is `Subtract` (see below).
|
|
// Note that to avoid repeating work, we will not collapse nodes that are
|
|
// reused. And in the special case where the children set only contains one
|
|
// element, we don't need any operation, so we can collapse that as well.
|
|
// Instead of moving `b` and `c` into the parent, and running this collapsing
|
|
// check until a fixed point, we remember the `destination` where we should
|
|
// put the `CsgLeafNode` into. Normally, the `destination` pointer point to
|
|
// the parent `children` set. However, when a child is being collapsed, we
|
|
// keep using the old `destination` pointer for the grandchildren. Hence,
|
|
// removing a node by collapsing takes O(1) time. We also need to store the
|
|
// parent operation type for checking if the node is eligible for collapsing,
|
|
// and transform matrix because we need to re-apply the transformation to the
|
|
// children.
|
|
//
|
|
// `Subtract` is handled differently from `Add` and `Intersect`. It is treated
|
|
// as two `Add` nodes, `positive_children` and `negative_children`, that
|
|
// should be subtracted later. This allows collapsing children `Add` nodes.
|
|
// For normal `Add` and `Intersect`, we only use `positive_children`.
|
|
//
|
|
// `impl->children_` should always contain either the raw set of children or
|
|
// the NOT transformed result, while `cache_` should contain the transformed
|
|
// result. This is because `impl` can be shared between `CsgOpNode` that
|
|
// differ in `transform_`, so we want it to be able to share the result.
|
|
// ===========================================================================
|
|
// Recursive version (pseudocode only):
|
|
//
|
|
// void f(CsgOpNode node, OpType parent_op, mat3x4 transform,
|
|
// std::vector<CsgLeafNode> *destination) {
|
|
// auto impl = node->impl_.GetGuard();
|
|
// // can collapse when we have the same operation as the parent and is
|
|
// // unique, or when we have only one children.
|
|
// const bool canCollapse = (node->op_ == parent_op && IsUnique(node)) ||
|
|
// impl->children_.size() == 1;
|
|
// const mat3x4 transform2 = canCollapse ? transform * node->transform_
|
|
// : la::identity;
|
|
// std::vector<CsgLeafNode> positive_children, negative_children;
|
|
// // for subtract, we pretend the operation is Add for our children.
|
|
// auto op = node->op_ == OpType::Subtract ? OpType::Add : node->op_;
|
|
// for (size_t i = 0; i < impl->children_.size(); i++) {
|
|
// auto child = impl->children_[i];
|
|
// // negative when it is the remaining operands for Subtract
|
|
// auto dest = node->op_ == OpType::Subtract && i != 0 ?
|
|
// negative_children : positive_children;
|
|
// if (canCollapse) dest = destination;
|
|
// if (child->GetNodeType() == CsgNodeType::Leaf)
|
|
// dest.push_back(child);
|
|
// else
|
|
// f(child, op, transform2, dest);
|
|
// }
|
|
// if (canCollapse) return;
|
|
// if (node->op_ == OpType::Add)
|
|
// impl->children_ = {BatchUnion(positive_children)};
|
|
// else if (node->op_ == OpType::Intersect)
|
|
// impl->children_ = {BatchBoolean(Intersect, positive_children)};
|
|
// else // subtract
|
|
// impl->children_ = { BatchUnion(positive_children) -
|
|
// BatchUnion(negative_children)};
|
|
// // node local transform
|
|
// node->cache_ = impl->children_[0].Transform(node.transform);
|
|
// // collapsed node transforms
|
|
// if (destination)
|
|
// destination->push_back(node->cache_->Transform(transform));
|
|
// }
|
|
while (!stack.empty()) {
|
|
std::shared_ptr<CsgStackFrame> frame = stack.back();
|
|
auto impl = frame->op_node->impl_.GetGuard();
|
|
if (frame->finalize) {
|
|
switch (frame->op_node->op_) {
|
|
case OpType::Add:
|
|
impl->children_ = {BatchUnion(frame->positive_children)};
|
|
break;
|
|
case OpType::Intersect: {
|
|
impl->children_ = {
|
|
BatchBoolean(OpType::Intersect, frame->positive_children)};
|
|
break;
|
|
};
|
|
case OpType::Subtract:
|
|
if (frame->positive_children.empty()) {
|
|
// nothing to subtract from, so the result is empty.
|
|
impl->children_ = {std::make_shared<CsgLeafNode>()};
|
|
} else {
|
|
auto positive = BatchUnion(frame->positive_children);
|
|
if (frame->negative_children.empty()) {
|
|
// nothing to subtract, result equal to the LHS.
|
|
impl->children_ = {frame->positive_children[0]};
|
|
} else {
|
|
Boolean3 boolean(*positive->GetImpl(),
|
|
*BatchUnion(frame->negative_children)->GetImpl(),
|
|
OpType::Subtract);
|
|
impl->children_ = {ImplToLeaf(boolean.Result(OpType::Subtract))};
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
frame->op_node->cache_ = std::static_pointer_cast<CsgLeafNode>(
|
|
impl->children_[0]->Transform(frame->op_node->transform_));
|
|
if (frame->destination != nullptr)
|
|
frame->destination->push_back(std::static_pointer_cast<CsgLeafNode>(
|
|
frame->op_node->cache_->Transform(frame->transform)));
|
|
stack.pop_back();
|
|
} else {
|
|
auto add_children = [&stack](std::shared_ptr<CsgNode> &node, OpType op,
|
|
mat3x4 transform, auto *destination) {
|
|
if (node->GetNodeType() == CsgNodeType::Leaf)
|
|
destination->push_back(std::static_pointer_cast<CsgLeafNode>(
|
|
node->Transform(transform)));
|
|
else
|
|
stack.push_back(std::make_shared<CsgStackFrame>(
|
|
false, op, transform, destination,
|
|
std::static_pointer_cast<const CsgOpNode>(node)));
|
|
};
|
|
// op_node use_count == 2 because it is both inside one CsgOpNode
|
|
// and in our stack.
|
|
// if there is only one child, we can also collapse.
|
|
const bool canCollapse = frame->destination != nullptr &&
|
|
((frame->op_node->op_ == frame->parent_op &&
|
|
frame->op_node.use_count() <= 2 &&
|
|
frame->op_node->impl_.UseCount() == 1) ||
|
|
impl->children_.size() == 1);
|
|
if (canCollapse)
|
|
stack.pop_back();
|
|
else
|
|
frame->finalize = true;
|
|
|
|
const mat3x4 transform =
|
|
canCollapse ? (frame->transform * Mat4(frame->op_node->transform_))
|
|
: la::identity;
|
|
OpType op = frame->op_node->op_ == OpType::Subtract ? OpType::Add
|
|
: frame->op_node->op_;
|
|
for (size_t i = 0; i < impl->children_.size(); i++) {
|
|
auto dest = canCollapse ? frame->destination
|
|
: (frame->op_node->op_ == OpType::Subtract && i != 0)
|
|
? &frame->negative_children
|
|
: &frame->positive_children;
|
|
add_children(impl->children_[i], op, transform, dest);
|
|
}
|
|
}
|
|
}
|
|
return cache_;
|
|
}
|
|
|
|
CsgNodeType CsgOpNode::GetNodeType() const {
|
|
switch (op_) {
|
|
case OpType::Add:
|
|
return CsgNodeType::Union;
|
|
case OpType::Subtract:
|
|
return CsgNodeType::Difference;
|
|
case OpType::Intersect:
|
|
return CsgNodeType::Intersection;
|
|
}
|
|
// unreachable...
|
|
return CsgNodeType::Leaf;
|
|
}
|
|
|
|
} // namespace manifold
|