// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT JPH_NAMESPACE_BEGIN Quat Quat::operator * (QuatArg inRHS) const { #if defined(JPH_USE_SSE4_1) // Taken from: http://momchil-velikov.blogspot.nl/2013/10/fast-sse-quternion-multiplication.html __m128 abcd = mValue.mValue; __m128 xyzw = inRHS.mValue.mValue; __m128 t0 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(3, 3, 3, 3)); __m128 t1 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(2, 3, 0, 1)); __m128 t3 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(0, 0, 0, 0)); __m128 t4 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(1, 0, 3, 2)); __m128 t5 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(1, 1, 1, 1)); __m128 t6 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(2, 0, 3, 1)); // [d,d,d,d] * [z,w,x,y] = [dz,dw,dx,dy] __m128 m0 = _mm_mul_ps(t0, t1); // [a,a,a,a] * [y,x,w,z] = [ay,ax,aw,az] __m128 m1 = _mm_mul_ps(t3, t4); // [b,b,b,b] * [z,x,w,y] = [bz,bx,bw,by] __m128 m2 = _mm_mul_ps(t5, t6); // [c,c,c,c] * [w,z,x,y] = [cw,cz,cx,cy] __m128 t7 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(2, 2, 2, 2)); __m128 t8 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(3, 2, 0, 1)); __m128 m3 = _mm_mul_ps(t7, t8); // [dz,dw,dx,dy] + -[ay,ax,aw,az] = [dz+ay,dw-ax,dx+aw,dy-az] __m128 e = _mm_addsub_ps(m0, m1); // [dx+aw,dz+ay,dy-az,dw-ax] e = _mm_shuffle_ps(e, e, _MM_SHUFFLE(1, 3, 0, 2)); // [dx+aw,dz+ay,dy-az,dw-ax] + -[bz,bx,bw,by] = [dx+aw+bz,dz+ay-bx,dy-az+bw,dw-ax-by] e = _mm_addsub_ps(e, m2); // [dz+ay-bx,dw-ax-by,dy-az+bw,dx+aw+bz] e = _mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 0, 1, 3)); // [dz+ay-bx,dw-ax-by,dy-az+bw,dx+aw+bz] + -[cw,cz,cx,cy] = [dz+ay-bx+cw,dw-ax-by-cz,dy-az+bw+cx,dx+aw+bz-cy] e = _mm_addsub_ps(e, m3); // [dw-ax-by-cz,dz+ay-bx+cw,dy-az+bw+cx,dx+aw+bz-cy] return Quat(Vec4(_mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 3, 1, 0)))); #else float lx = mValue.GetX(); float ly = mValue.GetY(); float lz = mValue.GetZ(); float lw = mValue.GetW(); float rx = inRHS.mValue.GetX(); float ry = inRHS.mValue.GetY(); float rz = inRHS.mValue.GetZ(); float rw = inRHS.mValue.GetW(); float x = lw * rx + lx * rw + ly * rz - lz * ry; float y = lw * ry - lx * rz + ly * rw + lz * rx; float z = lw * rz + lx * ry - ly * rx + lz * rw; float w = lw * rw - lx * rx - ly * ry - lz * rz; return Quat(x, y, z, w); #endif } Quat Quat::sMultiplyImaginary(Vec3Arg inLHS, QuatArg inRHS) { #if defined(JPH_USE_SSE4_1) __m128 abc0 = inLHS.mValue; __m128 xyzw = inRHS.mValue.mValue; // [a,a,a,a] * [w,y,z,x] = [aw,ay,az,ax] __m128 aaaa = _mm_shuffle_ps(abc0, abc0, _MM_SHUFFLE(0, 0, 0, 0)); __m128 xzyw = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(3, 1, 2, 0)); __m128 axazayaw = _mm_mul_ps(aaaa, xzyw); // [b,b,b,b] * [z,x,w,y] = [bz,bx,bw,by] __m128 bbbb = _mm_shuffle_ps(abc0, abc0, _MM_SHUFFLE(1, 1, 1, 1)); __m128 ywxz = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(2, 0, 3, 1)); __m128 bybwbxbz = _mm_mul_ps(bbbb, ywxz); // [c,c,c,c] * [w,z,x,y] = [cw,cz,cx,cy] __m128 cccc = _mm_shuffle_ps(abc0, abc0, _MM_SHUFFLE(2, 2, 2, 2)); __m128 yxzw = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(3, 2, 0, 1)); __m128 cycxczcw = _mm_mul_ps(cccc, yxzw); // [+aw,+ay,-az,-ax] __m128 e = _mm_xor_ps(axazayaw, _mm_set_ps(0.0f, 0.0f, -0.0f, -0.0f)); // [+aw,+ay,-az,-ax] + -[bz,bx,bw,by] = [+aw+bz,+ay-bx,-az+bw,-ax-by] e = _mm_addsub_ps(e, bybwbxbz); // [+ay-bx,-ax-by,-az+bw,+aw+bz] e = _mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 0, 1, 3)); // [+ay-bx,-ax-by,-az+bw,+aw+bz] + -[cw,cz,cx,cy] = [+ay-bx+cw,-ax-by-cz,-az+bw+cx,+aw+bz-cy] e = _mm_addsub_ps(e, cycxczcw); // [-ax-by-cz,+ay-bx+cw,-az+bw+cx,+aw+bz-cy] return Quat(Vec4(_mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 3, 1, 0)))); #else float lx = inLHS.GetX(); float ly = inLHS.GetY(); float lz = inLHS.GetZ(); float rx = inRHS.mValue.GetX(); float ry = inRHS.mValue.GetY(); float rz = inRHS.mValue.GetZ(); float rw = inRHS.mValue.GetW(); float x = (lx * rw) + ly * rz - lz * ry; float y = -(lx * rz) + ly * rw + lz * rx; float z = (lx * ry) - ly * rx + lz * rw; float w = -(lx * rx) - ly * ry - lz * rz; return Quat(x, y, z, w); #endif } Quat Quat::sRotation(Vec3Arg inAxis, float inAngle) { // returns [inAxis * sin(0.5f * inAngle), cos(0.5f * inAngle)] JPH_ASSERT(inAxis.IsNormalized()); Vec4 s, c; Vec4::sReplicate(0.5f * inAngle).SinCos(s, c); return Quat(Vec4::sSelect(Vec4(inAxis) * s, c, UVec4(0, 0, 0, 0xffffffffU))); } void Quat::GetAxisAngle(Vec3 &outAxis, float &outAngle) const { JPH_ASSERT(IsNormalized()); Quat w_pos = EnsureWPositive(); float abs_w = w_pos.GetW(); if (abs_w >= 1.0f) { outAxis = Vec3::sZero(); outAngle = 0.0f; } else { outAngle = 2.0f * ACos(abs_w); outAxis = w_pos.GetXYZ().NormalizedOr(Vec3::sZero()); } } Quat Quat::sFromTo(Vec3Arg inFrom, Vec3Arg inTo) { /* Uses (inFrom = v1, inTo = v2): angle = arcos(v1 . v2 / |v1||v2|) axis = normalize(v1 x v2) Quaternion is then: s = sin(angle / 2) x = axis.x * s y = axis.y * s z = axis.z * s w = cos(angle / 2) Using identities: sin(2 * a) = 2 * sin(a) * cos(a) cos(2 * a) = cos(a)^2 - sin(a)^2 sin(a)^2 + cos(a)^2 = 1 This reduces to: x = (v1 x v2).x y = (v1 x v2).y z = (v1 x v2).z w = |v1||v2| + v1 . v2 which then needs to be normalized because the whole equation was multiplied by 2 cos(angle / 2) */ float len_v1_v2 = sqrt(inFrom.LengthSq() * inTo.LengthSq()); float w = len_v1_v2 + inFrom.Dot(inTo); if (w == 0.0f) { if (len_v1_v2 == 0.0f) { // If either of the vectors has zero length, there is no rotation and we return identity return Quat::sIdentity(); } else { // If vectors are perpendicular, take one of the many 180 degree rotations that exist return Quat(Vec4(inFrom.GetNormalizedPerpendicular(), 0)); } } Vec3 v = inFrom.Cross(inTo); return Quat(Vec4(v, w)).Normalized(); } template Quat Quat::sRandom(Random &inRandom) { std::uniform_real_distribution zero_to_one(0.0f, 1.0f); float x0 = zero_to_one(inRandom); float r1 = sqrt(1.0f - x0), r2 = sqrt(x0); std::uniform_real_distribution zero_to_two_pi(0.0f, 2.0f * JPH_PI); Vec4 s, c; Vec4(zero_to_two_pi(inRandom), zero_to_two_pi(inRandom), 0, 0).SinCos(s, c); return Quat(s.GetX() * r1, c.GetX() * r1, s.GetY() * r2, c.GetY() * r2); } Quat Quat::sEulerAngles(Vec3Arg inAngles) { Vec4 half(0.5f * inAngles); Vec4 s, c; half.SinCos(s, c); float cx = c.GetX(); float sx = s.GetX(); float cy = c.GetY(); float sy = s.GetY(); float cz = c.GetZ(); float sz = s.GetZ(); return Quat( cz * sx * cy - sz * cx * sy, cz * cx * sy + sz * sx * cy, sz * cx * cy - cz * sx * sy, cz * cx * cy + sz * sx * sy); } Vec3 Quat::GetEulerAngles() const { float y_sq = GetY() * GetY(); // X float t0 = 2.0f * (GetW() * GetX() + GetY() * GetZ()); float t1 = 1.0f - 2.0f * (GetX() * GetX() + y_sq); // Y float t2 = 2.0f * (GetW() * GetY() - GetZ() * GetX()); t2 = t2 > 1.0f? 1.0f : t2; t2 = t2 < -1.0f? -1.0f : t2; // Z float t3 = 2.0f * (GetW() * GetZ() + GetX() * GetY()); float t4 = 1.0f - 2.0f * (y_sq + GetZ() * GetZ()); return Vec3(ATan2(t0, t1), ASin(t2), ATan2(t3, t4)); } Quat Quat::GetTwist(Vec3Arg inAxis) const { Quat twist(Vec4(GetXYZ().Dot(inAxis) * inAxis, GetW())); float twist_len = twist.LengthSq(); if (twist_len != 0.0f) return twist / sqrt(twist_len); else return Quat::sIdentity(); } void Quat::GetSwingTwist(Quat &outSwing, Quat &outTwist) const { float x = GetX(), y = GetY(), z = GetZ(), w = GetW(); float s = sqrt(Square(w) + Square(x)); if (s != 0.0f) { outTwist = Quat(x / s, 0, 0, w / s); outSwing = Quat(0, (w * y - x * z) / s, (w * z + x * y) / s, s); } else { // If both x and w are zero, this must be a 180 degree rotation around either y or z outTwist = Quat::sIdentity(); outSwing = *this; } } Quat Quat::LERP(QuatArg inDestination, float inFraction) const { float scale0 = 1.0f - inFraction; return Quat(Vec4::sReplicate(scale0) * mValue + Vec4::sReplicate(inFraction) * inDestination.mValue); } Quat Quat::SLERP(QuatArg inDestination, float inFraction) const { // Difference at which to LERP instead of SLERP const float delta = 0.0001f; // Calc cosine float sign_scale1 = 1.0f; float cos_omega = Dot(inDestination); // Adjust signs (if necessary) if (cos_omega < 0.0f) { cos_omega = -cos_omega; sign_scale1 = -1.0f; } // Calculate coefficients float scale0, scale1; if (1.0f - cos_omega > delta) { // Standard case (slerp) float omega = ACos(cos_omega); float sin_omega = Sin(omega); scale0 = Sin((1.0f - inFraction) * omega) / sin_omega; scale1 = sign_scale1 * Sin(inFraction * omega) / sin_omega; } else { // Quaternions are very close so we can do a linear interpolation scale0 = 1.0f - inFraction; scale1 = sign_scale1 * inFraction; } // Interpolate between the two quaternions return Quat(Vec4::sReplicate(scale0) * mValue + Vec4::sReplicate(scale1) * inDestination.mValue).Normalized(); } Vec3 Quat::operator * (Vec3Arg inValue) const { // Rotating a vector by a quaternion is done by: p' = q * (p, 0) * q^-1 (q^-1 = conjugated(q) for a unit quaternion) // Using Rodrigues formula: https://en.m.wikipedia.org/wiki/Euler%E2%80%93Rodrigues_formula // This is equivalent to: p' = p + 2 * (q.w * q.xyz x p + q.xyz x (q.xyz x p)) // // This is: // // Vec3 xyz = GetXYZ(); // Vec3 q_cross_p = xyz.Cross(inValue); // Vec3 q_cross_q_cross_p = xyz.Cross(q_cross_p); // Vec3 v = mValue.SplatW3() * q_cross_p + q_cross_q_cross_p; // return inValue + (v + v); // // But we can write out the cross products in a more efficient way: JPH_ASSERT(IsNormalized()); Vec3 xyz = GetXYZ(); Vec3 yzx = xyz.Swizzle(); Vec3 q_cross_p = (inValue.Swizzle() * xyz - yzx * inValue).Swizzle(); Vec3 q_cross_q_cross_p = (q_cross_p.Swizzle() * xyz - yzx * q_cross_p).Swizzle(); Vec3 v = mValue.SplatW3() * q_cross_p + q_cross_q_cross_p; return inValue + (v + v); } Vec3 Quat::InverseRotate(Vec3Arg inValue) const { JPH_ASSERT(IsNormalized()); Vec3 xyz = GetXYZ(); // Needs to be negated, but we do this in the equations below Vec3 yzx = xyz.Swizzle(); Vec3 q_cross_p = (yzx * inValue - inValue.Swizzle() * xyz).Swizzle(); Vec3 q_cross_q_cross_p = (yzx * q_cross_p - q_cross_p.Swizzle() * xyz).Swizzle(); Vec3 v = mValue.SplatW3() * q_cross_p + q_cross_q_cross_p; return inValue + (v + v); } Vec3 Quat::RotateAxisX() const { // This is *this * Vec3::sAxisX() written out: JPH_ASSERT(IsNormalized()); Vec4 t = mValue + mValue; return Vec3(t.SplatX() * mValue + (t.SplatW() * mValue.Swizzle()).FlipSign<1, 1, -1, 1>() - Vec4(1, 0, 0, 0)); } Vec3 Quat::RotateAxisY() const { // This is *this * Vec3::sAxisY() written out: JPH_ASSERT(IsNormalized()); Vec4 t = mValue + mValue; return Vec3(t.SplatY() * mValue + (t.SplatW() * mValue.Swizzle()).FlipSign<-1, 1, 1, 1>() - Vec4(0, 1, 0, 0)); } Vec3 Quat::RotateAxisZ() const { // This is *this * Vec3::sAxisZ() written out: JPH_ASSERT(IsNormalized()); Vec4 t = mValue + mValue; return Vec3(t.SplatZ() * mValue + (t.SplatW() * mValue.Swizzle()).FlipSign<1, -1, 1, 1>() - Vec4(0, 0, 1, 0)); } void Quat::StoreFloat3(Float3 *outV) const { JPH_ASSERT(IsNormalized()); EnsureWPositive().GetXYZ().StoreFloat3(outV); } void Quat::StoreFloat4(Float4 *outV) const { mValue.StoreFloat4(outV); } Quat Quat::sLoadFloat3Unsafe(const Float3 &inV) { Vec3 v = Vec3::sLoadFloat3Unsafe(inV); float w = sqrt(max(1.0f - v.LengthSq(), 0.0f)); // It is possible that the length of v is a fraction above 1, and we don't want to introduce NaN's in that case so we clamp to 0 return Quat(Vec4(v, w)); } JPH_NAMESPACE_END