You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-11-06 12:20:30 +00:00
Which means that reduz' beloved style which we all became used to will now be changed automatically to remove the first empty line. This makes us lean closer to 1TBS (the one true brace style) instead of hybridating it with some Allman-inspired spacing. There's still the case of braces around single-statement blocks that needs to be addressed (but clang-format can't help with that, but clang-tidy may if we agree about it). Part of #33027.
2840 lines
103 KiB
C++
2840 lines
103 KiB
C++
/*************************************************************************/
|
|
/* rendering_server_scene.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "rendering_server_scene.h"
|
|
|
|
#include "core/os/os.h"
|
|
#include "rendering_server_globals.h"
|
|
#include "rendering_server_raster.h"
|
|
|
|
#include <new>
|
|
|
|
/* CAMERA API */
|
|
|
|
RID RenderingServerScene::camera_create() {
|
|
Camera *camera = memnew(Camera);
|
|
return camera_owner.make_rid(camera);
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) {
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->type = Camera::PERSPECTIVE;
|
|
camera->fov = p_fovy_degrees;
|
|
camera->znear = p_z_near;
|
|
camera->zfar = p_z_far;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) {
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->type = Camera::ORTHOGONAL;
|
|
camera->size = p_size;
|
|
camera->znear = p_z_near;
|
|
camera->zfar = p_z_far;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far) {
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->type = Camera::FRUSTUM;
|
|
camera->size = p_size;
|
|
camera->offset = p_offset;
|
|
camera->znear = p_z_near;
|
|
camera->zfar = p_z_far;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_transform(RID p_camera, const Transform &p_transform) {
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->transform = p_transform.orthonormalized();
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_cull_mask(RID p_camera, uint32_t p_layers) {
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
|
|
camera->visible_layers = p_layers;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_environment(RID p_camera, RID p_env) {
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->env = p_env;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_camera_effects(RID p_camera, RID p_fx) {
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->effects = p_fx;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) {
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->vaspect = p_enable;
|
|
}
|
|
|
|
/* SCENARIO API */
|
|
|
|
void *RenderingServerScene::_instance_pair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int) {
|
|
//RenderingServerScene *self = (RenderingServerScene*)p_self;
|
|
Instance *A = p_A;
|
|
Instance *B = p_B;
|
|
|
|
//instance indices are designed so greater always contains lesser
|
|
if (A->base_type > B->base_type) {
|
|
SWAP(A, B); //lesser always first
|
|
}
|
|
|
|
if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
InstanceLightData::PairInfo pinfo;
|
|
pinfo.geometry = A;
|
|
pinfo.L = geom->lighting.push_back(B);
|
|
|
|
List<InstanceLightData::PairInfo>::Element *E = light->geometries.push_back(pinfo);
|
|
|
|
if (geom->can_cast_shadows) {
|
|
light->shadow_dirty = true;
|
|
}
|
|
geom->lighting_dirty = true;
|
|
|
|
return E; //this element should make freeing faster
|
|
} else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
InstanceReflectionProbeData::PairInfo pinfo;
|
|
pinfo.geometry = A;
|
|
pinfo.L = geom->reflection_probes.push_back(B);
|
|
|
|
List<InstanceReflectionProbeData::PairInfo>::Element *E = reflection_probe->geometries.push_back(pinfo);
|
|
|
|
geom->reflection_dirty = true;
|
|
|
|
return E; //this element should make freeing faster
|
|
} else if (B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
InstanceDecalData *decal = static_cast<InstanceDecalData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
InstanceDecalData::PairInfo pinfo;
|
|
pinfo.geometry = A;
|
|
pinfo.L = geom->decals.push_back(B);
|
|
|
|
List<InstanceDecalData::PairInfo>::Element *E = decal->geometries.push_back(pinfo);
|
|
|
|
geom->decal_dirty = true;
|
|
|
|
return E; //this element should make freeing faster
|
|
} else if (B->base_type == RS::INSTANCE_LIGHTMAP && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
if (A->dynamic_gi) {
|
|
InstanceLightmapData::PairInfo pinfo;
|
|
pinfo.geometry = A;
|
|
pinfo.L = geom->lightmap_captures.push_back(B);
|
|
List<InstanceLightmapData::PairInfo>::Element *E = lightmap_data->geometries.push_back(pinfo);
|
|
((RenderingServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture
|
|
return E; //this element should make freeing faster
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
} else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
InstanceGIProbeData::PairInfo pinfo;
|
|
pinfo.geometry = A;
|
|
pinfo.L = geom->gi_probes.push_back(B);
|
|
|
|
List<InstanceGIProbeData::PairInfo>::Element *E;
|
|
if (A->dynamic_gi) {
|
|
E = gi_probe->dynamic_geometries.push_back(pinfo);
|
|
} else {
|
|
E = gi_probe->geometries.push_back(pinfo);
|
|
}
|
|
|
|
geom->gi_probes_dirty = true;
|
|
|
|
return E; //this element should make freeing faster
|
|
|
|
} else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) {
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
|
|
return gi_probe->lights.insert(A);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
void RenderingServerScene::_instance_unpair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int, void *udata) {
|
|
//RenderingServerScene *self = (RenderingServerScene*)p_self;
|
|
Instance *A = p_A;
|
|
Instance *B = p_B;
|
|
|
|
//instance indices are designed so greater always contains lesser
|
|
if (A->base_type > B->base_type) {
|
|
SWAP(A, B); //lesser always first
|
|
}
|
|
|
|
if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
List<InstanceLightData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightData::PairInfo>::Element *>(udata);
|
|
|
|
geom->lighting.erase(E->get().L);
|
|
light->geometries.erase(E);
|
|
|
|
if (geom->can_cast_shadows) {
|
|
light->shadow_dirty = true;
|
|
}
|
|
geom->lighting_dirty = true;
|
|
|
|
} else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
List<InstanceReflectionProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceReflectionProbeData::PairInfo>::Element *>(udata);
|
|
|
|
geom->reflection_probes.erase(E->get().L);
|
|
reflection_probe->geometries.erase(E);
|
|
|
|
geom->reflection_dirty = true;
|
|
} else if (B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
InstanceDecalData *decal = static_cast<InstanceDecalData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
List<InstanceDecalData::PairInfo>::Element *E = reinterpret_cast<List<InstanceDecalData::PairInfo>::Element *>(udata);
|
|
|
|
geom->decals.erase(E->get().L);
|
|
decal->geometries.erase(E);
|
|
|
|
geom->decal_dirty = true;
|
|
} else if (B->base_type == RS::INSTANCE_LIGHTMAP && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
if (udata) { //only for dynamic geometries
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
List<InstanceLightmapData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightmapData::PairInfo>::Element *>(udata);
|
|
|
|
geom->lightmap_captures.erase(E->get().L);
|
|
lightmap_data->geometries.erase(E);
|
|
((RenderingServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture
|
|
}
|
|
|
|
} else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
List<InstanceGIProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceGIProbeData::PairInfo>::Element *>(udata);
|
|
|
|
geom->gi_probes.erase(E->get().L);
|
|
if (A->dynamic_gi) {
|
|
gi_probe->dynamic_geometries.erase(E);
|
|
} else {
|
|
gi_probe->geometries.erase(E);
|
|
}
|
|
|
|
geom->gi_probes_dirty = true;
|
|
|
|
} else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) {
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
|
|
Set<Instance *>::Element *E = reinterpret_cast<Set<Instance *>::Element *>(udata);
|
|
|
|
gi_probe->lights.erase(E);
|
|
}
|
|
}
|
|
|
|
RID RenderingServerScene::scenario_create() {
|
|
Scenario *scenario = memnew(Scenario);
|
|
ERR_FAIL_COND_V(!scenario, RID());
|
|
RID scenario_rid = scenario_owner.make_rid(scenario);
|
|
scenario->self = scenario_rid;
|
|
|
|
scenario->octree.set_pair_callback(_instance_pair, this);
|
|
scenario->octree.set_unpair_callback(_instance_unpair, this);
|
|
scenario->reflection_probe_shadow_atlas = RSG::scene_render->shadow_atlas_create();
|
|
RSG::scene_render->shadow_atlas_set_size(scenario->reflection_probe_shadow_atlas, 1024); //make enough shadows for close distance, don't bother with rest
|
|
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 0, 4);
|
|
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 1, 4);
|
|
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 2, 4);
|
|
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 3, 8);
|
|
scenario->reflection_atlas = RSG::scene_render->reflection_atlas_create();
|
|
return scenario_rid;
|
|
}
|
|
|
|
void RenderingServerScene::scenario_set_debug(RID p_scenario, RS::ScenarioDebugMode p_debug_mode) {
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
scenario->debug = p_debug_mode;
|
|
}
|
|
|
|
void RenderingServerScene::scenario_set_environment(RID p_scenario, RID p_environment) {
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
scenario->environment = p_environment;
|
|
}
|
|
|
|
void RenderingServerScene::scenario_set_camera_effects(RID p_scenario, RID p_camera_effects) {
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
scenario->camera_effects = p_camera_effects;
|
|
}
|
|
|
|
void RenderingServerScene::scenario_set_fallback_environment(RID p_scenario, RID p_environment) {
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
scenario->fallback_environment = p_environment;
|
|
}
|
|
|
|
void RenderingServerScene::scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count) {
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
RSG::scene_render->reflection_atlas_set_size(scenario->reflection_atlas, p_reflection_size, p_reflection_count);
|
|
}
|
|
|
|
/* INSTANCING API */
|
|
|
|
void RenderingServerScene::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies) {
|
|
if (p_update_aabb)
|
|
p_instance->update_aabb = true;
|
|
if (p_update_dependencies)
|
|
p_instance->update_dependencies = true;
|
|
|
|
if (p_instance->update_item.in_list())
|
|
return;
|
|
|
|
_instance_update_list.add(&p_instance->update_item);
|
|
}
|
|
|
|
RID RenderingServerScene::instance_create() {
|
|
Instance *instance = memnew(Instance);
|
|
ERR_FAIL_COND_V(!instance, RID());
|
|
|
|
RID instance_rid = instance_owner.make_rid(instance);
|
|
instance->self = instance_rid;
|
|
|
|
return instance_rid;
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_base(RID p_instance, RID p_base) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
Scenario *scenario = instance->scenario;
|
|
|
|
if (instance->base_type != RS::INSTANCE_NONE) {
|
|
//free anything related to that base
|
|
|
|
if (scenario && instance->octree_id) {
|
|
scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away
|
|
instance->octree_id = 0;
|
|
}
|
|
|
|
switch (instance->base_type) {
|
|
case RS::INSTANCE_LIGHT: {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
|
|
#ifdef DEBUG_ENABLED
|
|
if (light->geometries.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair geometries from light.");
|
|
}
|
|
#endif
|
|
if (instance->scenario && light->D) {
|
|
instance->scenario->directional_lights.erase(light->D);
|
|
light->D = nullptr;
|
|
}
|
|
RSG::scene_render->free(light->instance);
|
|
} break;
|
|
case RS::INSTANCE_REFLECTION_PROBE: {
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
|
|
RSG::scene_render->free(reflection_probe->instance);
|
|
if (reflection_probe->update_list.in_list()) {
|
|
reflection_probe_render_list.remove(&reflection_probe->update_list);
|
|
}
|
|
} break;
|
|
case RS::INSTANCE_DECAL: {
|
|
InstanceDecalData *decal = static_cast<InstanceDecalData *>(instance->base_data);
|
|
RSG::scene_render->free(decal->instance);
|
|
|
|
} break;
|
|
case RS::INSTANCE_LIGHTMAP: {
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(instance->base_data);
|
|
//erase dependencies, since no longer a lightmap
|
|
while (lightmap_data->users.front()) {
|
|
instance_geometry_set_lightmap(lightmap_data->users.front()->get()->self, RID(), Rect2(), 0);
|
|
}
|
|
} break;
|
|
case RS::INSTANCE_GI_PROBE: {
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
|
|
#ifdef DEBUG_ENABLED
|
|
if (gi_probe->geometries.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe.");
|
|
}
|
|
#endif
|
|
#ifdef DEBUG_ENABLED
|
|
if (gi_probe->lights.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair lights from GIProbe.");
|
|
}
|
|
#endif
|
|
if (gi_probe->update_element.in_list()) {
|
|
gi_probe_update_list.remove(&gi_probe->update_element);
|
|
}
|
|
|
|
RSG::scene_render->free(gi_probe->probe_instance);
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
if (instance->base_data) {
|
|
memdelete(instance->base_data);
|
|
instance->base_data = nullptr;
|
|
}
|
|
|
|
instance->blend_values.clear();
|
|
instance->materials.clear();
|
|
}
|
|
|
|
instance->base_type = RS::INSTANCE_NONE;
|
|
instance->base = RID();
|
|
|
|
if (p_base.is_valid()) {
|
|
instance->base_type = RSG::storage->get_base_type(p_base);
|
|
ERR_FAIL_COND(instance->base_type == RS::INSTANCE_NONE);
|
|
|
|
switch (instance->base_type) {
|
|
case RS::INSTANCE_LIGHT: {
|
|
InstanceLightData *light = memnew(InstanceLightData);
|
|
|
|
if (scenario && RSG::storage->light_get_type(p_base) == RS::LIGHT_DIRECTIONAL) {
|
|
light->D = scenario->directional_lights.push_back(instance);
|
|
}
|
|
|
|
light->instance = RSG::scene_render->light_instance_create(p_base);
|
|
|
|
instance->base_data = light;
|
|
} break;
|
|
case RS::INSTANCE_MESH:
|
|
case RS::INSTANCE_MULTIMESH:
|
|
case RS::INSTANCE_IMMEDIATE:
|
|
case RS::INSTANCE_PARTICLES: {
|
|
InstanceGeometryData *geom = memnew(InstanceGeometryData);
|
|
instance->base_data = geom;
|
|
if (instance->base_type == RS::INSTANCE_MESH) {
|
|
instance->blend_values.resize(RSG::storage->mesh_get_blend_shape_count(p_base));
|
|
}
|
|
} break;
|
|
case RS::INSTANCE_REFLECTION_PROBE: {
|
|
InstanceReflectionProbeData *reflection_probe = memnew(InstanceReflectionProbeData);
|
|
reflection_probe->owner = instance;
|
|
instance->base_data = reflection_probe;
|
|
|
|
reflection_probe->instance = RSG::scene_render->reflection_probe_instance_create(p_base);
|
|
} break;
|
|
case RS::INSTANCE_DECAL: {
|
|
InstanceDecalData *decal = memnew(InstanceDecalData);
|
|
decal->owner = instance;
|
|
instance->base_data = decal;
|
|
|
|
decal->instance = RSG::scene_render->decal_instance_create(p_base);
|
|
} break;
|
|
case RS::INSTANCE_LIGHTMAP: {
|
|
InstanceLightmapData *lightmap_data = memnew(InstanceLightmapData);
|
|
instance->base_data = lightmap_data;
|
|
//lightmap_data->instance = RSG::scene_render->lightmap_data_instance_create(p_base);
|
|
} break;
|
|
case RS::INSTANCE_GI_PROBE: {
|
|
InstanceGIProbeData *gi_probe = memnew(InstanceGIProbeData);
|
|
instance->base_data = gi_probe;
|
|
gi_probe->owner = instance;
|
|
|
|
if (scenario && !gi_probe->update_element.in_list()) {
|
|
gi_probe_update_list.add(&gi_probe->update_element);
|
|
}
|
|
|
|
gi_probe->probe_instance = RSG::scene_render->gi_probe_instance_create(p_base);
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
instance->base = p_base;
|
|
|
|
//forcefully update the dependency now, so if for some reason it gets removed, we can immediately clear it
|
|
RSG::storage->base_update_dependency(p_base, instance);
|
|
}
|
|
|
|
_instance_queue_update(instance, true, true);
|
|
}
|
|
void RenderingServerScene::instance_set_scenario(RID p_instance, RID p_scenario) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->scenario) {
|
|
instance->scenario->instances.remove(&instance->scenario_item);
|
|
|
|
if (instance->octree_id) {
|
|
instance->scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away
|
|
instance->octree_id = 0;
|
|
}
|
|
|
|
switch (instance->base_type) {
|
|
case RS::INSTANCE_LIGHT: {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
|
|
#ifdef DEBUG_ENABLED
|
|
if (light->geometries.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair geometries from light.");
|
|
}
|
|
#endif
|
|
if (light->D) {
|
|
instance->scenario->directional_lights.erase(light->D);
|
|
light->D = nullptr;
|
|
}
|
|
} break;
|
|
case RS::INSTANCE_REFLECTION_PROBE: {
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
|
|
RSG::scene_render->reflection_probe_release_atlas_index(reflection_probe->instance);
|
|
|
|
} break;
|
|
case RS::INSTANCE_GI_PROBE: {
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
if (gi_probe->geometries.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe.");
|
|
}
|
|
#endif
|
|
#ifdef DEBUG_ENABLED
|
|
if (gi_probe->lights.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair lights from GIProbe.");
|
|
}
|
|
#endif
|
|
|
|
if (gi_probe->update_element.in_list()) {
|
|
gi_probe_update_list.remove(&gi_probe->update_element);
|
|
}
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
instance->scenario = nullptr;
|
|
}
|
|
|
|
if (p_scenario.is_valid()) {
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
|
|
instance->scenario = scenario;
|
|
|
|
scenario->instances.add(&instance->scenario_item);
|
|
|
|
switch (instance->base_type) {
|
|
case RS::INSTANCE_LIGHT: {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
|
|
|
|
if (RSG::storage->light_get_type(instance->base) == RS::LIGHT_DIRECTIONAL) {
|
|
light->D = scenario->directional_lights.push_back(instance);
|
|
}
|
|
} break;
|
|
case RS::INSTANCE_GI_PROBE: {
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
|
|
if (!gi_probe->update_element.in_list()) {
|
|
gi_probe_update_list.add(&gi_probe->update_element);
|
|
}
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
_instance_queue_update(instance, true, true);
|
|
}
|
|
}
|
|
void RenderingServerScene::instance_set_layer_mask(RID p_instance, uint32_t p_mask) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
instance->layer_mask = p_mask;
|
|
}
|
|
void RenderingServerScene::instance_set_transform(RID p_instance, const Transform &p_transform) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->transform == p_transform)
|
|
return; //must be checked to avoid worst evil
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
const Vector3 &v = i < 3 ? p_transform.basis.elements[i] : p_transform.origin;
|
|
ERR_FAIL_COND(Math::is_inf(v.x));
|
|
ERR_FAIL_COND(Math::is_nan(v.x));
|
|
ERR_FAIL_COND(Math::is_inf(v.y));
|
|
ERR_FAIL_COND(Math::is_nan(v.y));
|
|
ERR_FAIL_COND(Math::is_inf(v.z));
|
|
ERR_FAIL_COND(Math::is_nan(v.z));
|
|
}
|
|
|
|
#endif
|
|
instance->transform = p_transform;
|
|
_instance_queue_update(instance, true);
|
|
}
|
|
void RenderingServerScene::instance_attach_object_instance_id(RID p_instance, ObjectID p_id) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
instance->object_id = p_id;
|
|
}
|
|
void RenderingServerScene::instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->update_item.in_list()) {
|
|
_update_dirty_instance(instance);
|
|
}
|
|
|
|
ERR_FAIL_INDEX(p_shape, instance->blend_values.size());
|
|
instance->blend_values.write[p_shape] = p_weight;
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_surface_material(RID p_instance, int p_surface, RID p_material) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->base_type == RS::INSTANCE_MESH) {
|
|
//may not have been updated yet, may also have not been set yet. When updated will be correcte, worst case
|
|
instance->materials.resize(MAX(p_surface + 1, RSG::storage->mesh_get_surface_count(instance->base)));
|
|
}
|
|
|
|
ERR_FAIL_INDEX(p_surface, instance->materials.size());
|
|
|
|
instance->materials.write[p_surface] = p_material;
|
|
|
|
_instance_queue_update(instance, false, true);
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_visible(RID p_instance, bool p_visible) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->visible == p_visible)
|
|
return;
|
|
|
|
instance->visible = p_visible;
|
|
|
|
switch (instance->base_type) {
|
|
case RS::INSTANCE_LIGHT: {
|
|
if (RSG::storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && instance->octree_id && instance->scenario) {
|
|
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHT, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0);
|
|
}
|
|
|
|
} break;
|
|
case RS::INSTANCE_REFLECTION_PROBE: {
|
|
if (instance->octree_id && instance->scenario) {
|
|
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_REFLECTION_PROBE, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0);
|
|
}
|
|
|
|
} break;
|
|
case RS::INSTANCE_DECAL: {
|
|
if (instance->octree_id && instance->scenario) {
|
|
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_DECAL, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0);
|
|
}
|
|
|
|
} break;
|
|
case RS::INSTANCE_LIGHTMAP: {
|
|
if (instance->octree_id && instance->scenario) {
|
|
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHTMAP, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0);
|
|
}
|
|
|
|
} break;
|
|
case RS::INSTANCE_GI_PROBE: {
|
|
if (instance->octree_id && instance->scenario) {
|
|
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_GI_PROBE, p_visible ? (RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT)) : 0);
|
|
}
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
}
|
|
inline bool is_geometry_instance(RenderingServer::InstanceType p_type) {
|
|
return p_type == RS::INSTANCE_MESH || p_type == RS::INSTANCE_MULTIMESH || p_type == RS::INSTANCE_PARTICLES || p_type == RS::INSTANCE_IMMEDIATE;
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_custom_aabb(RID p_instance, AABB p_aabb) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
ERR_FAIL_COND(!is_geometry_instance(instance->base_type));
|
|
|
|
if (p_aabb != AABB()) {
|
|
// Set custom AABB
|
|
if (instance->custom_aabb == nullptr)
|
|
instance->custom_aabb = memnew(AABB);
|
|
*instance->custom_aabb = p_aabb;
|
|
|
|
} else {
|
|
// Clear custom AABB
|
|
if (instance->custom_aabb != nullptr) {
|
|
memdelete(instance->custom_aabb);
|
|
instance->custom_aabb = nullptr;
|
|
}
|
|
}
|
|
|
|
if (instance->scenario)
|
|
_instance_queue_update(instance, true, false);
|
|
}
|
|
|
|
void RenderingServerScene::instance_attach_skeleton(RID p_instance, RID p_skeleton) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->skeleton == p_skeleton)
|
|
return;
|
|
|
|
instance->skeleton = p_skeleton;
|
|
|
|
if (p_skeleton.is_valid()) {
|
|
//update the dependency now, so if cleared, we remove it
|
|
RSG::storage->skeleton_update_dependency(p_skeleton, instance);
|
|
}
|
|
_instance_queue_update(instance, true, true);
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_exterior(RID p_instance, bool p_enabled) {
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
instance->extra_margin = p_margin;
|
|
_instance_queue_update(instance, true, false);
|
|
}
|
|
|
|
Vector<ObjectID> RenderingServerScene::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const {
|
|
Vector<ObjectID> instances;
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND_V(!scenario, instances);
|
|
|
|
const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
|
|
|
|
int culled = 0;
|
|
Instance *cull[1024];
|
|
culled = scenario->octree.cull_aabb(p_aabb, cull, 1024);
|
|
|
|
for (int i = 0; i < culled; i++) {
|
|
Instance *instance = cull[i];
|
|
ERR_CONTINUE(!instance);
|
|
if (instance->object_id.is_null())
|
|
continue;
|
|
|
|
instances.push_back(instance->object_id);
|
|
}
|
|
|
|
return instances;
|
|
}
|
|
Vector<ObjectID> RenderingServerScene::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const {
|
|
Vector<ObjectID> instances;
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND_V(!scenario, instances);
|
|
const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
|
|
|
|
int culled = 0;
|
|
Instance *cull[1024];
|
|
culled = scenario->octree.cull_segment(p_from, p_from + p_to * 10000, cull, 1024);
|
|
|
|
for (int i = 0; i < culled; i++) {
|
|
Instance *instance = cull[i];
|
|
ERR_CONTINUE(!instance);
|
|
if (instance->object_id.is_null())
|
|
continue;
|
|
|
|
instances.push_back(instance->object_id);
|
|
}
|
|
|
|
return instances;
|
|
}
|
|
Vector<ObjectID> RenderingServerScene::instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario) const {
|
|
Vector<ObjectID> instances;
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND_V(!scenario, instances);
|
|
const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
|
|
|
|
int culled = 0;
|
|
Instance *cull[1024];
|
|
|
|
culled = scenario->octree.cull_convex(p_convex, cull, 1024);
|
|
|
|
for (int i = 0; i < culled; i++) {
|
|
Instance *instance = cull[i];
|
|
ERR_CONTINUE(!instance);
|
|
if (instance->object_id.is_null())
|
|
continue;
|
|
|
|
instances.push_back(instance->object_id);
|
|
}
|
|
|
|
return instances;
|
|
}
|
|
|
|
void RenderingServerScene::instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
//ERR_FAIL_COND(((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK));
|
|
|
|
switch (p_flags) {
|
|
case RS::INSTANCE_FLAG_USE_BAKED_LIGHT: {
|
|
instance->baked_light = p_enabled;
|
|
|
|
} break;
|
|
case RS::INSTANCE_FLAG_USE_DYNAMIC_GI: {
|
|
if (p_enabled == instance->dynamic_gi) {
|
|
//bye, redundant
|
|
return;
|
|
}
|
|
|
|
if (instance->octree_id != 0) {
|
|
//remove from octree, it needs to be re-paired
|
|
instance->scenario->octree.erase(instance->octree_id);
|
|
instance->octree_id = 0;
|
|
_instance_queue_update(instance, true, true);
|
|
}
|
|
|
|
//once out of octree, can be changed
|
|
instance->dynamic_gi = p_enabled;
|
|
|
|
} break;
|
|
case RS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE: {
|
|
instance->redraw_if_visible = p_enabled;
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
}
|
|
void RenderingServerScene::instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
instance->cast_shadows = p_shadow_casting_setting;
|
|
_instance_queue_update(instance, false, true);
|
|
}
|
|
void RenderingServerScene::instance_geometry_set_material_override(RID p_instance, RID p_material) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
instance->material_override = p_material;
|
|
_instance_queue_update(instance, false, true);
|
|
}
|
|
|
|
void RenderingServerScene::instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin) {
|
|
}
|
|
void RenderingServerScene::instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance) {
|
|
}
|
|
|
|
void RenderingServerScene::instance_geometry_set_lightmap(RID p_instance, RID p_lightmap, const Rect2 &p_lightmap_uv_scale, int p_slice_index) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->lightmap) {
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(((Instance *)instance->lightmap)->base_data);
|
|
lightmap_data->users.erase(instance);
|
|
instance->lightmap = nullptr;
|
|
}
|
|
|
|
Instance *lightmap_instance = instance_owner.getornull(p_lightmap);
|
|
|
|
instance->lightmap = lightmap_instance;
|
|
instance->lightmap_uv_scale = p_lightmap_uv_scale;
|
|
instance->lightmap_slice_index = p_slice_index;
|
|
|
|
if (lightmap_instance) {
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(lightmap_instance->base_data);
|
|
lightmap_data->users.insert(instance);
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::instance_geometry_set_shader_parameter(RID p_instance, const StringName &p_parameter, const Variant &p_value) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter>::Element *E = instance->instance_shader_parameters.find(p_parameter);
|
|
|
|
if (!E) {
|
|
RasterizerScene::InstanceBase::InstanceShaderParameter isp;
|
|
isp.index = -1;
|
|
isp.info = PropertyInfo();
|
|
isp.value = p_value;
|
|
instance->instance_shader_parameters[p_parameter] = isp;
|
|
} else {
|
|
E->get().value = p_value;
|
|
if (E->get().index >= 0 && instance->instance_allocated_shader_parameters) {
|
|
//update directly
|
|
RSG::storage->global_variables_instance_update(p_instance, E->get().index, p_value);
|
|
}
|
|
}
|
|
}
|
|
|
|
Variant RenderingServerScene::instance_geometry_get_shader_parameter(RID p_instance, const StringName &p_parameter) const {
|
|
const Instance *instance = const_cast<RenderingServerScene *>(this)->instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!instance, Variant());
|
|
|
|
if (instance->instance_shader_parameters.has(p_parameter)) {
|
|
return instance->instance_shader_parameters[p_parameter].value;
|
|
}
|
|
return Variant();
|
|
}
|
|
|
|
Variant RenderingServerScene::instance_geometry_get_shader_parameter_default_value(RID p_instance, const StringName &p_parameter) const {
|
|
const Instance *instance = const_cast<RenderingServerScene *>(this)->instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!instance, Variant());
|
|
|
|
if (instance->instance_shader_parameters.has(p_parameter)) {
|
|
return instance->instance_shader_parameters[p_parameter].default_value;
|
|
}
|
|
return Variant();
|
|
}
|
|
|
|
void RenderingServerScene::instance_geometry_get_shader_parameter_list(RID p_instance, List<PropertyInfo> *p_parameters) const {
|
|
const Instance *instance = const_cast<RenderingServerScene *>(this)->instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
const_cast<RenderingServerScene *>(this)->update_dirty_instances();
|
|
|
|
Vector<StringName> names;
|
|
for (Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter>::Element *E = instance->instance_shader_parameters.front(); E; E = E->next()) {
|
|
names.push_back(E->key());
|
|
}
|
|
names.sort_custom<StringName::AlphCompare>();
|
|
for (int i = 0; i < names.size(); i++) {
|
|
PropertyInfo pinfo = instance->instance_shader_parameters[names[i]].info;
|
|
p_parameters->push_back(pinfo);
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::_update_instance(Instance *p_instance) {
|
|
p_instance->version++;
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_LIGHT) {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
|
|
|
|
RSG::scene_render->light_instance_set_transform(light->instance, p_instance->transform);
|
|
light->shadow_dirty = true;
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE) {
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
|
|
|
|
RSG::scene_render->reflection_probe_instance_set_transform(reflection_probe->instance, p_instance->transform);
|
|
reflection_probe->reflection_dirty = true;
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_DECAL) {
|
|
InstanceDecalData *decal = static_cast<InstanceDecalData *>(p_instance->base_data);
|
|
|
|
RSG::scene_render->decal_instance_set_transform(decal->instance, p_instance->transform);
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_GI_PROBE) {
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(p_instance->base_data);
|
|
|
|
RSG::scene_render->gi_probe_instance_set_transform_to_data(gi_probe->probe_instance, p_instance->transform);
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
|
|
RSG::storage->particles_set_emission_transform(p_instance->base, p_instance->transform);
|
|
}
|
|
|
|
if (p_instance->aabb.has_no_surface()) {
|
|
return;
|
|
}
|
|
|
|
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
|
|
//make sure lights are updated if it casts shadow
|
|
|
|
if (geom->can_cast_shadows) {
|
|
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
|
|
light->shadow_dirty = true;
|
|
}
|
|
}
|
|
|
|
if (!p_instance->lightmap && geom->lightmap_captures.size()) {
|
|
//affected by lightmap captures, must update capture info!
|
|
_update_instance_lightmap_captures(p_instance);
|
|
} else {
|
|
if (!p_instance->lightmap_sh.empty()) {
|
|
p_instance->lightmap_sh.clear(); //don't need SH
|
|
p_instance->lightmap_target_sh.clear(); //don't need SH
|
|
}
|
|
}
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_LIGHTMAP) {
|
|
//if this moved, update the captured objects
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(p_instance->base_data);
|
|
//erase dependencies, since no longer a lightmap
|
|
|
|
for (List<InstanceLightmapData::PairInfo>::Element *E = lightmap_data->geometries.front(); E; E = E->next()) {
|
|
Instance *geom = E->get().geometry;
|
|
_instance_queue_update(geom, true, false);
|
|
}
|
|
}
|
|
|
|
p_instance->mirror = p_instance->transform.basis.determinant() < 0.0;
|
|
|
|
AABB new_aabb;
|
|
|
|
new_aabb = p_instance->transform.xform(p_instance->aabb);
|
|
|
|
p_instance->transformed_aabb = new_aabb;
|
|
|
|
if (!p_instance->scenario) {
|
|
return;
|
|
}
|
|
|
|
if (p_instance->octree_id == 0) {
|
|
uint32_t base_type = 1 << p_instance->base_type;
|
|
uint32_t pairable_mask = 0;
|
|
bool pairable = false;
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_LIGHT || p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE || p_instance->base_type == RS::INSTANCE_DECAL || p_instance->base_type == RS::INSTANCE_LIGHTMAP) {
|
|
pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK : 0;
|
|
pairable = true;
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_GI_PROBE) {
|
|
//lights and geometries
|
|
pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT) : 0;
|
|
pairable = true;
|
|
}
|
|
|
|
// not inside octree
|
|
p_instance->octree_id = p_instance->scenario->octree.create(p_instance, new_aabb, 0, pairable, base_type, pairable_mask);
|
|
|
|
} else {
|
|
/*
|
|
if (new_aabb==p_instance->data.transformed_aabb)
|
|
return;
|
|
*/
|
|
|
|
p_instance->scenario->octree.move(p_instance->octree_id, new_aabb);
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::_update_instance_aabb(Instance *p_instance) {
|
|
AABB new_aabb;
|
|
|
|
ERR_FAIL_COND(p_instance->base_type != RS::INSTANCE_NONE && !p_instance->base.is_valid());
|
|
|
|
switch (p_instance->base_type) {
|
|
case RenderingServer::INSTANCE_NONE: {
|
|
// do nothing
|
|
} break;
|
|
case RenderingServer::INSTANCE_MESH: {
|
|
if (p_instance->custom_aabb)
|
|
new_aabb = *p_instance->custom_aabb;
|
|
else
|
|
new_aabb = RSG::storage->mesh_get_aabb(p_instance->base, p_instance->skeleton);
|
|
|
|
} break;
|
|
|
|
case RenderingServer::INSTANCE_MULTIMESH: {
|
|
if (p_instance->custom_aabb)
|
|
new_aabb = *p_instance->custom_aabb;
|
|
else
|
|
new_aabb = RSG::storage->multimesh_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_IMMEDIATE: {
|
|
if (p_instance->custom_aabb)
|
|
new_aabb = *p_instance->custom_aabb;
|
|
else
|
|
new_aabb = RSG::storage->immediate_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_PARTICLES: {
|
|
if (p_instance->custom_aabb)
|
|
new_aabb = *p_instance->custom_aabb;
|
|
else
|
|
new_aabb = RSG::storage->particles_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_LIGHT: {
|
|
new_aabb = RSG::storage->light_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_REFLECTION_PROBE: {
|
|
new_aabb = RSG::storage->reflection_probe_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_DECAL: {
|
|
new_aabb = RSG::storage->decal_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_GI_PROBE: {
|
|
new_aabb = RSG::storage->gi_probe_get_bounds(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_LIGHTMAP: {
|
|
new_aabb = RSG::storage->lightmap_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
// <Zylann> This is why I didn't re-use Instance::aabb to implement custom AABBs
|
|
if (p_instance->extra_margin)
|
|
new_aabb.grow_by(p_instance->extra_margin);
|
|
|
|
p_instance->aabb = new_aabb;
|
|
}
|
|
|
|
void RenderingServerScene::_update_instance_lightmap_captures(Instance *p_instance) {
|
|
bool first_set = p_instance->lightmap_sh.size() == 0;
|
|
p_instance->lightmap_sh.resize(9); //using SH
|
|
p_instance->lightmap_target_sh.resize(9); //using SH
|
|
Color *instance_sh = p_instance->lightmap_target_sh.ptrw();
|
|
bool inside = false;
|
|
Color accum_sh[9];
|
|
float accum_blend = 0.0;
|
|
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
|
|
for (List<Instance *>::Element *E = geom->lightmap_captures.front(); E; E = E->next()) {
|
|
Instance *lightmap = E->get();
|
|
|
|
bool interior = RSG::storage->lightmap_is_interior(lightmap->base);
|
|
|
|
if (inside && !interior) {
|
|
continue; //we are inside, ignore exteriors
|
|
}
|
|
|
|
Transform to_bounds = lightmap->transform.affine_inverse();
|
|
Vector3 center = p_instance->transform.xform(p_instance->aabb.position + p_instance->aabb.size * 0.5); //use aabb center
|
|
|
|
Vector3 lm_pos = to_bounds.xform(center);
|
|
|
|
AABB bounds = RSG::storage->lightmap_get_aabb(lightmap->base);
|
|
if (!bounds.has_point(lm_pos)) {
|
|
continue; //not in this lightmap
|
|
}
|
|
|
|
Color sh[9];
|
|
RSG::storage->lightmap_tap_sh_light(lightmap->base, lm_pos, sh);
|
|
|
|
//rotate it
|
|
Basis rot = lightmap->transform.basis.orthonormalized();
|
|
for (int i = 0; i < 3; i++) {
|
|
float csh[9];
|
|
for (int j = 0; j < 9; j++) {
|
|
csh[j] = sh[j][i];
|
|
}
|
|
rot.rotate_sh(csh);
|
|
for (int j = 0; j < 9; j++) {
|
|
sh[j][i] = csh[j];
|
|
}
|
|
}
|
|
|
|
Vector3 inner_pos = ((lm_pos - bounds.position) / bounds.size) * 2.0 - Vector3(1.0, 1.0, 1.0);
|
|
|
|
float blend = MAX(inner_pos.x, MAX(inner_pos.y, inner_pos.z));
|
|
//make blend more rounded
|
|
blend = Math::lerp(inner_pos.length(), blend, blend);
|
|
blend *= blend;
|
|
blend = MAX(0.0, 1.0 - blend);
|
|
|
|
if (interior && !inside) {
|
|
//do not blend, just replace
|
|
for (int j = 0; j < 9; j++) {
|
|
accum_sh[j] = sh[j] * blend;
|
|
}
|
|
accum_blend = blend;
|
|
inside = true;
|
|
} else {
|
|
for (int j = 0; j < 9; j++) {
|
|
accum_sh[j] += sh[j] * blend;
|
|
}
|
|
accum_blend += blend;
|
|
}
|
|
}
|
|
|
|
if (accum_blend > 0.0) {
|
|
for (int j = 0; j < 9; j++) {
|
|
instance_sh[j] = accum_sh[j] / accum_blend;
|
|
if (first_set) {
|
|
p_instance->lightmap_sh.write[j] = instance_sh[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RenderingServerScene::_light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_shadow_atlas, Scenario *p_scenario) {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
|
|
|
|
Transform light_transform = p_instance->transform;
|
|
light_transform.orthonormalize(); //scale does not count on lights
|
|
|
|
bool animated_material_found = false;
|
|
|
|
switch (RSG::storage->light_get_type(p_instance->base)) {
|
|
case RS::LIGHT_DIRECTIONAL: {
|
|
real_t max_distance = p_cam_projection.get_z_far();
|
|
real_t shadow_max = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE);
|
|
if (shadow_max > 0 && !p_cam_orthogonal) { //its impractical (and leads to unwanted behaviors) to set max distance in orthogonal camera
|
|
max_distance = MIN(shadow_max, max_distance);
|
|
}
|
|
max_distance = MAX(max_distance, p_cam_projection.get_z_near() + 0.001);
|
|
real_t min_distance = MIN(p_cam_projection.get_z_near(), max_distance);
|
|
|
|
RS::LightDirectionalShadowDepthRangeMode depth_range_mode = RSG::storage->light_directional_get_shadow_depth_range_mode(p_instance->base);
|
|
|
|
real_t pancake_size = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE);
|
|
|
|
if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_OPTIMIZED) {
|
|
//optimize min/max
|
|
Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform);
|
|
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
|
|
Plane base(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2));
|
|
//check distance max and min
|
|
|
|
bool found_items = false;
|
|
real_t z_max = -1e20;
|
|
real_t z_min = 1e20;
|
|
|
|
for (int i = 0; i < cull_count; i++) {
|
|
Instance *instance = instance_shadow_cull_result[i];
|
|
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
|
|
continue;
|
|
}
|
|
|
|
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
|
|
animated_material_found = true;
|
|
}
|
|
|
|
real_t max, min;
|
|
instance->transformed_aabb.project_range_in_plane(base, min, max);
|
|
|
|
if (max > z_max) {
|
|
z_max = max;
|
|
}
|
|
|
|
if (min < z_min) {
|
|
z_min = min;
|
|
}
|
|
|
|
found_items = true;
|
|
}
|
|
|
|
if (found_items) {
|
|
min_distance = MAX(min_distance, z_min);
|
|
max_distance = MIN(max_distance, z_max);
|
|
}
|
|
}
|
|
|
|
real_t range = max_distance - min_distance;
|
|
|
|
int splits = 0;
|
|
switch (RSG::storage->light_directional_get_shadow_mode(p_instance->base)) {
|
|
case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
|
|
splits = 1;
|
|
break;
|
|
case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
|
|
splits = 2;
|
|
break;
|
|
case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
|
|
splits = 4;
|
|
break;
|
|
}
|
|
|
|
real_t distances[5];
|
|
|
|
distances[0] = min_distance;
|
|
for (int i = 0; i < splits; i++) {
|
|
distances[i + 1] = min_distance + RSG::storage->light_get_param(p_instance->base, RS::LightParam(RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range;
|
|
};
|
|
|
|
distances[splits] = max_distance;
|
|
|
|
real_t texture_size = RSG::scene_render->get_directional_light_shadow_size(light->instance);
|
|
|
|
bool overlap = RSG::storage->light_directional_get_blend_splits(p_instance->base);
|
|
|
|
real_t first_radius = 0.0;
|
|
|
|
real_t min_distance_bias_scale = pancake_size > 0 ? distances[1] / 10.0 : 0;
|
|
|
|
for (int i = 0; i < splits; i++) {
|
|
RENDER_TIMESTAMP("Culling Directional Light split" + itos(i));
|
|
|
|
// setup a camera matrix for that range!
|
|
CameraMatrix camera_matrix;
|
|
|
|
real_t aspect = p_cam_projection.get_aspect();
|
|
|
|
if (p_cam_orthogonal) {
|
|
Vector2 vp_he = p_cam_projection.get_viewport_half_extents();
|
|
|
|
camera_matrix.set_orthogonal(vp_he.y * 2.0, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
|
|
} else {
|
|
real_t fov = p_cam_projection.get_fov(); //this is actually yfov, because set aspect tries to keep it
|
|
camera_matrix.set_perspective(fov, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
|
|
}
|
|
|
|
//obtain the frustum endpoints
|
|
|
|
Vector3 endpoints[8]; // frustum plane endpoints
|
|
bool res = camera_matrix.get_endpoints(p_cam_transform, endpoints);
|
|
ERR_CONTINUE(!res);
|
|
|
|
// obtain the light frustm ranges (given endpoints)
|
|
|
|
Transform transform = light_transform; //discard scale and stabilize light
|
|
|
|
Vector3 x_vec = transform.basis.get_axis(Vector3::AXIS_X).normalized();
|
|
Vector3 y_vec = transform.basis.get_axis(Vector3::AXIS_Y).normalized();
|
|
Vector3 z_vec = transform.basis.get_axis(Vector3::AXIS_Z).normalized();
|
|
//z_vec points agsint the camera, like in default opengl
|
|
|
|
real_t x_min = 0.f, x_max = 0.f;
|
|
real_t y_min = 0.f, y_max = 0.f;
|
|
real_t z_min = 0.f, z_max = 0.f;
|
|
|
|
// FIXME: z_max_cam is defined, computed, but not used below when setting up
|
|
// ortho_camera. Commented out for now to fix warnings but should be investigated.
|
|
real_t x_min_cam = 0.f, x_max_cam = 0.f;
|
|
real_t y_min_cam = 0.f, y_max_cam = 0.f;
|
|
real_t z_min_cam = 0.f;
|
|
//real_t z_max_cam = 0.f;
|
|
|
|
real_t bias_scale = 1.0;
|
|
real_t aspect_bias_scale = 1.0;
|
|
|
|
//used for culling
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
real_t d_x = x_vec.dot(endpoints[j]);
|
|
real_t d_y = y_vec.dot(endpoints[j]);
|
|
real_t d_z = z_vec.dot(endpoints[j]);
|
|
|
|
if (j == 0 || d_x < x_min)
|
|
x_min = d_x;
|
|
if (j == 0 || d_x > x_max)
|
|
x_max = d_x;
|
|
|
|
if (j == 0 || d_y < y_min)
|
|
y_min = d_y;
|
|
if (j == 0 || d_y > y_max)
|
|
y_max = d_y;
|
|
|
|
if (j == 0 || d_z < z_min)
|
|
z_min = d_z;
|
|
if (j == 0 || d_z > z_max)
|
|
z_max = d_z;
|
|
}
|
|
|
|
real_t radius = 0;
|
|
real_t soft_shadow_expand = 0;
|
|
Vector3 center;
|
|
|
|
{
|
|
//camera viewport stuff
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
center += endpoints[j];
|
|
}
|
|
center /= 8.0;
|
|
|
|
//center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5;
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
real_t d = center.distance_to(endpoints[j]);
|
|
if (d > radius)
|
|
radius = d;
|
|
}
|
|
|
|
radius *= texture_size / (texture_size - 2.0); //add a texel by each side
|
|
|
|
if (i == 0) {
|
|
first_radius = radius;
|
|
} else {
|
|
bias_scale = radius / first_radius;
|
|
}
|
|
|
|
z_min_cam = z_vec.dot(center) - radius;
|
|
|
|
{
|
|
float soft_shadow_angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SIZE);
|
|
|
|
if (soft_shadow_angle > 0.0 && pancake_size > 0.0) {
|
|
float z_range = (z_vec.dot(center) + radius + pancake_size) - z_min_cam;
|
|
soft_shadow_expand = Math::tan(Math::deg2rad(soft_shadow_angle)) * z_range;
|
|
|
|
x_max += soft_shadow_expand;
|
|
y_max += soft_shadow_expand;
|
|
|
|
x_min -= soft_shadow_expand;
|
|
y_min -= soft_shadow_expand;
|
|
}
|
|
}
|
|
|
|
x_max_cam = x_vec.dot(center) + radius + soft_shadow_expand;
|
|
x_min_cam = x_vec.dot(center) - radius - soft_shadow_expand;
|
|
y_max_cam = y_vec.dot(center) + radius + soft_shadow_expand;
|
|
y_min_cam = y_vec.dot(center) - radius - soft_shadow_expand;
|
|
|
|
if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE) {
|
|
//this trick here is what stabilizes the shadow (make potential jaggies to not move)
|
|
//at the cost of some wasted resolution. Still the quality increase is very well worth it
|
|
|
|
real_t unit = radius * 2.0 / texture_size;
|
|
|
|
x_max_cam = Math::stepify(x_max_cam, unit);
|
|
x_min_cam = Math::stepify(x_min_cam, unit);
|
|
y_max_cam = Math::stepify(y_max_cam, unit);
|
|
y_min_cam = Math::stepify(y_min_cam, unit);
|
|
}
|
|
}
|
|
|
|
//now that we now all ranges, we can proceed to make the light frustum planes, for culling octree
|
|
|
|
Vector<Plane> light_frustum_planes;
|
|
light_frustum_planes.resize(6);
|
|
|
|
//right/left
|
|
light_frustum_planes.write[0] = Plane(x_vec, x_max);
|
|
light_frustum_planes.write[1] = Plane(-x_vec, -x_min);
|
|
//top/bottom
|
|
light_frustum_planes.write[2] = Plane(y_vec, y_max);
|
|
light_frustum_planes.write[3] = Plane(-y_vec, -y_min);
|
|
//near/far
|
|
light_frustum_planes.write[4] = Plane(z_vec, z_max + 1e6);
|
|
light_frustum_planes.write[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed
|
|
|
|
int cull_count = p_scenario->octree.cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
|
|
|
|
// a pre pass will need to be needed to determine the actual z-near to be used
|
|
|
|
Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2));
|
|
|
|
real_t cull_max = 0;
|
|
for (int j = 0; j < cull_count; j++) {
|
|
real_t min, max;
|
|
Instance *instance = instance_shadow_cull_result[j];
|
|
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
|
|
cull_count--;
|
|
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
|
|
j--;
|
|
continue;
|
|
}
|
|
|
|
instance->transformed_aabb.project_range_in_plane(Plane(z_vec, 0), min, max);
|
|
instance->depth = near_plane.distance_to(instance->transform.origin);
|
|
instance->depth_layer = 0;
|
|
if (j == 0 || max > cull_max) {
|
|
cull_max = max;
|
|
}
|
|
}
|
|
|
|
if (cull_max > z_max) {
|
|
z_max = cull_max;
|
|
}
|
|
|
|
if (pancake_size > 0) {
|
|
z_max = z_vec.dot(center) + radius + pancake_size;
|
|
}
|
|
|
|
if (aspect != 1.0) {
|
|
// if the aspect is different, then the radius will become larger.
|
|
// if this happens, then bias needs to be adjusted too, as depth will increase
|
|
// to do this, compare the depth of one that would have resulted from a square frustum
|
|
|
|
CameraMatrix camera_matrix_square;
|
|
if (p_cam_orthogonal) {
|
|
Vector2 vp_he = camera_matrix.get_viewport_half_extents();
|
|
if (p_cam_vaspect) {
|
|
camera_matrix_square.set_orthogonal(vp_he.x * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
|
|
} else {
|
|
camera_matrix_square.set_orthogonal(vp_he.y * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
|
|
}
|
|
} else {
|
|
Vector2 vp_he = camera_matrix.get_viewport_half_extents();
|
|
if (p_cam_vaspect) {
|
|
camera_matrix_square.set_frustum(vp_he.x * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
|
|
} else {
|
|
camera_matrix_square.set_frustum(vp_he.y * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
|
|
}
|
|
}
|
|
|
|
Vector3 endpoints_square[8]; // frustum plane endpoints
|
|
res = camera_matrix_square.get_endpoints(p_cam_transform, endpoints_square);
|
|
ERR_CONTINUE(!res);
|
|
Vector3 center_square;
|
|
real_t z_max_square = 0;
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
center_square += endpoints_square[j];
|
|
|
|
real_t d_z = z_vec.dot(endpoints_square[j]);
|
|
|
|
if (j == 0 || d_z > z_max_square)
|
|
z_max_square = d_z;
|
|
}
|
|
|
|
if (cull_max > z_max_square) {
|
|
z_max_square = cull_max;
|
|
}
|
|
|
|
center_square /= 8.0;
|
|
|
|
real_t radius_square = 0;
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
real_t d = center_square.distance_to(endpoints_square[j]);
|
|
if (d > radius_square)
|
|
radius_square = d;
|
|
}
|
|
|
|
radius_square *= texture_size / (texture_size - 2.0); //add a texel by each side
|
|
|
|
if (pancake_size > 0) {
|
|
z_max_square = z_vec.dot(center_square) + radius_square + pancake_size;
|
|
}
|
|
|
|
real_t z_min_cam_square = z_vec.dot(center_square) - radius_square;
|
|
|
|
aspect_bias_scale = (z_max - z_min_cam) / (z_max_square - z_min_cam_square);
|
|
|
|
// this is not entirely perfect, because the cull-adjusted z-max may be different
|
|
// but at least it's warranted that it results in a greater bias, so no acne should be present either way.
|
|
// pancaking also helps with this.
|
|
}
|
|
|
|
{
|
|
CameraMatrix ortho_camera;
|
|
real_t half_x = (x_max_cam - x_min_cam) * 0.5;
|
|
real_t half_y = (y_max_cam - y_min_cam) * 0.5;
|
|
|
|
ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam));
|
|
|
|
Vector2 uv_scale(1.0 / (x_max_cam - x_min_cam), 1.0 / (y_max_cam - y_min_cam));
|
|
|
|
Transform ortho_transform;
|
|
ortho_transform.basis = transform.basis;
|
|
ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max;
|
|
|
|
{
|
|
Vector3 max_in_view = p_cam_transform.affine_inverse().xform(z_vec * cull_max);
|
|
Vector3 dir_in_view = p_cam_transform.xform_inv(z_vec).normalized();
|
|
cull_max = dir_in_view.dot(max_in_view);
|
|
}
|
|
|
|
RSG::scene_render->light_instance_set_shadow_transform(light->instance, ortho_camera, ortho_transform, z_max - z_min_cam, distances[i + 1], i, radius * 2.0 / texture_size, bias_scale * aspect_bias_scale * min_distance_bias_scale, z_max, uv_scale);
|
|
}
|
|
|
|
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
|
|
}
|
|
|
|
} break;
|
|
case RS::LIGHT_OMNI: {
|
|
RS::LightOmniShadowMode shadow_mode = RSG::storage->light_omni_get_shadow_mode(p_instance->base);
|
|
|
|
if (shadow_mode == RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID || !RSG::scene_render->light_instances_can_render_shadow_cube()) {
|
|
for (int i = 0; i < 2; i++) {
|
|
//using this one ensures that raster deferred will have it
|
|
RENDER_TIMESTAMP("Culling Shadow Paraboloid" + itos(i));
|
|
|
|
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
|
|
|
|
real_t z = i == 0 ? -1 : 1;
|
|
Vector<Plane> planes;
|
|
planes.resize(6);
|
|
planes.write[0] = light_transform.xform(Plane(Vector3(0, 0, z), radius));
|
|
planes.write[1] = light_transform.xform(Plane(Vector3(1, 0, z).normalized(), radius));
|
|
planes.write[2] = light_transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius));
|
|
planes.write[3] = light_transform.xform(Plane(Vector3(0, 1, z).normalized(), radius));
|
|
planes.write[4] = light_transform.xform(Plane(Vector3(0, -1, z).normalized(), radius));
|
|
planes.write[5] = light_transform.xform(Plane(Vector3(0, 0, -z), 0));
|
|
|
|
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
|
|
Plane near_plane(light_transform.origin, light_transform.basis.get_axis(2) * z);
|
|
|
|
for (int j = 0; j < cull_count; j++) {
|
|
Instance *instance = instance_shadow_cull_result[j];
|
|
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
|
|
cull_count--;
|
|
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
|
|
j--;
|
|
} else {
|
|
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
|
|
animated_material_found = true;
|
|
}
|
|
|
|
instance->depth = near_plane.distance_to(instance->transform.origin);
|
|
instance->depth_layer = 0;
|
|
}
|
|
}
|
|
|
|
RSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, i, 0);
|
|
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
|
|
}
|
|
} else { //shadow cube
|
|
|
|
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
|
|
CameraMatrix cm;
|
|
cm.set_perspective(90, 1, 0.01, radius);
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
RENDER_TIMESTAMP("Culling Shadow Cube side" + itos(i));
|
|
//using this one ensures that raster deferred will have it
|
|
|
|
static const Vector3 view_normals[6] = {
|
|
Vector3(+1, 0, 0),
|
|
Vector3(-1, 0, 0),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, +1, 0),
|
|
Vector3(0, 0, +1),
|
|
Vector3(0, 0, -1)
|
|
};
|
|
static const Vector3 view_up[6] = {
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, 0, -1),
|
|
Vector3(0, 0, +1),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, -1, 0)
|
|
};
|
|
|
|
Transform xform = light_transform * Transform().looking_at(view_normals[i], view_up[i]);
|
|
|
|
Vector<Plane> planes = cm.get_projection_planes(xform);
|
|
|
|
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
|
|
|
|
Plane near_plane(xform.origin, -xform.basis.get_axis(2));
|
|
for (int j = 0; j < cull_count; j++) {
|
|
Instance *instance = instance_shadow_cull_result[j];
|
|
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
|
|
cull_count--;
|
|
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
|
|
j--;
|
|
} else {
|
|
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
|
|
animated_material_found = true;
|
|
}
|
|
instance->depth = near_plane.distance_to(instance->transform.origin);
|
|
instance->depth_layer = 0;
|
|
}
|
|
}
|
|
|
|
RSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, xform, radius, 0, i, 0);
|
|
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
|
|
}
|
|
|
|
//restore the regular DP matrix
|
|
RSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, 0, 0);
|
|
}
|
|
|
|
} break;
|
|
case RS::LIGHT_SPOT: {
|
|
RENDER_TIMESTAMP("Culling Spot Light");
|
|
|
|
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
|
|
real_t angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
|
|
|
|
CameraMatrix cm;
|
|
cm.set_perspective(angle * 2.0, 1.0, 0.01, radius);
|
|
|
|
Vector<Plane> planes = cm.get_projection_planes(light_transform);
|
|
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
|
|
|
|
Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2));
|
|
for (int j = 0; j < cull_count; j++) {
|
|
Instance *instance = instance_shadow_cull_result[j];
|
|
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
|
|
cull_count--;
|
|
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
|
|
j--;
|
|
} else {
|
|
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
|
|
animated_material_found = true;
|
|
}
|
|
instance->depth = near_plane.distance_to(instance->transform.origin);
|
|
instance->depth_layer = 0;
|
|
}
|
|
}
|
|
|
|
RSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, light_transform, radius, 0, 0, 0);
|
|
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, 0, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
|
|
|
|
} break;
|
|
}
|
|
|
|
return animated_material_found;
|
|
}
|
|
|
|
void RenderingServerScene::render_camera(RID p_render_buffers, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) {
|
|
// render to mono camera
|
|
#ifndef _3D_DISABLED
|
|
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
|
|
/* STEP 1 - SETUP CAMERA */
|
|
CameraMatrix camera_matrix;
|
|
bool ortho = false;
|
|
|
|
switch (camera->type) {
|
|
case Camera::ORTHOGONAL: {
|
|
camera_matrix.set_orthogonal(
|
|
camera->size,
|
|
p_viewport_size.width / (float)p_viewport_size.height,
|
|
camera->znear,
|
|
camera->zfar,
|
|
camera->vaspect);
|
|
ortho = true;
|
|
} break;
|
|
case Camera::PERSPECTIVE: {
|
|
camera_matrix.set_perspective(
|
|
camera->fov,
|
|
p_viewport_size.width / (float)p_viewport_size.height,
|
|
camera->znear,
|
|
camera->zfar,
|
|
camera->vaspect);
|
|
ortho = false;
|
|
|
|
} break;
|
|
case Camera::FRUSTUM: {
|
|
camera_matrix.set_frustum(
|
|
camera->size,
|
|
p_viewport_size.width / (float)p_viewport_size.height,
|
|
camera->offset,
|
|
camera->znear,
|
|
camera->zfar,
|
|
camera->vaspect);
|
|
ortho = false;
|
|
} break;
|
|
}
|
|
|
|
_prepare_scene(camera->transform, camera_matrix, ortho, camera->vaspect, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID());
|
|
_render_scene(p_render_buffers, camera->transform, camera_matrix, ortho, camera->env, camera->effects, p_scenario, p_shadow_atlas, RID(), -1);
|
|
#endif
|
|
}
|
|
|
|
void RenderingServerScene::render_camera(RID p_render_buffers, Ref<XRInterface> &p_interface, XRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) {
|
|
// render for AR/VR interface
|
|
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
|
|
/* SETUP CAMERA, we are ignoring type and FOV here */
|
|
float aspect = p_viewport_size.width / (float)p_viewport_size.height;
|
|
CameraMatrix camera_matrix = p_interface->get_projection_for_eye(p_eye, aspect, camera->znear, camera->zfar);
|
|
|
|
// We also ignore our camera position, it will have been positioned with a slightly old tracking position.
|
|
// Instead we take our origin point and have our ar/vr interface add fresh tracking data! Whoohoo!
|
|
Transform world_origin = XRServer::get_singleton()->get_world_origin();
|
|
Transform cam_transform = p_interface->get_transform_for_eye(p_eye, world_origin);
|
|
|
|
// For stereo render we only prepare for our left eye and then reuse the outcome for our right eye
|
|
if (p_eye == XRInterface::EYE_LEFT) {
|
|
// Center our transform, we assume basis is equal.
|
|
Transform mono_transform = cam_transform;
|
|
Transform right_transform = p_interface->get_transform_for_eye(XRInterface::EYE_RIGHT, world_origin);
|
|
mono_transform.origin += right_transform.origin;
|
|
mono_transform.origin *= 0.5;
|
|
|
|
// We need to combine our projection frustums for culling.
|
|
// Ideally we should use our clipping planes for this and combine them,
|
|
// however our shadow map logic uses our projection matrix.
|
|
// Note: as our left and right frustums should be mirrored, we don't need our right projection matrix.
|
|
|
|
// - get some base values we need
|
|
float eye_dist = (mono_transform.origin - cam_transform.origin).length();
|
|
float z_near = camera_matrix.get_z_near(); // get our near plane
|
|
float z_far = camera_matrix.get_z_far(); // get our far plane
|
|
float width = (2.0 * z_near) / camera_matrix.matrix[0][0];
|
|
float x_shift = width * camera_matrix.matrix[2][0];
|
|
float height = (2.0 * z_near) / camera_matrix.matrix[1][1];
|
|
float y_shift = height * camera_matrix.matrix[2][1];
|
|
|
|
// printf("Eye_dist = %f, Near = %f, Far = %f, Width = %f, Shift = %f\n", eye_dist, z_near, z_far, width, x_shift);
|
|
|
|
// - calculate our near plane size (horizontal only, right_near is mirrored)
|
|
float left_near = -eye_dist - ((width - x_shift) * 0.5);
|
|
|
|
// - calculate our far plane size (horizontal only, right_far is mirrored)
|
|
float left_far = -eye_dist - (z_far * (width - x_shift) * 0.5 / z_near);
|
|
float left_far_right_eye = eye_dist - (z_far * (width + x_shift) * 0.5 / z_near);
|
|
if (left_far > left_far_right_eye) {
|
|
// on displays smaller then double our iod, the right eye far frustrum can overtake the left eyes.
|
|
left_far = left_far_right_eye;
|
|
}
|
|
|
|
// - figure out required z-shift
|
|
float slope = (left_far - left_near) / (z_far - z_near);
|
|
float z_shift = (left_near / slope) - z_near;
|
|
|
|
// - figure out new vertical near plane size (this will be slightly oversized thanks to our z-shift)
|
|
float top_near = (height - y_shift) * 0.5;
|
|
top_near += (top_near / z_near) * z_shift;
|
|
float bottom_near = -(height + y_shift) * 0.5;
|
|
bottom_near += (bottom_near / z_near) * z_shift;
|
|
|
|
// printf("Left_near = %f, Left_far = %f, Top_near = %f, Bottom_near = %f, Z_shift = %f\n", left_near, left_far, top_near, bottom_near, z_shift);
|
|
|
|
// - generate our frustum
|
|
CameraMatrix combined_matrix;
|
|
combined_matrix.set_frustum(left_near, -left_near, bottom_near, top_near, z_near + z_shift, z_far + z_shift);
|
|
|
|
// and finally move our camera back
|
|
Transform apply_z_shift;
|
|
apply_z_shift.origin = Vector3(0.0, 0.0, z_shift); // z negative is forward so this moves it backwards
|
|
mono_transform *= apply_z_shift;
|
|
|
|
// now prepare our scene with our adjusted transform projection matrix
|
|
_prepare_scene(mono_transform, combined_matrix, false, false, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID());
|
|
} else if (p_eye == XRInterface::EYE_MONO) {
|
|
// For mono render, prepare as per usual
|
|
_prepare_scene(cam_transform, camera_matrix, false, false, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID());
|
|
}
|
|
|
|
// And render our scene...
|
|
_render_scene(p_render_buffers, cam_transform, camera_matrix, false, camera->env, camera->effects, p_scenario, p_shadow_atlas, RID(), -1);
|
|
};
|
|
|
|
void RenderingServerScene::_prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_force_environment, RID p_force_camera_effects, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, bool p_using_shadows) {
|
|
// Note, in stereo rendering:
|
|
// - p_cam_transform will be a transform in the middle of our two eyes
|
|
// - p_cam_projection is a wider frustrum that encompasses both eyes
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
|
|
render_pass++;
|
|
uint32_t camera_layer_mask = p_visible_layers;
|
|
|
|
RSG::scene_render->set_scene_pass(render_pass);
|
|
|
|
RENDER_TIMESTAMP("Frustum Culling");
|
|
|
|
//rasterizer->set_camera(camera->transform, camera_matrix,ortho);
|
|
|
|
Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform);
|
|
|
|
Plane near_plane(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2).normalized());
|
|
float z_far = p_cam_projection.get_z_far();
|
|
|
|
/* STEP 2 - CULL */
|
|
instance_cull_count = scenario->octree.cull_convex(planes, instance_cull_result, MAX_INSTANCE_CULL);
|
|
light_cull_count = 0;
|
|
|
|
reflection_probe_cull_count = 0;
|
|
decal_cull_count = 0;
|
|
gi_probe_cull_count = 0;
|
|
lightmap_cull_count = 0;
|
|
|
|
//light_samplers_culled=0;
|
|
|
|
/*
|
|
print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0));
|
|
print_line("OTO: "+itos(p_scenario->octree.get_octant_count()));
|
|
print_line("OTE: "+itos(p_scenario->octree.get_elem_count()));
|
|
print_line("OTP: "+itos(p_scenario->octree.get_pair_count()));
|
|
*/
|
|
|
|
/* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */
|
|
//removed, will replace with culling
|
|
|
|
/* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */
|
|
uint64_t frame_number = RSG::rasterizer->get_frame_number();
|
|
float lightmap_probe_update_speed = RSG::storage->lightmap_get_probe_capture_update_speed() * RSG::rasterizer->get_frame_delta_time();
|
|
|
|
for (int i = 0; i < instance_cull_count; i++) {
|
|
Instance *ins = instance_cull_result[i];
|
|
|
|
bool keep = false;
|
|
|
|
if ((camera_layer_mask & ins->layer_mask) == 0) {
|
|
//failure
|
|
} else if (ins->base_type == RS::INSTANCE_LIGHT && ins->visible) {
|
|
if (light_cull_count < MAX_LIGHTS_CULLED) {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data);
|
|
|
|
if (!light->geometries.empty()) {
|
|
//do not add this light if no geometry is affected by it..
|
|
light_cull_result[light_cull_count] = ins;
|
|
light_instance_cull_result[light_cull_count] = light->instance;
|
|
if (p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(ins->base)) {
|
|
RSG::scene_render->light_instance_mark_visible(light->instance); //mark it visible for shadow allocation later
|
|
}
|
|
|
|
light_cull_count++;
|
|
}
|
|
}
|
|
} else if (ins->base_type == RS::INSTANCE_REFLECTION_PROBE && ins->visible) {
|
|
if (reflection_probe_cull_count < MAX_REFLECTION_PROBES_CULLED) {
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(ins->base_data);
|
|
|
|
if (p_reflection_probe != reflection_probe->instance) {
|
|
//avoid entering The Matrix
|
|
|
|
if (!reflection_probe->geometries.empty()) {
|
|
//do not add this light if no geometry is affected by it..
|
|
|
|
if (reflection_probe->reflection_dirty || RSG::scene_render->reflection_probe_instance_needs_redraw(reflection_probe->instance)) {
|
|
if (!reflection_probe->update_list.in_list()) {
|
|
reflection_probe->render_step = 0;
|
|
reflection_probe_render_list.add_last(&reflection_probe->update_list);
|
|
}
|
|
|
|
reflection_probe->reflection_dirty = false;
|
|
}
|
|
|
|
if (RSG::scene_render->reflection_probe_instance_has_reflection(reflection_probe->instance)) {
|
|
reflection_probe_instance_cull_result[reflection_probe_cull_count] = reflection_probe->instance;
|
|
reflection_probe_cull_count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (ins->base_type == RS::INSTANCE_DECAL && ins->visible) {
|
|
if (decal_cull_count < MAX_DECALS_CULLED) {
|
|
InstanceDecalData *decal = static_cast<InstanceDecalData *>(ins->base_data);
|
|
|
|
if (!decal->geometries.empty()) {
|
|
//do not add this decal if no geometry is affected by it..
|
|
decal_instance_cull_result[decal_cull_count] = decal->instance;
|
|
decal_cull_count++;
|
|
}
|
|
}
|
|
|
|
} else if (ins->base_type == RS::INSTANCE_GI_PROBE && ins->visible) {
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(ins->base_data);
|
|
if (!gi_probe->update_element.in_list()) {
|
|
gi_probe_update_list.add(&gi_probe->update_element);
|
|
}
|
|
|
|
if (gi_probe_cull_count < MAX_GI_PROBES_CULLED) {
|
|
gi_probe_instance_cull_result[gi_probe_cull_count] = gi_probe->probe_instance;
|
|
gi_probe_cull_count++;
|
|
}
|
|
} else if (ins->base_type == RS::INSTANCE_LIGHTMAP && ins->visible) {
|
|
if (lightmap_cull_count < MAX_LIGHTMAPS_CULLED) {
|
|
lightmap_cull_result[lightmap_cull_count] = ins;
|
|
lightmap_cull_count++;
|
|
}
|
|
|
|
} else if (((1 << ins->base_type) & RS::INSTANCE_GEOMETRY_MASK) && ins->visible && ins->cast_shadows != RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
|
|
keep = true;
|
|
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(ins->base_data);
|
|
|
|
if (ins->redraw_if_visible) {
|
|
RenderingServerRaster::redraw_request();
|
|
}
|
|
|
|
if (ins->base_type == RS::INSTANCE_PARTICLES) {
|
|
//particles visible? process them
|
|
if (RSG::storage->particles_is_inactive(ins->base)) {
|
|
//but if nothing is going on, don't do it.
|
|
keep = false;
|
|
} else {
|
|
RSG::storage->particles_request_process(ins->base);
|
|
//particles visible? request redraw
|
|
RenderingServerRaster::redraw_request();
|
|
}
|
|
}
|
|
|
|
if (geom->lighting_dirty) {
|
|
int l = 0;
|
|
//only called when lights AABB enter/exit this geometry
|
|
ins->light_instances.resize(geom->lighting.size());
|
|
|
|
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
|
|
|
|
ins->light_instances.write[l++] = light->instance;
|
|
}
|
|
|
|
geom->lighting_dirty = false;
|
|
}
|
|
|
|
if (geom->reflection_dirty) {
|
|
int l = 0;
|
|
//only called when reflection probe AABB enter/exit this geometry
|
|
ins->reflection_probe_instances.resize(geom->reflection_probes.size());
|
|
|
|
for (List<Instance *>::Element *E = geom->reflection_probes.front(); E; E = E->next()) {
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(E->get()->base_data);
|
|
|
|
ins->reflection_probe_instances.write[l++] = reflection_probe->instance;
|
|
}
|
|
|
|
geom->reflection_dirty = false;
|
|
}
|
|
|
|
if (geom->gi_probes_dirty) {
|
|
int l = 0;
|
|
//only called when reflection probe AABB enter/exit this geometry
|
|
ins->gi_probe_instances.resize(geom->gi_probes.size());
|
|
|
|
for (List<Instance *>::Element *E = geom->gi_probes.front(); E; E = E->next()) {
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(E->get()->base_data);
|
|
|
|
ins->gi_probe_instances.write[l++] = gi_probe->probe_instance;
|
|
}
|
|
|
|
geom->gi_probes_dirty = false;
|
|
}
|
|
|
|
if (ins->last_frame_pass != frame_number && !ins->lightmap_target_sh.empty() && !ins->lightmap_sh.empty()) {
|
|
Color *sh = ins->lightmap_sh.ptrw();
|
|
const Color *target_sh = ins->lightmap_target_sh.ptr();
|
|
for (uint32_t j = 0; j < 9; j++) {
|
|
sh[j] = sh[j].lerp(target_sh[j], MIN(1.0, lightmap_probe_update_speed));
|
|
}
|
|
}
|
|
|
|
ins->depth = near_plane.distance_to(ins->transform.origin);
|
|
ins->depth_layer = CLAMP(int(ins->depth * 16 / z_far), 0, 15);
|
|
}
|
|
|
|
if (!keep) {
|
|
// remove, no reason to keep
|
|
instance_cull_count--;
|
|
SWAP(instance_cull_result[i], instance_cull_result[instance_cull_count]);
|
|
i--;
|
|
ins->last_render_pass = 0; // make invalid
|
|
} else {
|
|
ins->last_render_pass = render_pass;
|
|
}
|
|
ins->last_frame_pass = frame_number;
|
|
}
|
|
|
|
/* STEP 5 - PROCESS LIGHTS */
|
|
|
|
RID *directional_light_ptr = &light_instance_cull_result[light_cull_count];
|
|
directional_light_count = 0;
|
|
|
|
// directional lights
|
|
{
|
|
Instance **lights_with_shadow = (Instance **)alloca(sizeof(Instance *) * scenario->directional_lights.size());
|
|
int directional_shadow_count = 0;
|
|
|
|
for (List<Instance *>::Element *E = scenario->directional_lights.front(); E; E = E->next()) {
|
|
if (light_cull_count + directional_light_count >= MAX_LIGHTS_CULLED) {
|
|
break;
|
|
}
|
|
|
|
if (!E->get()->visible)
|
|
continue;
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
|
|
|
|
//check shadow..
|
|
|
|
if (light) {
|
|
if (p_using_shadows && p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(E->get()->base)) {
|
|
lights_with_shadow[directional_shadow_count++] = E->get();
|
|
}
|
|
//add to list
|
|
directional_light_ptr[directional_light_count++] = light->instance;
|
|
}
|
|
}
|
|
|
|
RSG::scene_render->set_directional_shadow_count(directional_shadow_count);
|
|
|
|
for (int i = 0; i < directional_shadow_count; i++) {
|
|
RENDER_TIMESTAMP(">Rendering Directional Light " + itos(i));
|
|
|
|
_light_instance_update_shadow(lights_with_shadow[i], p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect, p_shadow_atlas, scenario);
|
|
|
|
RENDER_TIMESTAMP("<Rendering Directional Light " + itos(i));
|
|
}
|
|
}
|
|
|
|
if (p_using_shadows) { //setup shadow maps
|
|
|
|
//SortArray<Instance*,_InstanceLightsort> sorter;
|
|
//sorter.sort(light_cull_result,light_cull_count);
|
|
for (int i = 0; i < light_cull_count; i++) {
|
|
Instance *ins = light_cull_result[i];
|
|
|
|
if (!p_shadow_atlas.is_valid() || !RSG::storage->light_has_shadow(ins->base))
|
|
continue;
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data);
|
|
|
|
float coverage = 0.f;
|
|
|
|
{ //compute coverage
|
|
|
|
Transform cam_xf = p_cam_transform;
|
|
float zn = p_cam_projection.get_z_near();
|
|
Plane p(cam_xf.origin + cam_xf.basis.get_axis(2) * -zn, -cam_xf.basis.get_axis(2)); //camera near plane
|
|
|
|
// near plane half width and height
|
|
Vector2 vp_half_extents = p_cam_projection.get_viewport_half_extents();
|
|
|
|
switch (RSG::storage->light_get_type(ins->base)) {
|
|
case RS::LIGHT_OMNI: {
|
|
float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE);
|
|
|
|
//get two points parallel to near plane
|
|
Vector3 points[2] = {
|
|
ins->transform.origin,
|
|
ins->transform.origin + cam_xf.basis.get_axis(0) * radius
|
|
};
|
|
|
|
if (!p_cam_orthogonal) {
|
|
//if using perspetive, map them to near plane
|
|
for (int j = 0; j < 2; j++) {
|
|
if (p.distance_to(points[j]) < 0) {
|
|
points[j].z = -zn; //small hack to keep size constant when hitting the screen
|
|
}
|
|
|
|
p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
|
|
}
|
|
}
|
|
|
|
float screen_diameter = points[0].distance_to(points[1]) * 2;
|
|
coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);
|
|
} break;
|
|
case RS::LIGHT_SPOT: {
|
|
float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE);
|
|
float angle = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_SPOT_ANGLE);
|
|
|
|
float w = radius * Math::sin(Math::deg2rad(angle));
|
|
float d = radius * Math::cos(Math::deg2rad(angle));
|
|
|
|
Vector3 base = ins->transform.origin - ins->transform.basis.get_axis(2).normalized() * d;
|
|
|
|
Vector3 points[2] = {
|
|
base,
|
|
base + cam_xf.basis.get_axis(0) * w
|
|
};
|
|
|
|
if (!p_cam_orthogonal) {
|
|
//if using perspetive, map them to near plane
|
|
for (int j = 0; j < 2; j++) {
|
|
if (p.distance_to(points[j]) < 0) {
|
|
points[j].z = -zn; //small hack to keep size constant when hitting the screen
|
|
}
|
|
|
|
p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
|
|
}
|
|
}
|
|
|
|
float screen_diameter = points[0].distance_to(points[1]) * 2;
|
|
coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);
|
|
|
|
} break;
|
|
default: {
|
|
ERR_PRINT("Invalid Light Type");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (light->shadow_dirty) {
|
|
light->last_version++;
|
|
light->shadow_dirty = false;
|
|
}
|
|
|
|
bool redraw = RSG::scene_render->shadow_atlas_update_light(p_shadow_atlas, light->instance, coverage, light->last_version);
|
|
|
|
if (redraw) {
|
|
//must redraw!
|
|
RENDER_TIMESTAMP(">Rendering Light " + itos(i));
|
|
light->shadow_dirty = _light_instance_update_shadow(ins, p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect, p_shadow_atlas, scenario);
|
|
RENDER_TIMESTAMP("<Rendering Light " + itos(i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::_render_scene(RID p_render_buffers, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, RID p_force_camera_effects, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
|
|
/* ENVIRONMENT */
|
|
|
|
RID environment;
|
|
if (p_force_environment.is_valid()) //camera has more environment priority
|
|
environment = p_force_environment;
|
|
else if (scenario->environment.is_valid())
|
|
environment = scenario->environment;
|
|
else
|
|
environment = scenario->fallback_environment;
|
|
|
|
RID camera_effects;
|
|
if (p_force_camera_effects.is_valid()) {
|
|
camera_effects = p_force_camera_effects;
|
|
} else {
|
|
camera_effects = scenario->camera_effects;
|
|
}
|
|
/* PROCESS GEOMETRY AND DRAW SCENE */
|
|
|
|
RENDER_TIMESTAMP("Render Scene ");
|
|
RSG::scene_render->render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_orthogonal, (RasterizerScene::InstanceBase **)instance_cull_result, instance_cull_count, light_instance_cull_result, light_cull_count + directional_light_count, reflection_probe_instance_cull_result, reflection_probe_cull_count, gi_probe_instance_cull_result, gi_probe_cull_count, decal_instance_cull_result, decal_cull_count, (RasterizerScene::InstanceBase **)lightmap_cull_result, lightmap_cull_count, environment, camera_effects, p_shadow_atlas, p_reflection_probe.is_valid() ? RID() : scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass);
|
|
}
|
|
|
|
void RenderingServerScene::render_empty_scene(RID p_render_buffers, RID p_scenario, RID p_shadow_atlas) {
|
|
#ifndef _3D_DISABLED
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
|
|
RID environment;
|
|
if (scenario->environment.is_valid())
|
|
environment = scenario->environment;
|
|
else
|
|
environment = scenario->fallback_environment;
|
|
RENDER_TIMESTAMP("Render Empty Scene ");
|
|
RSG::scene_render->render_scene(p_render_buffers, Transform(), CameraMatrix(), true, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, environment, RID(), p_shadow_atlas, scenario->reflection_atlas, RID(), 0);
|
|
#endif
|
|
}
|
|
|
|
bool RenderingServerScene::_render_reflection_probe_step(Instance *p_instance, int p_step) {
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
|
|
Scenario *scenario = p_instance->scenario;
|
|
ERR_FAIL_COND_V(!scenario, true);
|
|
|
|
RenderingServerRaster::redraw_request(); //update, so it updates in editor
|
|
|
|
if (p_step == 0) {
|
|
if (!RSG::scene_render->reflection_probe_instance_begin_render(reflection_probe->instance, scenario->reflection_atlas)) {
|
|
return true; //all full
|
|
}
|
|
}
|
|
|
|
if (p_step >= 0 && p_step < 6) {
|
|
static const Vector3 view_normals[6] = {
|
|
Vector3(+1, 0, 0),
|
|
Vector3(-1, 0, 0),
|
|
Vector3(0, +1, 0),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, 0, +1),
|
|
Vector3(0, 0, -1)
|
|
};
|
|
static const Vector3 view_up[6] = {
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, 0, +1),
|
|
Vector3(0, 0, -1),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, -1, 0)
|
|
};
|
|
|
|
Vector3 extents = RSG::storage->reflection_probe_get_extents(p_instance->base);
|
|
Vector3 origin_offset = RSG::storage->reflection_probe_get_origin_offset(p_instance->base);
|
|
float max_distance = RSG::storage->reflection_probe_get_origin_max_distance(p_instance->base);
|
|
|
|
Vector3 edge = view_normals[p_step] * extents;
|
|
float distance = ABS(view_normals[p_step].dot(edge) - view_normals[p_step].dot(origin_offset)); //distance from origin offset to actual view distance limit
|
|
|
|
max_distance = MAX(max_distance, distance);
|
|
|
|
//render cubemap side
|
|
CameraMatrix cm;
|
|
cm.set_perspective(90, 1, 0.01, max_distance);
|
|
|
|
Transform local_view;
|
|
local_view.set_look_at(origin_offset, origin_offset + view_normals[p_step], view_up[p_step]);
|
|
|
|
Transform xform = p_instance->transform * local_view;
|
|
|
|
RID shadow_atlas;
|
|
|
|
bool use_shadows = RSG::storage->reflection_probe_renders_shadows(p_instance->base);
|
|
if (use_shadows) {
|
|
shadow_atlas = scenario->reflection_probe_shadow_atlas;
|
|
}
|
|
|
|
RENDER_TIMESTAMP("Render Reflection Probe, Step " + itos(p_step));
|
|
_prepare_scene(xform, cm, false, false, RID(), RID(), RSG::storage->reflection_probe_get_cull_mask(p_instance->base), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, use_shadows);
|
|
_render_scene(RID(), xform, cm, false, RID(), RID(), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, p_step);
|
|
|
|
} else {
|
|
//do roughness postprocess step until it believes it's done
|
|
RENDER_TIMESTAMP("Post-Process Reflection Probe, Step " + itos(p_step));
|
|
return RSG::scene_render->reflection_probe_instance_postprocess_step(reflection_probe->instance);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void RenderingServerScene::render_probes() {
|
|
/* REFLECTION PROBES */
|
|
|
|
SelfList<InstanceReflectionProbeData> *ref_probe = reflection_probe_render_list.first();
|
|
|
|
bool busy = false;
|
|
|
|
while (ref_probe) {
|
|
SelfList<InstanceReflectionProbeData> *next = ref_probe->next();
|
|
RID base = ref_probe->self()->owner->base;
|
|
|
|
switch (RSG::storage->reflection_probe_get_update_mode(base)) {
|
|
case RS::REFLECTION_PROBE_UPDATE_ONCE: {
|
|
if (busy) //already rendering something
|
|
break;
|
|
|
|
bool done = _render_reflection_probe_step(ref_probe->self()->owner, ref_probe->self()->render_step);
|
|
if (done) {
|
|
reflection_probe_render_list.remove(ref_probe);
|
|
} else {
|
|
ref_probe->self()->render_step++;
|
|
}
|
|
|
|
busy = true; //do not render another one of this kind
|
|
} break;
|
|
case RS::REFLECTION_PROBE_UPDATE_ALWAYS: {
|
|
int step = 0;
|
|
bool done = false;
|
|
while (!done) {
|
|
done = _render_reflection_probe_step(ref_probe->self()->owner, step);
|
|
step++;
|
|
}
|
|
|
|
reflection_probe_render_list.remove(ref_probe);
|
|
} break;
|
|
}
|
|
|
|
ref_probe = next;
|
|
}
|
|
|
|
/* GI PROBES */
|
|
|
|
SelfList<InstanceGIProbeData> *gi_probe = gi_probe_update_list.first();
|
|
|
|
if (gi_probe) {
|
|
RENDER_TIMESTAMP("Render GI Probes");
|
|
}
|
|
|
|
while (gi_probe) {
|
|
SelfList<InstanceGIProbeData> *next = gi_probe->next();
|
|
|
|
InstanceGIProbeData *probe = gi_probe->self();
|
|
//Instance *instance_probe = probe->owner;
|
|
|
|
//check if probe must be setup, but don't do if on the lighting thread
|
|
|
|
bool cache_dirty = false;
|
|
int cache_count = 0;
|
|
{
|
|
int light_cache_size = probe->light_cache.size();
|
|
const InstanceGIProbeData::LightCache *caches = probe->light_cache.ptr();
|
|
const RID *instance_caches = probe->light_instances.ptr();
|
|
|
|
int idx = 0; //must count visible lights
|
|
for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) {
|
|
Instance *instance = E->get();
|
|
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
|
|
if (!instance->visible) {
|
|
continue;
|
|
}
|
|
if (cache_dirty) {
|
|
//do nothing, since idx must count all visible lights anyway
|
|
} else if (idx >= light_cache_size) {
|
|
cache_dirty = true;
|
|
} else {
|
|
const InstanceGIProbeData::LightCache *cache = &caches[idx];
|
|
|
|
if (
|
|
instance_caches[idx] != instance_light->instance ||
|
|
cache->has_shadow != RSG::storage->light_has_shadow(instance->base) ||
|
|
cache->type != RSG::storage->light_get_type(instance->base) ||
|
|
cache->transform != instance->transform ||
|
|
cache->color != RSG::storage->light_get_color(instance->base) ||
|
|
cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) ||
|
|
cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) ||
|
|
cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) ||
|
|
cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) ||
|
|
cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) ||
|
|
cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) {
|
|
cache_dirty = true;
|
|
}
|
|
}
|
|
|
|
idx++;
|
|
}
|
|
|
|
for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) {
|
|
Instance *instance = E->get();
|
|
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
|
|
if (!instance->visible) {
|
|
continue;
|
|
}
|
|
if (cache_dirty) {
|
|
//do nothing, since idx must count all visible lights anyway
|
|
} else if (idx >= light_cache_size) {
|
|
cache_dirty = true;
|
|
} else {
|
|
const InstanceGIProbeData::LightCache *cache = &caches[idx];
|
|
|
|
if (
|
|
instance_caches[idx] != instance_light->instance ||
|
|
cache->has_shadow != RSG::storage->light_has_shadow(instance->base) ||
|
|
cache->type != RSG::storage->light_get_type(instance->base) ||
|
|
cache->transform != instance->transform ||
|
|
cache->color != RSG::storage->light_get_color(instance->base) ||
|
|
cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) ||
|
|
cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) ||
|
|
cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) ||
|
|
cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) ||
|
|
cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) ||
|
|
cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) {
|
|
cache_dirty = true;
|
|
}
|
|
}
|
|
|
|
idx++;
|
|
}
|
|
|
|
if (idx != light_cache_size) {
|
|
cache_dirty = true;
|
|
}
|
|
|
|
cache_count = idx;
|
|
}
|
|
|
|
bool update_lights = RSG::scene_render->gi_probe_needs_update(probe->probe_instance);
|
|
|
|
if (cache_dirty) {
|
|
probe->light_cache.resize(cache_count);
|
|
probe->light_instances.resize(cache_count);
|
|
|
|
if (cache_count) {
|
|
InstanceGIProbeData::LightCache *caches = probe->light_cache.ptrw();
|
|
RID *instance_caches = probe->light_instances.ptrw();
|
|
|
|
int idx = 0; //must count visible lights
|
|
for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) {
|
|
Instance *instance = E->get();
|
|
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
|
|
if (!instance->visible) {
|
|
continue;
|
|
}
|
|
|
|
InstanceGIProbeData::LightCache *cache = &caches[idx];
|
|
|
|
instance_caches[idx] = instance_light->instance;
|
|
cache->has_shadow = RSG::storage->light_has_shadow(instance->base);
|
|
cache->type = RSG::storage->light_get_type(instance->base);
|
|
cache->transform = instance->transform;
|
|
cache->color = RSG::storage->light_get_color(instance->base);
|
|
cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY);
|
|
cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY);
|
|
cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE);
|
|
cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION);
|
|
cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
|
|
cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
|
|
|
|
idx++;
|
|
}
|
|
for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) {
|
|
Instance *instance = E->get();
|
|
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
|
|
if (!instance->visible) {
|
|
continue;
|
|
}
|
|
|
|
InstanceGIProbeData::LightCache *cache = &caches[idx];
|
|
|
|
instance_caches[idx] = instance_light->instance;
|
|
cache->has_shadow = RSG::storage->light_has_shadow(instance->base);
|
|
cache->type = RSG::storage->light_get_type(instance->base);
|
|
cache->transform = instance->transform;
|
|
cache->color = RSG::storage->light_get_color(instance->base);
|
|
cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY);
|
|
cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY);
|
|
cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE);
|
|
cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION);
|
|
cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
|
|
cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
|
|
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
update_lights = true;
|
|
}
|
|
|
|
instance_cull_count = 0;
|
|
for (List<InstanceGIProbeData::PairInfo>::Element *E = probe->dynamic_geometries.front(); E; E = E->next()) {
|
|
if (instance_cull_count < MAX_INSTANCE_CULL) {
|
|
Instance *ins = E->get().geometry;
|
|
if (!ins->visible) {
|
|
continue;
|
|
}
|
|
InstanceGeometryData *geom = (InstanceGeometryData *)ins->base_data;
|
|
|
|
if (geom->gi_probes_dirty) {
|
|
//giprobes may be dirty, so update
|
|
int l = 0;
|
|
//only called when reflection probe AABB enter/exit this geometry
|
|
ins->gi_probe_instances.resize(geom->gi_probes.size());
|
|
|
|
for (List<Instance *>::Element *F = geom->gi_probes.front(); F; F = F->next()) {
|
|
InstanceGIProbeData *gi_probe2 = static_cast<InstanceGIProbeData *>(F->get()->base_data);
|
|
|
|
ins->gi_probe_instances.write[l++] = gi_probe2->probe_instance;
|
|
}
|
|
|
|
geom->gi_probes_dirty = false;
|
|
}
|
|
|
|
instance_cull_result[instance_cull_count++] = E->get().geometry;
|
|
}
|
|
}
|
|
|
|
RSG::scene_render->gi_probe_update(probe->probe_instance, update_lights, probe->light_instances, instance_cull_count, (RasterizerScene::InstanceBase **)instance_cull_result);
|
|
|
|
gi_probe_update_list.remove(gi_probe);
|
|
|
|
gi_probe = next;
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::_update_instance_shader_parameters_from_material(Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter> &isparams, const Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter> &existing_isparams, RID p_material) {
|
|
List<RasterizerStorage::InstanceShaderParam> plist;
|
|
RSG::storage->material_get_instance_shader_parameters(p_material, &plist);
|
|
for (List<RasterizerStorage::InstanceShaderParam>::Element *E = plist.front(); E; E = E->next()) {
|
|
StringName name = E->get().info.name;
|
|
if (isparams.has(name)) {
|
|
if (isparams[name].info.type != E->get().info.type) {
|
|
WARN_PRINT("More than one material in instance export the same instance shader uniform '" + E->get().info.name + "', but they do it with different data types. Only the first one (in order) will display correctly.");
|
|
}
|
|
if (isparams[name].index != E->get().index) {
|
|
WARN_PRINT("More than one material in instance export the same instance shader uniform '" + E->get().info.name + "', but they do it with different indices. Only the first one (in order) will display correctly.");
|
|
}
|
|
continue; //first one found always has priority
|
|
}
|
|
|
|
RasterizerScene::InstanceBase::InstanceShaderParameter isp;
|
|
isp.index = E->get().index;
|
|
isp.info = E->get().info;
|
|
isp.default_value = E->get().default_value;
|
|
if (existing_isparams.has(name)) {
|
|
isp.value = existing_isparams[name].value;
|
|
} else {
|
|
isp.value = E->get().default_value;
|
|
}
|
|
isparams[name] = isp;
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::_update_dirty_instance(Instance *p_instance) {
|
|
if (p_instance->update_aabb) {
|
|
_update_instance_aabb(p_instance);
|
|
}
|
|
|
|
if (p_instance->update_dependencies) {
|
|
p_instance->instance_increase_version();
|
|
|
|
if (p_instance->base.is_valid()) {
|
|
RSG::storage->base_update_dependency(p_instance->base, p_instance);
|
|
}
|
|
|
|
if (p_instance->material_override.is_valid()) {
|
|
RSG::storage->material_update_dependency(p_instance->material_override, p_instance);
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_MESH) {
|
|
//remove materials no longer used and un-own them
|
|
|
|
int new_mat_count = RSG::storage->mesh_get_surface_count(p_instance->base);
|
|
p_instance->materials.resize(new_mat_count);
|
|
|
|
int new_blend_shape_count = RSG::storage->mesh_get_blend_shape_count(p_instance->base);
|
|
if (new_blend_shape_count != p_instance->blend_values.size()) {
|
|
p_instance->blend_values.resize(new_blend_shape_count);
|
|
for (int i = 0; i < new_blend_shape_count; i++) {
|
|
p_instance->blend_values.write[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
|
|
|
|
bool can_cast_shadows = true;
|
|
bool is_animated = false;
|
|
Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter> isparams;
|
|
|
|
if (p_instance->cast_shadows == RS::SHADOW_CASTING_SETTING_OFF) {
|
|
can_cast_shadows = false;
|
|
}
|
|
|
|
if (p_instance->material_override.is_valid()) {
|
|
if (!RSG::storage->material_casts_shadows(p_instance->material_override)) {
|
|
can_cast_shadows = false;
|
|
}
|
|
is_animated = RSG::storage->material_is_animated(p_instance->material_override);
|
|
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, p_instance->material_override);
|
|
} else {
|
|
if (p_instance->base_type == RS::INSTANCE_MESH) {
|
|
RID mesh = p_instance->base;
|
|
|
|
if (mesh.is_valid()) {
|
|
bool cast_shadows = false;
|
|
|
|
for (int i = 0; i < p_instance->materials.size(); i++) {
|
|
RID mat = p_instance->materials[i].is_valid() ? p_instance->materials[i] : RSG::storage->mesh_surface_get_material(mesh, i);
|
|
|
|
if (!mat.is_valid()) {
|
|
cast_shadows = true;
|
|
} else {
|
|
if (RSG::storage->material_casts_shadows(mat)) {
|
|
cast_shadows = true;
|
|
}
|
|
|
|
if (RSG::storage->material_is_animated(mat)) {
|
|
is_animated = true;
|
|
}
|
|
|
|
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
|
|
|
|
RSG::storage->material_update_dependency(mat, p_instance);
|
|
}
|
|
}
|
|
|
|
if (!cast_shadows) {
|
|
can_cast_shadows = false;
|
|
}
|
|
}
|
|
|
|
} else if (p_instance->base_type == RS::INSTANCE_MULTIMESH) {
|
|
RID mesh = RSG::storage->multimesh_get_mesh(p_instance->base);
|
|
if (mesh.is_valid()) {
|
|
bool cast_shadows = false;
|
|
|
|
int sc = RSG::storage->mesh_get_surface_count(mesh);
|
|
for (int i = 0; i < sc; i++) {
|
|
RID mat = RSG::storage->mesh_surface_get_material(mesh, i);
|
|
|
|
if (!mat.is_valid()) {
|
|
cast_shadows = true;
|
|
|
|
} else {
|
|
if (RSG::storage->material_casts_shadows(mat)) {
|
|
cast_shadows = true;
|
|
}
|
|
if (RSG::storage->material_is_animated(mat)) {
|
|
is_animated = true;
|
|
}
|
|
|
|
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
|
|
|
|
RSG::storage->material_update_dependency(mat, p_instance);
|
|
}
|
|
}
|
|
|
|
if (!cast_shadows) {
|
|
can_cast_shadows = false;
|
|
}
|
|
|
|
RSG::storage->base_update_dependency(mesh, p_instance);
|
|
}
|
|
} else if (p_instance->base_type == RS::INSTANCE_IMMEDIATE) {
|
|
RID mat = RSG::storage->immediate_get_material(p_instance->base);
|
|
|
|
if (!(!mat.is_valid() || RSG::storage->material_casts_shadows(mat))) {
|
|
can_cast_shadows = false;
|
|
}
|
|
|
|
if (mat.is_valid() && RSG::storage->material_is_animated(mat)) {
|
|
is_animated = true;
|
|
}
|
|
|
|
if (mat.is_valid()) {
|
|
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
|
|
}
|
|
|
|
if (mat.is_valid()) {
|
|
RSG::storage->material_update_dependency(mat, p_instance);
|
|
}
|
|
|
|
} else if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
|
|
bool cast_shadows = false;
|
|
|
|
int dp = RSG::storage->particles_get_draw_passes(p_instance->base);
|
|
|
|
for (int i = 0; i < dp; i++) {
|
|
RID mesh = RSG::storage->particles_get_draw_pass_mesh(p_instance->base, i);
|
|
if (!mesh.is_valid())
|
|
continue;
|
|
|
|
int sc = RSG::storage->mesh_get_surface_count(mesh);
|
|
for (int j = 0; j < sc; j++) {
|
|
RID mat = RSG::storage->mesh_surface_get_material(mesh, j);
|
|
|
|
if (!mat.is_valid()) {
|
|
cast_shadows = true;
|
|
} else {
|
|
if (RSG::storage->material_casts_shadows(mat)) {
|
|
cast_shadows = true;
|
|
}
|
|
|
|
if (RSG::storage->material_is_animated(mat)) {
|
|
is_animated = true;
|
|
}
|
|
|
|
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
|
|
|
|
RSG::storage->material_update_dependency(mat, p_instance);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!cast_shadows) {
|
|
can_cast_shadows = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (can_cast_shadows != geom->can_cast_shadows) {
|
|
//ability to cast shadows change, let lights now
|
|
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
|
|
light->shadow_dirty = true;
|
|
}
|
|
|
|
geom->can_cast_shadows = can_cast_shadows;
|
|
}
|
|
|
|
geom->material_is_animated = is_animated;
|
|
p_instance->instance_shader_parameters = isparams;
|
|
|
|
if (p_instance->instance_allocated_shader_parameters != (p_instance->instance_shader_parameters.size() > 0)) {
|
|
p_instance->instance_allocated_shader_parameters = (p_instance->instance_shader_parameters.size() > 0);
|
|
if (p_instance->instance_allocated_shader_parameters) {
|
|
p_instance->instance_allocated_shader_parameters_offset = RSG::storage->global_variables_instance_allocate(p_instance->self);
|
|
for (Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter>::Element *E = p_instance->instance_shader_parameters.front(); E; E = E->next()) {
|
|
if (E->get().value.get_type() != Variant::NIL) {
|
|
RSG::storage->global_variables_instance_update(p_instance->self, E->get().index, E->get().value);
|
|
}
|
|
}
|
|
} else {
|
|
RSG::storage->global_variables_instance_free(p_instance->self);
|
|
p_instance->instance_allocated_shader_parameters_offset = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (p_instance->skeleton.is_valid()) {
|
|
RSG::storage->skeleton_update_dependency(p_instance->skeleton, p_instance);
|
|
}
|
|
|
|
p_instance->clean_up_dependencies();
|
|
}
|
|
|
|
_instance_update_list.remove(&p_instance->update_item);
|
|
|
|
_update_instance(p_instance);
|
|
|
|
p_instance->update_aabb = false;
|
|
p_instance->update_dependencies = false;
|
|
}
|
|
|
|
void RenderingServerScene::update_dirty_instances() {
|
|
RSG::storage->update_dirty_resources();
|
|
|
|
while (_instance_update_list.first()) {
|
|
_update_dirty_instance(_instance_update_list.first()->self());
|
|
}
|
|
}
|
|
|
|
bool RenderingServerScene::free(RID p_rid) {
|
|
if (camera_owner.owns(p_rid)) {
|
|
Camera *camera = camera_owner.getornull(p_rid);
|
|
|
|
camera_owner.free(p_rid);
|
|
memdelete(camera);
|
|
|
|
} else if (scenario_owner.owns(p_rid)) {
|
|
Scenario *scenario = scenario_owner.getornull(p_rid);
|
|
|
|
while (scenario->instances.first()) {
|
|
instance_set_scenario(scenario->instances.first()->self()->self, RID());
|
|
}
|
|
RSG::scene_render->free(scenario->reflection_probe_shadow_atlas);
|
|
RSG::scene_render->free(scenario->reflection_atlas);
|
|
scenario_owner.free(p_rid);
|
|
memdelete(scenario);
|
|
|
|
} else if (instance_owner.owns(p_rid)) {
|
|
// delete the instance
|
|
|
|
update_dirty_instances();
|
|
|
|
Instance *instance = instance_owner.getornull(p_rid);
|
|
|
|
instance_geometry_set_lightmap(p_rid, RID(), Rect2(), 0);
|
|
instance_set_scenario(p_rid, RID());
|
|
instance_set_base(p_rid, RID());
|
|
instance_geometry_set_material_override(p_rid, RID());
|
|
instance_attach_skeleton(p_rid, RID());
|
|
|
|
if (instance->instance_allocated_shader_parameters) {
|
|
//free the used shader parameters
|
|
RSG::storage->global_variables_instance_free(instance->self);
|
|
}
|
|
update_dirty_instances(); //in case something changed this
|
|
|
|
instance_owner.free(p_rid);
|
|
memdelete(instance);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
TypedArray<Image> RenderingServerScene::bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size) {
|
|
return RSG::scene_render->bake_render_uv2(p_base, p_material_overrides, p_image_size);
|
|
}
|
|
|
|
RenderingServerScene *RenderingServerScene::singleton = nullptr;
|
|
|
|
RenderingServerScene::RenderingServerScene() {
|
|
render_pass = 1;
|
|
singleton = this;
|
|
}
|
|
|
|
RenderingServerScene::~RenderingServerScene() {
|
|
}
|