1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-04 12:00:25 +00:00
Files
godot/thirdparty/sdl/libm/e_exp.c
Nintorch 0b3496fb4f Add support for SDL3 joystick input driver
Made possible by EIREXE, xsellier and the SDL team.

This commit includes statically linked SDL3 for Windows, Linux and macOS.
The vendored copy of SDL3 was setup to only build the required subsystems
for gamepad/joystick support, with some patches to be able to make it as
minimal as possible and reduce the impact on binary size and code size.

Co-authored-by: Álex Román Núñez <eirexe123@gmail.com>
Co-authored-by: Xavier Sellier <xsellier@gmail.com>
Co-authored-by: Rémi Verschelde <rverschelde@gmail.com>
2025-06-25 01:28:50 +02:00

202 lines
6.1 KiB
C

#include "SDL_internal.h"
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_exp(x)
* Returns the exponential of x.
*
* Method
* 1. Argument reduction:
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2.
*
* Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
* We use a special Reme algorithm on [0,0.34658] to generate
* a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
* r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
* 2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
*
* 3. Scale back to obtain exp(x):
* From step 1, we have
* exp(x) = 2^k * exp(r)
*
* Special cases:
* exp(INF) is INF, exp(NaN) is NaN;
* exp(-INF) is 0, and
* for finite argument, only exp(0)=1 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then exp(x) overflow
* if x < -7.45133219101941108420e+02 then exp(x) underflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "math_libm.h"
#include "math_private.h"
#ifdef __WATCOMC__ /* Watcom defines huge=__huge */
#undef huge
#endif
static const double
one = 1.0,
halF[2] = {0.5,-0.5,},
huge = 1.0e+300,
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
union {
Uint64 u64;
double d;
} inf_union = {
SDL_UINT64_C(0x7ff0000000000000) /* Binary representation of a 64-bit infinite double (sign=0, exponent=2047, mantissa=0) */
};
double __ieee754_exp(double x) /* default IEEE double exp */
{
double y;
double hi = 0.0;
double lo = 0.0;
double c;
double t;
int32_t k=0;
int32_t xsb;
u_int32_t hx;
GET_HIGH_WORD(hx,x);
xsb = (hx>>31)&1; /* sign bit of x */
hx &= 0x7fffffff; /* high word of |x| */
/* filter out non-finite argument */
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
if(hx>=0x7ff00000) {
u_int32_t lx;
GET_LOW_WORD(lx,x);
if(((hx&0xfffff)|lx)!=0)
return x+x; /* NaN */
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
}
#if 1
if(x > o_threshold) return inf_union.d; /* overflow */
#elif 1
if(x > o_threshold) return huge*huge; /* overflow */
#else /* !!! FIXME: check this: "huge * huge" is a compiler warning, maybe they wanted +Inf? */
if(x > o_threshold) return INFINITY; /* overflow */
#endif
if(x < u_threshold) return twom1000*twom1000; /* underflow */
}
/* argument reduction */
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
} else {
k = (int32_t) (invln2*x+halF[xsb]);
t = k;
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
lo = t*ln2LO[0];
}
x = hi - lo;
}
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
if(huge+x>one) return one+x;/* trigger inexact */
}
else k = 0;
/* x is now in primary range */
t = x*x;
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
if(k==0) return one-((x*c)/(c-2.0)-x);
else y = one-((lo-(x*c)/(2.0-c))-hi);
if(k >= -1021) {
u_int32_t hy;
GET_HIGH_WORD(hy,y);
SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
return y;
} else {
u_int32_t hy;
GET_HIGH_WORD(hy,y);
SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
return y*twom1000;
}
}
/*
* wrapper exp(x)
*/
#ifndef _IEEE_LIBM
double exp(double x)
{
static const double o_threshold = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
static const double u_threshold = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
double z = __ieee754_exp(x);
if (_LIB_VERSION == _IEEE_)
return z;
if (isfinite(x)) {
if (x > o_threshold)
return __kernel_standard(x, x, 6); /* exp overflow */
if (x < u_threshold)
return __kernel_standard(x, x, 7); /* exp underflow */
}
return z;
}
#else
strong_alias(__ieee754_exp, exp)
#endif
libm_hidden_def(exp)