/**************************************************************************/ /* gltf_accessor.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "gltf_accessor.h" #include "gltf_accessor.compat.inc" #include "../gltf_state.h" void GLTFAccessor::_bind_methods() { BIND_ENUM_CONSTANT(TYPE_SCALAR); BIND_ENUM_CONSTANT(TYPE_VEC2); BIND_ENUM_CONSTANT(TYPE_VEC3); BIND_ENUM_CONSTANT(TYPE_VEC4); BIND_ENUM_CONSTANT(TYPE_MAT2); BIND_ENUM_CONSTANT(TYPE_MAT3); BIND_ENUM_CONSTANT(TYPE_MAT4); BIND_ENUM_CONSTANT(COMPONENT_TYPE_NONE); BIND_ENUM_CONSTANT(COMPONENT_TYPE_SIGNED_BYTE); BIND_ENUM_CONSTANT(COMPONENT_TYPE_UNSIGNED_BYTE); BIND_ENUM_CONSTANT(COMPONENT_TYPE_SIGNED_SHORT); BIND_ENUM_CONSTANT(COMPONENT_TYPE_UNSIGNED_SHORT); BIND_ENUM_CONSTANT(COMPONENT_TYPE_SIGNED_INT); BIND_ENUM_CONSTANT(COMPONENT_TYPE_UNSIGNED_INT); BIND_ENUM_CONSTANT(COMPONENT_TYPE_SINGLE_FLOAT); BIND_ENUM_CONSTANT(COMPONENT_TYPE_DOUBLE_FLOAT); BIND_ENUM_CONSTANT(COMPONENT_TYPE_HALF_FLOAT); BIND_ENUM_CONSTANT(COMPONENT_TYPE_SIGNED_LONG); BIND_ENUM_CONSTANT(COMPONENT_TYPE_UNSIGNED_LONG); ClassDB::bind_static_method("GLTFAccessor", D_METHOD("from_dictionary", "dictionary"), &GLTFAccessor::from_dictionary); ClassDB::bind_method(D_METHOD("to_dictionary"), &GLTFAccessor::to_dictionary); ClassDB::bind_method(D_METHOD("get_buffer_view"), &GLTFAccessor::get_buffer_view); ClassDB::bind_method(D_METHOD("set_buffer_view", "buffer_view"), &GLTFAccessor::set_buffer_view); ClassDB::bind_method(D_METHOD("get_byte_offset"), &GLTFAccessor::get_byte_offset); ClassDB::bind_method(D_METHOD("set_byte_offset", "byte_offset"), &GLTFAccessor::set_byte_offset); ClassDB::bind_method(D_METHOD("get_component_type"), &GLTFAccessor::get_component_type); ClassDB::bind_method(D_METHOD("set_component_type", "component_type"), &GLTFAccessor::set_component_type); ClassDB::bind_method(D_METHOD("get_normalized"), &GLTFAccessor::get_normalized); ClassDB::bind_method(D_METHOD("set_normalized", "normalized"), &GLTFAccessor::set_normalized); ClassDB::bind_method(D_METHOD("get_count"), &GLTFAccessor::get_count); ClassDB::bind_method(D_METHOD("set_count", "count"), &GLTFAccessor::set_count); ClassDB::bind_method(D_METHOD("get_accessor_type"), &GLTFAccessor::get_accessor_type); ClassDB::bind_method(D_METHOD("set_accessor_type", "accessor_type"), &GLTFAccessor::set_accessor_type); ClassDB::bind_method(D_METHOD("get_type"), &GLTFAccessor::get_type); ClassDB::bind_method(D_METHOD("set_type", "type"), &GLTFAccessor::set_type); ClassDB::bind_method(D_METHOD("get_min"), &GLTFAccessor::get_min); ClassDB::bind_method(D_METHOD("set_min", "min"), &GLTFAccessor::set_min); ClassDB::bind_method(D_METHOD("get_max"), &GLTFAccessor::get_max); ClassDB::bind_method(D_METHOD("set_max", "max"), &GLTFAccessor::set_max); ClassDB::bind_method(D_METHOD("get_sparse_count"), &GLTFAccessor::get_sparse_count); ClassDB::bind_method(D_METHOD("set_sparse_count", "sparse_count"), &GLTFAccessor::set_sparse_count); ClassDB::bind_method(D_METHOD("get_sparse_indices_buffer_view"), &GLTFAccessor::get_sparse_indices_buffer_view); ClassDB::bind_method(D_METHOD("set_sparse_indices_buffer_view", "sparse_indices_buffer_view"), &GLTFAccessor::set_sparse_indices_buffer_view); ClassDB::bind_method(D_METHOD("get_sparse_indices_byte_offset"), &GLTFAccessor::get_sparse_indices_byte_offset); ClassDB::bind_method(D_METHOD("set_sparse_indices_byte_offset", "sparse_indices_byte_offset"), &GLTFAccessor::set_sparse_indices_byte_offset); ClassDB::bind_method(D_METHOD("get_sparse_indices_component_type"), &GLTFAccessor::get_sparse_indices_component_type); ClassDB::bind_method(D_METHOD("set_sparse_indices_component_type", "sparse_indices_component_type"), &GLTFAccessor::set_sparse_indices_component_type); ClassDB::bind_method(D_METHOD("get_sparse_values_buffer_view"), &GLTFAccessor::get_sparse_values_buffer_view); ClassDB::bind_method(D_METHOD("set_sparse_values_buffer_view", "sparse_values_buffer_view"), &GLTFAccessor::set_sparse_values_buffer_view); ClassDB::bind_method(D_METHOD("get_sparse_values_byte_offset"), &GLTFAccessor::get_sparse_values_byte_offset); ClassDB::bind_method(D_METHOD("set_sparse_values_byte_offset", "sparse_values_byte_offset"), &GLTFAccessor::set_sparse_values_byte_offset); ADD_PROPERTY(PropertyInfo(Variant::INT, "buffer_view"), "set_buffer_view", "get_buffer_view"); // GLTFBufferViewIndex ADD_PROPERTY(PropertyInfo(Variant::INT, "byte_offset"), "set_byte_offset", "get_byte_offset"); // int ADD_PROPERTY(PropertyInfo(Variant::INT, "component_type"), "set_component_type", "get_component_type"); // int ADD_PROPERTY(PropertyInfo(Variant::BOOL, "normalized"), "set_normalized", "get_normalized"); // bool ADD_PROPERTY(PropertyInfo(Variant::INT, "count"), "set_count", "get_count"); // int ADD_PROPERTY(PropertyInfo(Variant::INT, "accessor_type"), "set_accessor_type", "get_accessor_type"); // GLTFAccessor::GLTFAccessorType ADD_PROPERTY(PropertyInfo(Variant::INT, "type", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NONE), "set_type", "get_type"); // Deprecated, int for GLTFAccessor::GLTFAccessorType ADD_PROPERTY(PropertyInfo(Variant::PACKED_FLOAT64_ARRAY, "min"), "set_min", "get_min"); // Vector ADD_PROPERTY(PropertyInfo(Variant::PACKED_FLOAT64_ARRAY, "max"), "set_max", "get_max"); // Vector ADD_PROPERTY(PropertyInfo(Variant::INT, "sparse_count"), "set_sparse_count", "get_sparse_count"); // int ADD_PROPERTY(PropertyInfo(Variant::INT, "sparse_indices_buffer_view"), "set_sparse_indices_buffer_view", "get_sparse_indices_buffer_view"); // int ADD_PROPERTY(PropertyInfo(Variant::INT, "sparse_indices_byte_offset"), "set_sparse_indices_byte_offset", "get_sparse_indices_byte_offset"); // int ADD_PROPERTY(PropertyInfo(Variant::INT, "sparse_indices_component_type"), "set_sparse_indices_component_type", "get_sparse_indices_component_type"); // int ADD_PROPERTY(PropertyInfo(Variant::INT, "sparse_values_buffer_view"), "set_sparse_values_buffer_view", "get_sparse_values_buffer_view"); // int ADD_PROPERTY(PropertyInfo(Variant::INT, "sparse_values_byte_offset"), "set_sparse_values_byte_offset", "get_sparse_values_byte_offset"); // int } // Property getters and setters. GLTFBufferViewIndex GLTFAccessor::get_buffer_view() const { return buffer_view; } void GLTFAccessor::set_buffer_view(GLTFBufferViewIndex p_buffer_view) { buffer_view = p_buffer_view; } int64_t GLTFAccessor::get_byte_offset() const { return byte_offset; } void GLTFAccessor::set_byte_offset(int64_t p_byte_offset) { byte_offset = p_byte_offset; } GLTFAccessor::GLTFComponentType GLTFAccessor::get_component_type() const { return component_type; } void GLTFAccessor::set_component_type(GLTFComponentType p_component_type) { component_type = (GLTFComponentType)p_component_type; } bool GLTFAccessor::get_normalized() const { return normalized; } void GLTFAccessor::set_normalized(bool p_normalized) { normalized = p_normalized; } int64_t GLTFAccessor::get_count() const { return count; } void GLTFAccessor::set_count(int64_t p_count) { count = p_count; } GLTFAccessor::GLTFAccessorType GLTFAccessor::get_accessor_type() const { return accessor_type; } void GLTFAccessor::set_accessor_type(GLTFAccessorType p_accessor_type) { accessor_type = p_accessor_type; } int GLTFAccessor::get_type() const { return (int)accessor_type; } void GLTFAccessor::set_type(int p_accessor_type) { accessor_type = (GLTFAccessorType)p_accessor_type; // TODO: Register enum } Vector GLTFAccessor::get_min() const { return min; } void GLTFAccessor::set_min(Vector p_min) { min = p_min; } Vector GLTFAccessor::get_max() const { return max; } void GLTFAccessor::set_max(Vector p_max) { max = p_max; } int64_t GLTFAccessor::get_sparse_count() const { return sparse_count; } void GLTFAccessor::set_sparse_count(int64_t p_sparse_count) { sparse_count = p_sparse_count; } GLTFBufferViewIndex GLTFAccessor::get_sparse_indices_buffer_view() const { return sparse_indices_buffer_view; } void GLTFAccessor::set_sparse_indices_buffer_view(GLTFBufferViewIndex p_sparse_indices_buffer_view) { sparse_indices_buffer_view = p_sparse_indices_buffer_view; } int64_t GLTFAccessor::get_sparse_indices_byte_offset() const { return sparse_indices_byte_offset; } void GLTFAccessor::set_sparse_indices_byte_offset(int64_t p_sparse_indices_byte_offset) { sparse_indices_byte_offset = p_sparse_indices_byte_offset; } GLTFAccessor::GLTFComponentType GLTFAccessor::get_sparse_indices_component_type() const { return sparse_indices_component_type; } void GLTFAccessor::set_sparse_indices_component_type(GLTFComponentType p_sparse_indices_component_type) { sparse_indices_component_type = (GLTFComponentType)p_sparse_indices_component_type; } GLTFBufferViewIndex GLTFAccessor::get_sparse_values_buffer_view() const { return sparse_values_buffer_view; } void GLTFAccessor::set_sparse_values_buffer_view(GLTFBufferViewIndex p_sparse_values_buffer_view) { sparse_values_buffer_view = p_sparse_values_buffer_view; } int64_t GLTFAccessor::get_sparse_values_byte_offset() const { return sparse_values_byte_offset; } void GLTFAccessor::set_sparse_values_byte_offset(int64_t p_sparse_values_byte_offset) { sparse_values_byte_offset = p_sparse_values_byte_offset; } // Trivial helper functions. void GLTFAccessor::_calculate_min_and_max(const PackedFloat64Array &p_numbers) { const int64_t vector_size = _get_vector_size(); ERR_FAIL_COND(vector_size <= 0 || p_numbers.size() % vector_size != 0); min.resize(vector_size); max.resize(vector_size); // Initialize min and max with the first vector element values. for (int64_t in_vec = 0; in_vec < vector_size; in_vec++) { min.write[in_vec] = p_numbers[in_vec]; max.write[in_vec] = p_numbers[in_vec]; } // Iterate over the rest of the vectors. for (int64_t which_vec = vector_size; which_vec < p_numbers.size(); which_vec += vector_size) { for (int64_t in_vec = 0; in_vec < vector_size; in_vec++) { min.write[in_vec] = MIN(p_numbers[which_vec + in_vec], min[in_vec]); max.write[in_vec] = MAX(p_numbers[which_vec + in_vec], max[in_vec]); } } // 3.6.2.5: For floating-point components, JSON-stored minimum and maximum values represent single precision // floats and SHOULD be rounded to single precision before usage to avoid any potential boundary mismatches. // https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#accessors-bounds if (component_type == GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT) { for (int64_t i = 0; i < min.size(); i++) { min.write[i] = (double)(float)min[i]; max.write[i] = (double)(float)max[i]; } } } void GLTFAccessor::_determine_pad_skip(int64_t &r_skip_every, int64_t &r_skip_bytes) const { // 3.6.2.4. Accessors of matrix type have data stored in column-major order. The start of each column MUST be aligned to 4-byte boundaries. // https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#data-alignment switch (component_type) { case GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE: case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE: { if (accessor_type == GLTFAccessor::TYPE_MAT2) { r_skip_every = 2; r_skip_bytes = 2; } if (accessor_type == GLTFAccessor::TYPE_MAT3) { r_skip_every = 3; r_skip_bytes = 1; } } break; case GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT: case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT: { if (accessor_type == GLTFAccessor::TYPE_MAT3) { r_skip_every = 6; r_skip_bytes = 2; } } break; default: { } break; } } int64_t GLTFAccessor::_determine_padded_byte_count(int64_t p_raw_byte_size) const { // 3.6.2.4. Accessors of matrix type have data stored in column-major order. The start of each column MUST be aligned to 4-byte boundaries. // https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#data-alignment switch (component_type) { case GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE: case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE: { if (accessor_type == GLTFAccessor::TYPE_MAT2) { return p_raw_byte_size * 2; } if (accessor_type == GLTFAccessor::TYPE_MAT3) { return p_raw_byte_size * 4 / 3; } } break; case GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT: case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT: { if (accessor_type == GLTFAccessor::TYPE_MAT3) { return p_raw_byte_size * 4 / 3; } } break; default: { } break; } return p_raw_byte_size; } PackedFloat64Array GLTFAccessor::_filter_numbers(const PackedFloat64Array &p_numbers) const { PackedFloat64Array filtered_numbers = p_numbers; for (int64_t i = 0; i < p_numbers.size(); i++) { const double num = p_numbers[i]; if (!Math::is_finite(num)) { // 3.6.2.2. "Values of NaN, +Infinity, and -Infinity MUST NOT be present." // https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#accessor-data-types filtered_numbers.set(i, 0.0); } else if (component_type == GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT) { filtered_numbers.set(i, (double)(float)num); } } return filtered_numbers; } String GLTFAccessor::_get_component_type_name(const GLTFComponentType p_component) { // These names are only for debugging and printing error messages, glTF uses the numeric values. switch (p_component) { case GLTFAccessor::COMPONENT_TYPE_NONE: return "None"; case GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE: return "Byte"; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE: return "UByte"; case GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT: return "Short"; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT: return "UShort"; case GLTFAccessor::COMPONENT_TYPE_SIGNED_INT: return "Int"; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT: return "UInt"; case GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT: return "Float"; case GLTFAccessor::COMPONENT_TYPE_DOUBLE_FLOAT: return "Double"; case GLTFAccessor::COMPONENT_TYPE_HALF_FLOAT: return "Half"; case GLTFAccessor::COMPONENT_TYPE_SIGNED_LONG: return "Long"; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_LONG: return "ULong"; } return ""; } GLTFAccessor::GLTFComponentType GLTFAccessor::_get_indices_component_type_for_size(const int64_t p_size) { ERR_FAIL_COND_V(p_size < 0, GLTFAccessor::COMPONENT_TYPE_NONE); // 3.7.2.1. indices accessor MUST NOT contain the maximum possible value for the component type used // (i.e., 255 for unsigned bytes, 65535 for unsigned shorts, 4294967295 for unsigned ints). // https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview if (unlikely(p_size > 4294967294LL)) { return GLTFAccessor::COMPONENT_TYPE_UNSIGNED_LONG; } if (p_size > 65534LL) { return GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT; } if (p_size > 254LL) { return GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT; } return GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE; } GLTFAccessor::GLTFAccessorType GLTFAccessor::_get_accessor_type_from_str(const String &p_string) { if (p_string == "SCALAR") { return GLTFAccessor::TYPE_SCALAR; } if (p_string == "VEC2") { return GLTFAccessor::TYPE_VEC2; } if (p_string == "VEC3") { return GLTFAccessor::TYPE_VEC3; } if (p_string == "VEC4") { return GLTFAccessor::TYPE_VEC4; } if (p_string == "MAT2") { return GLTFAccessor::TYPE_MAT2; } if (p_string == "MAT3") { return GLTFAccessor::TYPE_MAT3; } if (p_string == "MAT4") { return GLTFAccessor::TYPE_MAT4; } ERR_FAIL_V(GLTFAccessor::TYPE_SCALAR); } String GLTFAccessor::_get_accessor_type_name() const { switch (accessor_type) { case GLTFAccessor::TYPE_SCALAR: return "SCALAR"; case GLTFAccessor::TYPE_VEC2: return "VEC2"; case GLTFAccessor::TYPE_VEC3: return "VEC3"; case GLTFAccessor::TYPE_VEC4: return "VEC4"; case GLTFAccessor::TYPE_MAT2: return "MAT2"; case GLTFAccessor::TYPE_MAT3: return "MAT3"; case GLTFAccessor::TYPE_MAT4: return "MAT4"; default: break; } ERR_FAIL_V("SCALAR"); } int64_t GLTFAccessor::_get_vector_size() const { switch (accessor_type) { case GLTFAccessor::TYPE_SCALAR: return 1; case GLTFAccessor::TYPE_VEC2: return 2; case GLTFAccessor::TYPE_VEC3: return 3; case GLTFAccessor::TYPE_VEC4: return 4; case GLTFAccessor::TYPE_MAT2: return 4; case GLTFAccessor::TYPE_MAT3: return 9; case GLTFAccessor::TYPE_MAT4: return 16; default: break; } ERR_FAIL_V(0); } int64_t GLTFAccessor::_get_numbers_per_variant_for_gltf(Variant::Type p_variant_type) { // Note that these numbers are used to determine the size of the glTF accessor appropriate for the type (see `_get_vector_size`). // Therefore, the only valid values this can return are 1 (SCALAR), 2 (VEC2), 3 (VEC3), 4 (VEC4/MAT2), 9 (MAT3), and 16 (MAT4). // The value 0 indicates the Variant type can't map to glTF accessors, and INT64_MAX indicates it needs special handling. switch (p_variant_type) { case Variant::NIL: case Variant::STRING: case Variant::STRING_NAME: case Variant::NODE_PATH: case Variant::RID: case Variant::OBJECT: case Variant::CALLABLE: case Variant::SIGNAL: case Variant::DICTIONARY: case Variant::ARRAY: case Variant::PACKED_STRING_ARRAY: case Variant::PACKED_VECTOR2_ARRAY: case Variant::PACKED_VECTOR3_ARRAY: case Variant::PACKED_COLOR_ARRAY: case Variant::PACKED_VECTOR4_ARRAY: case Variant::VARIANT_MAX: return 0; // Not supported. case Variant::BOOL: case Variant::INT: case Variant::FLOAT: return 1; case Variant::VECTOR2: case Variant::VECTOR2I: return 2; case Variant::VECTOR3: case Variant::VECTOR3I: return 3; case Variant::RECT2: case Variant::RECT2I: case Variant::VECTOR4: case Variant::VECTOR4I: case Variant::PLANE: case Variant::QUATERNION: case Variant::COLOR: return 4; case Variant::TRANSFORM2D: case Variant::AABB: case Variant::BASIS: return 9; case Variant::TRANSFORM3D: case Variant::PROJECTION: return 16; case Variant::PACKED_BYTE_ARRAY: case Variant::PACKED_INT32_ARRAY: case Variant::PACKED_INT64_ARRAY: case Variant::PACKED_FLOAT32_ARRAY: case Variant::PACKED_FLOAT64_ARRAY: return INT64_MAX; // Special, use `_get_vector_size()` only to determine size. } return 0; } int64_t GLTFAccessor::_get_bytes_per_component(const GLTFComponentType p_component_type) { switch (p_component_type) { case GLTFAccessor::COMPONENT_TYPE_NONE: ERR_FAIL_V(0); case GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE: case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE: return 1; case GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT: case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT: case GLTFAccessor::COMPONENT_TYPE_HALF_FLOAT: return 2; case GLTFAccessor::COMPONENT_TYPE_SIGNED_INT: case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT: case GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT: return 4; case GLTFAccessor::COMPONENT_TYPE_DOUBLE_FLOAT: case GLTFAccessor::COMPONENT_TYPE_SIGNED_LONG: case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_LONG: return 8; } ERR_FAIL_V(0); } int64_t GLTFAccessor::_get_bytes_per_vector() const { const int64_t raw_byte_size = _get_bytes_per_component(component_type) * _get_vector_size(); return _determine_padded_byte_count(raw_byte_size); } bool GLTFAccessor::is_equal_exact(const Ref &p_other) const { if (p_other.is_null()) { return false; } return (buffer_view == p_other->buffer_view && byte_offset == p_other->byte_offset && component_type == p_other->component_type && normalized == p_other->normalized && count == p_other->count && accessor_type == p_other->accessor_type && min == p_other->min && max == p_other->max && sparse_count == p_other->sparse_count && sparse_indices_buffer_view == p_other->sparse_indices_buffer_view && sparse_indices_byte_offset == p_other->sparse_indices_byte_offset && sparse_indices_component_type == p_other->sparse_indices_component_type && sparse_values_buffer_view == p_other->sparse_values_buffer_view && sparse_values_byte_offset == p_other->sparse_values_byte_offset); } // Private decode functions. PackedInt64Array GLTFAccessor::_decode_sparse_indices(const Ref &p_gltf_state, const TypedArray &p_buffer_views) const { const int64_t bytes_per_component = _get_bytes_per_component(sparse_indices_component_type); PackedInt64Array numbers; ERR_FAIL_INDEX_V(sparse_indices_buffer_view, p_buffer_views.size(), numbers); const Ref actual_buffer_view = p_buffer_views[sparse_indices_buffer_view]; const PackedByteArray raw_bytes = actual_buffer_view->load_buffer_view_data(p_gltf_state); const int64_t min_raw_byte_size = bytes_per_component * sparse_count + sparse_indices_byte_offset; ERR_FAIL_COND_V_MSG(raw_bytes.size() < min_raw_byte_size, numbers, "glTF import: Sparse indices buffer view did not have enough bytes to read the expected number of indices. Returning an empty array."); numbers.resize(sparse_count); const uint8_t *raw_pointer = raw_bytes.ptr(); int64_t raw_read_offset = sparse_indices_byte_offset; for (int64_t i = 0; i < sparse_count; i++) { const uint8_t *raw_source = &raw_pointer[raw_read_offset]; int64_t number = 0; switch (sparse_indices_component_type) { case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE: { number = *(uint8_t *)raw_source; } break; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT: { number = *(uint16_t *)raw_source; } break; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT: { number = *(uint32_t *)raw_source; } break; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_LONG: { number = *(uint64_t *)raw_source; } break; default: { ERR_FAIL_V_MSG(PackedInt64Array(), "glTF import: Sparse indices must have an unsigned integer component type. Failed to decode, returning an empty array."); } } numbers.set(i, number); raw_read_offset += bytes_per_component; } ERR_FAIL_COND_V_MSG(raw_read_offset != raw_bytes.size(), numbers, "glTF import: Sparse indices buffer view size did not exactly match the expected size."); return numbers; } template Vector GLTFAccessor::_decode_raw_numbers(const Ref &p_gltf_state, const TypedArray &p_buffer_views, bool p_sparse_values) const { const int64_t bytes_per_component = _get_bytes_per_component(component_type); const int64_t bytes_per_vector = _get_bytes_per_vector(); const int64_t vector_size = _get_vector_size(); int64_t pad_skip_every = 0; int64_t pad_skip_bytes = 0; _determine_pad_skip(pad_skip_every, pad_skip_bytes); int64_t raw_vector_count; int64_t raw_buffer_view_index; int64_t raw_read_offset_start; if (p_sparse_values) { raw_vector_count = sparse_count; raw_buffer_view_index = sparse_values_buffer_view; raw_read_offset_start = sparse_values_byte_offset; } else { raw_vector_count = count; raw_buffer_view_index = buffer_view; raw_read_offset_start = byte_offset; } const int64_t raw_number_count = raw_vector_count * vector_size; Vector ret_numbers; if (raw_buffer_view_index == -1) { ret_numbers.resize(raw_number_count); // No buffer view, so fill with zeros. for (int64_t i = 0; i < raw_number_count; i++) { ret_numbers.set(i, T(0)); } return ret_numbers; } ERR_FAIL_INDEX_V(raw_buffer_view_index, p_buffer_views.size(), ret_numbers); const Ref raw_buffer_view = p_buffer_views[raw_buffer_view_index]; if (raw_buffer_view->get_byte_offset() % bytes_per_component != 0) { WARN_PRINT("glTF import: Buffer view byte offset is not a multiple of accessor component size. This file is invalid per the glTF specification and will not load correctly in some glTF viewers, but Godot will try to load it anyway."); } if (byte_offset % bytes_per_component != 0) { WARN_PRINT("glTF import: Accessor byte offset is not a multiple of accessor component size. This file is invalid per the glTF specification and will not load correctly in some glTF viewers, but Godot will try to load it anyway."); } int64_t declared_byte_stride = raw_buffer_view->get_byte_stride(); int64_t actual_byte_stride = bytes_per_vector; int64_t stride_skip_every = 0; int64_t stride_skip_bytes = 0; if (declared_byte_stride != -1) { ERR_FAIL_COND_V_MSG(declared_byte_stride % 4 != 0, ret_numbers, "glTF import: The declared buffer view byte stride " + itos(declared_byte_stride) + " was not a multiple of 4 as required by glTF. Returning an empty array."); if (declared_byte_stride > bytes_per_vector) { actual_byte_stride = declared_byte_stride; stride_skip_every = vector_size; stride_skip_bytes = declared_byte_stride - bytes_per_vector; } } else if (raw_buffer_view->get_vertex_attributes()) { print_verbose("WARNING: glTF import: Buffer view byte stride should be declared for vertex attributes. Assuming packed data and reading anyway."); } const int64_t min_raw_byte_size = actual_byte_stride * (raw_vector_count - 1) + bytes_per_vector + raw_read_offset_start; const PackedByteArray raw_bytes = raw_buffer_view->load_buffer_view_data(p_gltf_state); ERR_FAIL_COND_V_MSG(raw_bytes.size() < min_raw_byte_size, ret_numbers, "glTF import: The buffer view size was smaller than the minimum required size for the accessor. Returning an empty array."); ret_numbers.resize(raw_number_count); const uint8_t *raw_pointer = raw_bytes.ptr(); int64_t raw_read_offset = raw_read_offset_start; for (int64_t i = 0; i < raw_number_count; i++) { const uint8_t *raw_source = &raw_pointer[raw_read_offset]; T number = 0; // 3.11. Implementations MUST use following equations to decode real floating-point value f from a normalized integer c and vice-versa. // https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#animations switch (component_type) { case GLTFAccessor::COMPONENT_TYPE_NONE: { ERR_FAIL_V_MSG(Vector(), "glTF import: Failed to decode buffer view, component type not set. Returning an empty array."); } break; case GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE: { int8_t prim = *(int8_t *)raw_source; if (normalized) { number = T(MAX(double(prim) / 127.0, -1.0)); } else { number = T(prim); } } break; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE: { uint8_t prim = *(uint8_t *)raw_source; if (normalized) { number = T((double(prim) / 255.0)); } else { number = T(prim); } } break; case GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT: { int16_t prim = *(int16_t *)raw_source; if (normalized) { number = T(MAX(double(prim) / 32767.0, -1.0)); } else { number = T(prim); } } break; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT: { uint16_t prim = *(uint16_t *)raw_source; if (normalized) { number = T(double(prim) / 65535.0); } else { number = T(prim); } } break; case GLTFAccessor::COMPONENT_TYPE_SIGNED_INT: { number = T(*(int32_t *)raw_source); } break; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT: { number = T(*(uint32_t *)raw_source); } break; case GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT: { number = T(*(float *)raw_source); } break; case GLTFAccessor::COMPONENT_TYPE_DOUBLE_FLOAT: { number = T(*(double *)raw_source); } break; case GLTFAccessor::COMPONENT_TYPE_HALF_FLOAT: { number = Math::half_to_float(*(uint16_t *)raw_source); } break; case GLTFAccessor::COMPONENT_TYPE_SIGNED_LONG: { number = T(*(int64_t *)raw_source); } break; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_LONG: { number = T(*(uint64_t *)raw_source); } break; } ret_numbers.set(i, number); raw_read_offset += bytes_per_component; // Padding and stride skipping are distinct concepts that both need to be handled. // For example, a 2-in-1 interleaved MAT3 bytes accessor has both, and would look like: // AAA0 AAA0 AAA0 BBB0 BBB0 BBB0 AAA0 AAA0 AAA0 BBB0 BBB0 BBB0 // The "0" is skipped by the padding, and the "BBB0" is skipped by the stride. // https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#data-alignment if (unlikely(pad_skip_every > 0)) { if ((i + 1) % pad_skip_every == 0) { raw_read_offset += pad_skip_bytes; } } if (unlikely(stride_skip_every > 0)) { if ((i + 1) % stride_skip_every == 0) { raw_read_offset += stride_skip_bytes; } } } return ret_numbers; } template Vector GLTFAccessor::_decode_as_numbers(const Ref &p_gltf_state) const { const TypedArray &p_buffer_views = p_gltf_state->get_buffer_views(); Vector ret_numbers = _decode_raw_numbers(p_gltf_state, p_buffer_views, false); if (sparse_count == 0) { return ret_numbers; } // Handle sparse accessors. PackedInt64Array sparse_indices = _decode_sparse_indices(p_gltf_state, p_buffer_views); ERR_FAIL_COND_V_MSG(sparse_indices.size() != sparse_count, ret_numbers, "glTF import: Sparse indices size does not match the sparse count."); const int64_t vector_size = _get_vector_size(); Vector sparse_values = _decode_raw_numbers(p_gltf_state, p_buffer_views, true); ERR_FAIL_COND_V_MSG(sparse_values.size() != sparse_count * vector_size, ret_numbers, "glTF import: Sparse values size does not match the sparse count."); for (int64_t in_sparse = 0; in_sparse < sparse_count; in_sparse++) { const int64_t sparse_index = sparse_indices[in_sparse]; const int64_t array_offset = sparse_index * vector_size; ERR_FAIL_INDEX_V_MSG(array_offset, ret_numbers.size(), ret_numbers, "glTF import: Sparse indices were out of bounds for the accessor."); for (int64_t in_vec = 0; in_vec < vector_size; in_vec++) { ret_numbers.set(array_offset + in_vec, sparse_values[in_sparse * vector_size + in_vec]); } } return ret_numbers; } // High-level decode functions. PackedColorArray GLTFAccessor::decode_as_colors(const Ref &p_gltf_state) const { PackedColorArray ret; PackedFloat32Array numbers = _decode_as_numbers(p_gltf_state); if (accessor_type == TYPE_VEC3) { ERR_FAIL_COND_V_MSG(numbers.size() != count * 3, ret, "glTF import: The accessor does not have the expected amount of numbers for the given count and vector size."); ret.resize(count); for (int64_t i = 0; i < count; i++) { const int64_t number_index = i * 3; ret.set(i, Color(numbers[number_index], numbers[number_index + 1], numbers[number_index + 2], 1.0f)); } } else if (accessor_type == TYPE_VEC4) { ERR_FAIL_COND_V_MSG(numbers.size() != count * 4, ret, "glTF import: The accessor does not have the expected amount of numbers for the given count and vector size."); ret.resize(count); for (int64_t i = 0; i < count; i++) { const int64_t number_index = i * 4; ret.set(i, Color(numbers[number_index], numbers[number_index + 1], numbers[number_index + 2], numbers[number_index + 3])); } } else { ERR_FAIL_V_MSG(ret, "glTF import: The `decode_as_colors` function is designed to be fast and can only be used with accessors of type \"VEC3\" or \"VEC4\", but was called with type \"" + _get_accessor_type_name() + "\". Consider using `decode_as_variants` if you need more flexible behavior with support for any accessor type."); } return ret; } PackedFloat32Array GLTFAccessor::decode_as_float32s(const Ref &p_gltf_state) const { return _decode_as_numbers(p_gltf_state); } PackedFloat64Array GLTFAccessor::decode_as_float64s(const Ref &p_gltf_state) const { return _decode_as_numbers(p_gltf_state); } PackedInt32Array GLTFAccessor::decode_as_int32s(const Ref &p_gltf_state) const { return _decode_as_numbers(p_gltf_state); } PackedInt64Array GLTFAccessor::decode_as_int64s(const Ref &p_gltf_state) const { return _decode_as_numbers(p_gltf_state); } Vector GLTFAccessor::decode_as_quaternions(const Ref &p_gltf_state) const { Vector ret; ERR_FAIL_COND_V_MSG(accessor_type != TYPE_VEC4, ret, "glTF import: The `decode_as_quaternions` function is designed to be fast and can only be used with accessors of type \"VEC4\", but was called with type \"" + _get_accessor_type_name() + "\". Consider using `decode_as_variants` if you need more flexible behavior with support for any accessor type."); PackedRealArray numbers = _decode_as_numbers(p_gltf_state); ERR_FAIL_COND_V_MSG(numbers.size() != count * 4, ret, "glTF import: The accessor does not have the expected amount of numbers for the given count and vector size."); ret.resize(count); for (int64_t i = 0; i < count; i++) { const int64_t number_index = i * 4; ret.set(i, Quaternion(numbers[number_index], numbers[number_index + 1], numbers[number_index + 2], numbers[number_index + 3]).normalized()); } return ret; } Array GLTFAccessor::decode_as_variants(const Ref &p_gltf_state, Variant::Type p_variant_type) const { const int64_t numbers_per_variant = _get_numbers_per_variant_for_gltf(p_variant_type); Array ret; ERR_FAIL_COND_V_MSG(numbers_per_variant < 1, ret, "glTF import: The Variant type '" + Variant::get_type_name(p_variant_type) + "' is not supported. Returning an empty array."); const PackedFloat64Array numbers = _decode_as_numbers(p_gltf_state); const int64_t vector_size = _get_vector_size(); ERR_FAIL_COND_V_MSG(vector_size < 1, ret, "glTF import: The accessor type '" + _get_accessor_type_name() + "' is not supported. Returning an empty array."); const int64_t numbers_to_read = MIN(vector_size, numbers_per_variant); ERR_FAIL_COND_V_MSG(numbers.size() != count * vector_size, ret, "glTF import: The accessor does not have the expected amount of numbers for the given count and vector size."); ret.resize(count); for (int64_t value_index = 0; value_index < count; value_index++) { const int64_t number_index = value_index * vector_size; switch (p_variant_type) { case Variant::BOOL: { ret[value_index] = numbers[number_index] != 0.0; } break; case Variant::INT: { ret[value_index] = (int64_t)numbers[number_index]; } break; case Variant::FLOAT: { ret[value_index] = numbers[number_index]; } break; case Variant::VECTOR2: case Variant::RECT2: case Variant::VECTOR3: case Variant::VECTOR4: case Variant::PLANE: case Variant::QUATERNION: { // General-purpose code for importing glTF accessor data with any component count into structs up to 4 `real_t`s in size. Vector4 vec; switch (numbers_to_read) { case 1: { vec = Vector4(numbers[number_index], 0.0f, 0.0f, 0.0f); } break; case 2: { vec = Vector4(numbers[number_index], numbers[number_index + 1], 0.0f, 0.0f); } break; case 3: { vec = Vector4(numbers[number_index], numbers[number_index + 1], numbers[number_index + 2], 0.0f); } break; default: { vec = Vector4(numbers[number_index], numbers[number_index + 1], numbers[number_index + 2], numbers[number_index + 3]); } break; } if (p_variant_type == Variant::QUATERNION) { vec.normalize(); } // Evil hack that relies on the structure of Variant, but it's the // only way to accomplish this without a ton of code duplication. Variant variant = vec; *(Variant::Type *)&variant = p_variant_type; ret[value_index] = variant; } break; case Variant::VECTOR2I: case Variant::RECT2I: case Variant::VECTOR3I: case Variant::VECTOR4I: { // General-purpose code for importing glTF accessor data with any component count into structs up to 4 `int32_t`s in size. Vector4i vec; switch (numbers_to_read) { case 1: { vec = Vector4i((int32_t)numbers[number_index], 0, 0, 0); } break; case 2: { vec = Vector4i((int32_t)numbers[number_index], (int32_t)numbers[number_index + 1], 0, 0); } break; case 3: { vec = Vector4i((int32_t)numbers[number_index], (int32_t)numbers[number_index + 1], (int32_t)numbers[number_index + 2], 0); } break; default: { vec = Vector4i((int32_t)numbers[number_index], (int32_t)numbers[number_index + 1], (int32_t)numbers[number_index + 2], (int32_t)numbers[number_index + 3]); } break; } // Evil hack that relies on the structure of Variant, but it's the // only way to accomplish this without a ton of code duplication. Variant variant = vec; *(Variant::Type *)&variant = p_variant_type; ret[value_index] = variant; } break; // No more generalized hacks, each of the below types needs a lot of repetitive code. case Variant::COLOR: { Color color; switch (numbers_to_read) { case 1: { color = Color(numbers[number_index], 0.0f, 0.0f, 1.0f); } break; case 2: { color = Color(numbers[number_index], numbers[number_index + 1], 0.0f, 1.0f); } break; case 3: { color = Color(numbers[number_index], numbers[number_index + 1], numbers[number_index + 2], 1.0f); } break; default: { color = Color(numbers[number_index], numbers[number_index + 1], numbers[number_index + 2], numbers[number_index + 3]); } break; } ret[value_index] = color; } break; case Variant::TRANSFORM2D: { Transform2D t; switch (numbers_to_read) { case 4: { t.columns[0] = Vector2(numbers[number_index + 0], numbers[number_index + 1]); t.columns[1] = Vector2(numbers[number_index + 2], numbers[number_index + 3]); } break; case 9: { t.columns[0] = Vector2(numbers[number_index + 0], numbers[number_index + 1]); t.columns[1] = Vector2(numbers[number_index + 3], numbers[number_index + 4]); t.columns[2] = Vector2(numbers[number_index + 6], numbers[number_index + 7]); } break; case 16: { t.columns[0] = Vector2(numbers[number_index + 0], numbers[number_index + 1]); t.columns[1] = Vector2(numbers[number_index + 4], numbers[number_index + 5]); t.columns[2] = Vector2(numbers[number_index + 12], numbers[number_index + 13]); } break; } ret[value_index] = t; } break; case Variant::AABB: { AABB aabb; switch (numbers_to_read) { case 4: { aabb.position = Vector3(numbers[number_index + 0], numbers[number_index + 1], 0.0f); aabb.size = Vector3(numbers[number_index + 2], numbers[number_index + 3], 0.0f); } break; case 9: { aabb.position = Vector3(numbers[number_index + 0], numbers[number_index + 1], numbers[number_index + 2]); aabb.size = Vector3(numbers[number_index + 3], numbers[number_index + 4], numbers[number_index + 5]); } break; case 16: { aabb.position = Vector3(numbers[number_index + 0], numbers[number_index + 1], numbers[number_index + 2]); aabb.size = Vector3(numbers[number_index + 4], numbers[number_index + 5], numbers[number_index + 6]); } break; } ret[value_index] = aabb; } break; case Variant::BASIS: { Basis b; switch (numbers_to_read) { case 4: { b.rows[0] = Vector3(numbers[number_index + 0], numbers[number_index + 2], 0.0f); b.rows[1] = Vector3(numbers[number_index + 1], numbers[number_index + 3], 0.0f); } break; case 9: { b.rows[0] = Vector3(numbers[number_index + 0], numbers[number_index + 3], numbers[number_index + 6]); b.rows[1] = Vector3(numbers[number_index + 1], numbers[number_index + 4], numbers[number_index + 7]); b.rows[2] = Vector3(numbers[number_index + 2], numbers[number_index + 5], numbers[number_index + 8]); } break; case 16: { b.rows[0] = Vector3(numbers[number_index + 0], numbers[number_index + 4], numbers[number_index + 8]); b.rows[1] = Vector3(numbers[number_index + 1], numbers[number_index + 5], numbers[number_index + 9]); b.rows[2] = Vector3(numbers[number_index + 2], numbers[number_index + 6], numbers[number_index + 10]); } break; } ret[value_index] = b; } break; case Variant::TRANSFORM3D: { Transform3D t; switch (numbers_to_read) { case 4: { t.basis.rows[0] = Vector3(numbers[number_index + 0], numbers[number_index + 2], 0.0f); t.basis.rows[1] = Vector3(numbers[number_index + 1], numbers[number_index + 3], 0.0f); } break; case 9: { t.basis.rows[0] = Vector3(numbers[number_index + 0], numbers[number_index + 3], numbers[number_index + 6]); t.basis.rows[1] = Vector3(numbers[number_index + 1], numbers[number_index + 4], numbers[number_index + 7]); t.basis.rows[2] = Vector3(numbers[number_index + 2], numbers[number_index + 5], numbers[number_index + 8]); } break; case 16: { t.basis.rows[0] = Vector3(numbers[number_index + 0], numbers[number_index + 4], numbers[number_index + 8]); t.basis.rows[1] = Vector3(numbers[number_index + 1], numbers[number_index + 5], numbers[number_index + 9]); t.basis.rows[2] = Vector3(numbers[number_index + 2], numbers[number_index + 6], numbers[number_index + 10]); t.origin = Vector3(numbers[number_index + 12], numbers[number_index + 13], numbers[number_index + 14]); } break; } ret[value_index] = t; } break; case Variant::PROJECTION: { Projection p; switch (numbers_to_read) { case 4: { p.columns[0] = Vector4(numbers[number_index + 0], numbers[number_index + 1], 0.0f, 0.0f); p.columns[1] = Vector4(numbers[number_index + 4], numbers[number_index + 5], 0.0f, 0.0f); } break; case 9: { p.columns[0] = Vector4(numbers[number_index + 0], numbers[number_index + 1], numbers[number_index + 2], 0.0f); p.columns[1] = Vector4(numbers[number_index + 4], numbers[number_index + 5], numbers[number_index + 6], 0.0f); p.columns[2] = Vector4(numbers[number_index + 8], numbers[number_index + 9], numbers[number_index + 10], 0.0f); } break; case 16: { p.columns[0] = Vector4(numbers[number_index + 0], numbers[number_index + 1], numbers[number_index + 2], numbers[number_index + 3]); p.columns[1] = Vector4(numbers[number_index + 4], numbers[number_index + 5], numbers[number_index + 6], numbers[number_index + 7]); p.columns[2] = Vector4(numbers[number_index + 8], numbers[number_index + 9], numbers[number_index + 10], numbers[number_index + 11]); p.columns[3] = Vector4(numbers[number_index + 12], numbers[number_index + 13], numbers[number_index + 14], numbers[number_index + 15]); } break; } ret[value_index] = p; } break; case Variant::PACKED_BYTE_ARRAY: { PackedByteArray packed_array; packed_array.resize(numbers_to_read); for (int64_t j = 0; j < numbers_to_read; j++) { packed_array.set(value_index, numbers[number_index + j]); } } break; case Variant::PACKED_INT32_ARRAY: { PackedInt32Array packed_array; packed_array.resize(numbers_to_read); for (int64_t j = 0; j < numbers_to_read; j++) { packed_array.set(value_index, numbers[number_index + j]); } } break; case Variant::PACKED_INT64_ARRAY: { PackedInt64Array packed_array; packed_array.resize(numbers_to_read); for (int64_t j = 0; j < numbers_to_read; j++) { packed_array.set(value_index, numbers[number_index + j]); } } break; case Variant::PACKED_FLOAT32_ARRAY: { PackedFloat32Array packed_array; packed_array.resize(numbers_to_read); for (int64_t j = 0; j < numbers_to_read; j++) { packed_array.set(value_index, numbers[number_index + j]); } } break; case Variant::PACKED_FLOAT64_ARRAY: { PackedFloat64Array packed_array; packed_array.resize(numbers_to_read); for (int64_t j = 0; j < numbers_to_read; j++) { packed_array.set(value_index, numbers[number_index + j]); } } break; default: { ERR_FAIL_V_MSG(ret, "glTF: Cannot decode accessor as Variant of type " + Variant::get_type_name(p_variant_type) + "."); } } } return ret; } PackedVector2Array GLTFAccessor::decode_as_vector2s(const Ref &p_gltf_state) const { PackedVector2Array ret; ERR_FAIL_COND_V_MSG(accessor_type != TYPE_VEC2, ret, "glTF import: The `decode_as_vector2s` function is designed to be fast and can only be used with accessors of type \"VEC2\", but was called with type \"" + _get_accessor_type_name() + "\". Consider using `decode_as_variants` if you need more flexible behavior with support for any accessor type."); PackedRealArray numbers = _decode_as_numbers(p_gltf_state); ERR_FAIL_COND_V_MSG(numbers.size() != count * 2, ret, "glTF import: The accessor does not have the expected amount of numbers for the given count and vector size."); ret.resize(count); for (int64_t i = 0; i < count; i++) { const int64_t number_index = i * 2; ret.set(i, Vector2(numbers[number_index], numbers[number_index + 1])); } return ret; } PackedVector3Array GLTFAccessor::decode_as_vector3s(const Ref &p_gltf_state) const { PackedVector3Array ret; ERR_FAIL_COND_V_MSG(accessor_type != TYPE_VEC3, ret, "glTF import: The `decode_as_vector3s` function is designed to be fast and can only be used with accessors of type \"VEC3\", but was called with type \"" + _get_accessor_type_name() + "\". Consider using `decode_as_variants` if you need more flexible behavior with support for any accessor type."); PackedRealArray numbers = _decode_as_numbers(p_gltf_state); ERR_FAIL_COND_V_MSG(numbers.size() != count * 3, ret, "glTF import: The accessor does not have the expected amount of numbers for the given count and vector size."); ret.resize(count); for (int64_t i = 0; i < count; i++) { const int64_t number_index = i * 3; ret.set(i, Vector3(numbers[number_index], numbers[number_index + 1], numbers[number_index + 2])); } return ret; } PackedVector4Array GLTFAccessor::decode_as_vector4s(const Ref &p_gltf_state) const { PackedVector4Array ret; ERR_FAIL_COND_V_MSG(accessor_type != TYPE_VEC4, ret, "glTF import: The `decode_as_vector4s` function is designed to be fast and can only be used with accessors of type \"VEC4\", but was called with type \"" + _get_accessor_type_name() + "\". Consider using `decode_as_variants` if you need more flexible behavior with support for any accessor type."); PackedRealArray numbers = _decode_as_numbers(p_gltf_state); ERR_FAIL_COND_V_MSG(numbers.size() != count * 4, ret, "glTF import: The accessor does not have the expected amount of numbers for the given count and vector size."); ret.resize(count); for (int64_t i = 0; i < count; i++) { const int64_t number_index = i * 4; ret.set(i, Vector4(numbers[number_index], numbers[number_index + 1], numbers[number_index + 2], numbers[number_index + 3])); } return ret; } // Private encode functions. PackedFloat64Array GLTFAccessor::_encode_variants_as_floats(const Array &p_input_data, Variant::Type p_variant_type) const { const int64_t vector_size = _get_vector_size(); const int64_t input_size = p_input_data.size(); PackedFloat64Array numbers; numbers.resize(input_size * vector_size); for (int64_t input_index = 0; input_index < input_size; input_index++) { Variant variant = p_input_data[input_index]; const int64_t vector_offset = input_index * vector_size; switch (p_variant_type) { case Variant::NIL: case Variant::BOOL: case Variant::INT: case Variant::FLOAT: { // For scalar values, just append them. Variant can convert all of these to double. Some padding may also be needed. numbers.set(vector_offset, variant); if (unlikely(vector_size > 1)) { for (int64_t i = 1; i < vector_size; i++) { numbers.set(vector_offset + i, 0.0); } } } break; case Variant::PLANE: case Variant::QUATERNION: case Variant::RECT2: { // Evil hack that relies on the structure of Variant, but it's the // only way to accomplish this without a ton of code duplication. *(Variant::Type *)&variant = Variant::VECTOR4; } [[fallthrough]]; case Variant::VECTOR2: case Variant::VECTOR3: case Variant::VECTOR4: { // Variant can handle converting Vector2/3/4 to Vector4 for us. Vector4 vec = variant; for (int64_t i = 0; i < vector_size; i++) { numbers.set(vector_offset + i, vec[i]); } if (unlikely(vector_size > 4)) { for (int64_t i = 4; i < vector_size; i++) { numbers.set(vector_offset + i, 0.0); } } } break; case Variant::RECT2I: { *(Variant::Type *)&variant = Variant::VECTOR4I; } [[fallthrough]]; case Variant::VECTOR2I: case Variant::VECTOR3I: case Variant::VECTOR4I: { // Variant can handle converting Vector2i/3i/4i to Vector4i for us. Vector4i vec = variant; for (int64_t i = 0; i < vector_size; i++) { numbers.set(vector_offset + i, vec[i]); } if (unlikely(vector_size > 4)) { for (int64_t i = 4; i < vector_size; i++) { numbers.set(vector_offset + i, 0.0); } } } break; case Variant::COLOR: { Color c = variant; for (int64_t i = 0; i < vector_size; i++) { numbers.set(vector_offset + i, c[i]); } if (unlikely(vector_size > 4)) { for (int64_t i = 4; i < vector_size; i++) { numbers.set(vector_offset + i, 0.0); } } } break; case Variant::TRANSFORM2D: case Variant::BASIS: case Variant::TRANSFORM3D: case Variant::PROJECTION: { // Variant can handle converting Transform2D/Transform3D/Basis to Projection for us. Projection p = variant; if (vector_size == 16) { for (int64_t i = 0; i < 4; i++) { numbers.set(vector_offset + 4 * i, p.columns[i][0]); numbers.set(vector_offset + 4 * i + 1, p.columns[i][1]); numbers.set(vector_offset + 4 * i + 2, p.columns[i][2]); numbers.set(vector_offset + 4 * i + 3, p.columns[i][3]); } } else if (vector_size == 9) { for (int64_t i = 0; i < 3; i++) { numbers.set(vector_offset + 3 * i, p.columns[i][0]); numbers.set(vector_offset + 3 * i + 1, p.columns[i][1]); numbers.set(vector_offset + 3 * i + 2, p.columns[i][2]); } } else if (vector_size == 4) { numbers.set(vector_offset, p.columns[0][0]); numbers.set(vector_offset + 1, p.columns[0][1]); numbers.set(vector_offset + 2, p.columns[1][0]); numbers.set(vector_offset + 3, p.columns[1][1]); } } break; default: { ERR_FAIL_V_MSG(PackedFloat64Array(), "glTF export: Cannot encode accessor from Variant of type " + Variant::get_type_name(p_variant_type) + "."); } } } return numbers; } void GLTFAccessor::_store_sparse_indices_into_state(const Ref &p_gltf_state, const PackedInt64Array &p_sparse_indices, const bool p_deduplicate) { // The byte offset of a sparse accessor's indices buffer view MUST be a multiple of the indices primitive componentType. // https://github.com/KhronosGroup/glTF/blob/main/specification/2.0/schema/accessor.sparse.indices.schema.json const int64_t bytes_per_index = _get_bytes_per_component(sparse_indices_component_type); PackedByteArray indices_bytes; indices_bytes.resize(bytes_per_index * p_sparse_indices.size()); uint8_t *ret_write = indices_bytes.ptrw(); int64_t ret_byte_offset = 0; for (int64_t i = 0; i < p_sparse_indices.size(); i++) { switch (sparse_indices_component_type) { case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE: { *(uint8_t *)&ret_write[ret_byte_offset] = p_sparse_indices[i]; } break; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT: { *(uint16_t *)&ret_write[ret_byte_offset] = p_sparse_indices[i]; } break; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT: { *(uint32_t *)&ret_write[ret_byte_offset] = p_sparse_indices[i]; } break; case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_LONG: { *(uint64_t *)&ret_write[ret_byte_offset] = p_sparse_indices[i]; } break; default: { ERR_FAIL_MSG("glTF export: Invalid sparse indices component type '" + _get_component_type_name(sparse_indices_component_type) + "' for sparse accessor indices."); } break; } ret_byte_offset += bytes_per_index; } const GLTFBufferViewIndex buffer_view_index = GLTFBufferView::write_new_buffer_view_into_state(p_gltf_state, indices_bytes, bytes_per_index, GLTFBufferView::TARGET_NONE, -1, 0, p_deduplicate); ERR_FAIL_COND_MSG(buffer_view_index == -1, "glTF export: Failed to write sparse indices into glTF state."); set_sparse_indices_buffer_view(buffer_view_index); } // Low-level encode functions. GLTFAccessor::GLTFComponentType GLTFAccessor::get_minimal_integer_component_type_from_ints(const PackedInt64Array &p_numbers) { bool has_negative = false; for (int64_t i = 0; i < p_numbers.size(); i++) { if (p_numbers[i] < 0) { has_negative = true; break; } } if (has_negative) { GLTFComponentType ret = GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE; for (int64_t i = 0; i < p_numbers.size(); i++) { const int64_t num = p_numbers[i]; if (ret == GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE && (num < -128LL || num > 127LL)) { ret = GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT; } if (ret == GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT && (num < -32768LL || num > 32767LL)) { ret = GLTFAccessor::COMPONENT_TYPE_SIGNED_INT; } if (ret == GLTFAccessor::COMPONENT_TYPE_SIGNED_INT && (num < -2147483648LL || num > 2147483647LL)) { return GLTFAccessor::COMPONENT_TYPE_SIGNED_LONG; } } return ret; } GLTFComponentType ret = GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE; for (int64_t i = 0; i < p_numbers.size(); i++) { const int64_t num = p_numbers[i]; // 3.7.2.1. indices accessor MUST NOT contain the maximum possible value for the component type used // (i.e., 255 for unsigned bytes, 65535 for unsigned shorts, 4294967295 for unsigned ints). // https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview if (ret == GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE && num > 254LL) { ret = GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT; } if (ret == GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT && num > 65534LL) { ret = GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT; } if (ret == GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT && num > 4294967294LL) { return GLTFAccessor::COMPONENT_TYPE_UNSIGNED_LONG; } } return ret; } PackedByteArray GLTFAccessor::encode_floats_as_bytes(const PackedFloat64Array &p_input_numbers) { // Filter and update `count`, `min`, and `max` based on the given data. PackedFloat64Array filtered_numbers = _filter_numbers(p_input_numbers); count = filtered_numbers.size() / _get_vector_size(); _calculate_min_and_max(filtered_numbers); // Actually encode the data. const int64_t input_size = filtered_numbers.size(); const int64_t bytes_per_component = _get_bytes_per_component(component_type); int64_t raw_byte_size = _determine_padded_byte_count(bytes_per_component * input_size); int64_t skip_every = 0; int64_t skip_bytes = 0; _determine_pad_skip(skip_every, skip_bytes); PackedByteArray ret; ret.resize(raw_byte_size); uint8_t *ret_write = ret.ptrw(); int64_t ret_byte_offset = 0; for (int64_t i = 0; i < input_size; i++) { switch (component_type) { case COMPONENT_TYPE_NONE: { ERR_FAIL_V_MSG(ret, "glTF export: Invalid component type 'NONE' for glTF accessor."); } break; case COMPONENT_TYPE_SIGNED_BYTE: { *(int8_t *)&ret_write[ret_byte_offset] = filtered_numbers[i]; } break; case COMPONENT_TYPE_UNSIGNED_BYTE: { *(uint8_t *)&ret_write[ret_byte_offset] = filtered_numbers[i]; } break; case COMPONENT_TYPE_SIGNED_SHORT: { *(int16_t *)&ret_write[ret_byte_offset] = filtered_numbers[i]; } break; case COMPONENT_TYPE_UNSIGNED_SHORT: { *(uint16_t *)&ret_write[ret_byte_offset] = filtered_numbers[i]; } break; case COMPONENT_TYPE_SIGNED_INT: { *(int32_t *)&ret_write[ret_byte_offset] = filtered_numbers[i]; } break; case COMPONENT_TYPE_UNSIGNED_INT: { *(uint32_t *)&ret_write[ret_byte_offset] = filtered_numbers[i]; } break; case COMPONENT_TYPE_SINGLE_FLOAT: { *(float *)&ret_write[ret_byte_offset] = filtered_numbers[i]; } break; case COMPONENT_TYPE_DOUBLE_FLOAT: { *(double *)&ret_write[ret_byte_offset] = filtered_numbers[i]; } break; case COMPONENT_TYPE_HALF_FLOAT: { *(uint16_t *)&ret_write[ret_byte_offset] = Math::make_half_float(filtered_numbers[i]); } break; case COMPONENT_TYPE_SIGNED_LONG: { // Note: This can potentially result in precision loss because int64_t can store some values that double can't. *(int64_t *)&ret_write[ret_byte_offset] = filtered_numbers[i]; } break; case COMPONENT_TYPE_UNSIGNED_LONG: { // Note: This can potentially result in precision loss because uint64_t can store some values that double can't. *(uint64_t *)&ret_write[ret_byte_offset] = filtered_numbers[i]; } break; default: { ERR_FAIL_V_MSG(ret, "glTF export: Godot does not support writing glTF accessor components of type '" + itos(component_type) + "'."); } break; } ret_byte_offset += bytes_per_component; if (unlikely(skip_every > 0)) { if ((i + 1) % skip_every == 0) { ret_byte_offset += skip_bytes; } } } ERR_FAIL_COND_V_MSG(ret_byte_offset != raw_byte_size, ret, "glTF export: Accessor encoded data did not write exactly the expected number of bytes."); return ret; } PackedByteArray GLTFAccessor::encode_ints_as_bytes(const PackedInt64Array &p_input_numbers) { // Filter and update `count`, `min`, and `max` based on the given data. count = p_input_numbers.size() / _get_vector_size(); _calculate_min_and_max(Variant(p_input_numbers)); // Actually encode the data. const int64_t input_size = p_input_numbers.size(); const int64_t bytes_per_component = _get_bytes_per_component(component_type); int64_t raw_byte_size = _determine_padded_byte_count(bytes_per_component * input_size); int64_t skip_every = 0; int64_t skip_bytes = 0; _determine_pad_skip(skip_every, skip_bytes); PackedByteArray ret; ret.resize(raw_byte_size); uint8_t *ret_write = ret.ptrw(); int64_t ret_byte_offset = 0; for (int64_t i = 0; i < input_size; i++) { switch (component_type) { case COMPONENT_TYPE_NONE: { ERR_FAIL_V_MSG(ret, "glTF export: Invalid component type 'NONE' for glTF accessor."); } break; case COMPONENT_TYPE_SIGNED_BYTE: { *(int8_t *)&ret_write[ret_byte_offset] = p_input_numbers[i]; } break; case COMPONENT_TYPE_UNSIGNED_BYTE: { *(uint8_t *)&ret_write[ret_byte_offset] = p_input_numbers[i]; } break; case COMPONENT_TYPE_SIGNED_SHORT: { *(int16_t *)&ret_write[ret_byte_offset] = p_input_numbers[i]; } break; case COMPONENT_TYPE_UNSIGNED_SHORT: { *(uint16_t *)&ret_write[ret_byte_offset] = p_input_numbers[i]; } break; case COMPONENT_TYPE_SIGNED_INT: { *(int32_t *)&ret_write[ret_byte_offset] = p_input_numbers[i]; } break; case COMPONENT_TYPE_UNSIGNED_INT: { *(uint32_t *)&ret_write[ret_byte_offset] = p_input_numbers[i]; } break; case COMPONENT_TYPE_SINGLE_FLOAT: { *(float *)&ret_write[ret_byte_offset] = p_input_numbers[i]; } break; case COMPONENT_TYPE_DOUBLE_FLOAT: { *(double *)&ret_write[ret_byte_offset] = p_input_numbers[i]; } break; case COMPONENT_TYPE_HALF_FLOAT: { *(uint16_t *)&ret_write[ret_byte_offset] = Math::make_half_float(p_input_numbers[i]); } break; case COMPONENT_TYPE_SIGNED_LONG: { *(int64_t *)&ret_write[ret_byte_offset] = p_input_numbers[i]; } break; case COMPONENT_TYPE_UNSIGNED_LONG: { *(uint64_t *)&ret_write[ret_byte_offset] = p_input_numbers[i]; } break; default: { ERR_FAIL_V_MSG(ret, "glTF export: Godot does not support writing glTF accessor components of type '" + itos(component_type) + "'."); } break; } ret_byte_offset += bytes_per_component; if (unlikely(skip_every > 0)) { if ((i + 1) % skip_every == 0) { ret_byte_offset += skip_bytes; } } } ERR_FAIL_COND_V_MSG(ret_byte_offset != raw_byte_size, ret, "glTF export: Accessor encoded data did not write exactly the expected number of bytes."); return ret; } PackedByteArray GLTFAccessor::encode_variants_as_bytes(const Array &p_input_data, Variant::Type p_variant_type) { const int64_t bytes_per_vec = _get_bytes_per_vector(); ERR_FAIL_COND_V_MSG(bytes_per_vec == 0, PackedByteArray(), "glTF export: Cannot encode an accessor of this type."); PackedFloat64Array numbers = _encode_variants_as_floats(p_input_data, p_variant_type); return encode_floats_as_bytes(numbers); } GLTFAccessorIndex GLTFAccessor::store_accessor_data_into_state(const Ref &p_gltf_state, const PackedByteArray &p_data_bytes, const GLTFBufferView::ArrayBufferTarget p_buffer_view_target, const GLTFBufferIndex p_buffer_index, const bool p_deduplicate) { ERR_FAIL_COND_V_MSG(p_data_bytes.is_empty(), -1, "glTF export: Cannot store nothing."); // Update `count` based on the size of the data. It's possible that `count` may already be correct, but this function is public, so this prevents footguns. const int64_t bytes_per_vec = _get_bytes_per_vector(); ERR_FAIL_COND_V_MSG(bytes_per_vec == 0 || p_data_bytes.size() % bytes_per_vec != 0, -1, "glTF export: Tried to store an accessor with data that is not a multiple of the accessor's bytes per vector."); count = p_data_bytes.size() / bytes_per_vec; // 3.6.2.4. The byte offset of an accessor's buffer view MUST be a multiple of the accessor's primitive size. // https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#data-alignment const int64_t alignment = _get_bytes_per_component(component_type); // 3.6.2.4. Each element of a vertex attribute MUST be aligned to 4-byte boundaries inside a bufferView. int64_t byte_stride = -1; if (p_buffer_view_target == GLTFBufferView::TARGET_ARRAY_BUFFER) { byte_stride = bytes_per_vec; ERR_FAIL_COND_V_MSG(byte_stride < 4 || byte_stride % 4 != 0, -1, "glTF export: Vertex attributes using TARGET_ARRAY_BUFFER must have a byte stride that is a multiple of 4 as required by section 3.6.2.4 of the glTF specification."); } // Write the data into a new buffer view. const GLTFBufferViewIndex buffer_view_index = GLTFBufferView::write_new_buffer_view_into_state(p_gltf_state, p_data_bytes, alignment, p_buffer_view_target, byte_stride, 0, p_deduplicate); ERR_FAIL_COND_V_MSG(buffer_view_index == -1, -1, "glTF export: Accessor failed to write new buffer view into glTF state."); set_buffer_view(buffer_view_index); // Add the new accessor to the state, but check for duplicates first. TypedArray state_accessors = p_gltf_state->get_accessors(); const GLTFAccessorIndex accessor_count = state_accessors.size(); for (GLTFAccessorIndex i = 0; i < accessor_count; i++) { Ref existing_accessor = state_accessors[i]; if (is_equal_exact(existing_accessor)) { // An identical accessor already exists in the state, so just return the index. return i; } } Ref self = this; state_accessors.append(self); p_gltf_state->set_accessors(state_accessors); return accessor_count; } Ref GLTFAccessor::make_new_accessor_without_data(GLTFAccessorType p_accessor_type, GLTFComponentType p_component_type) { Ref accessor; accessor.instantiate(); accessor->set_accessor_type(p_accessor_type); accessor->set_component_type(p_component_type); return accessor; } // High-level encode functions. GLTFAccessorIndex GLTFAccessor::encode_new_accessor_from_colors(const Ref &p_gltf_state, const PackedColorArray &p_input_data, const GLTFBufferView::ArrayBufferTarget p_buffer_view_target, const bool p_deduplicate) { ERR_FAIL_COND_V_MSG(p_input_data.is_empty(), -1, "glTF export: Cannot encode an accessor from an empty array."); PackedFloat64Array numbers; numbers.resize(p_input_data.size() * 4); for (int64_t i = 0; i < p_input_data.size(); i++) { const Color &color = p_input_data[i]; numbers.set(i * 4, color.r); numbers.set(i * 4 + 1, color.g); numbers.set(i * 4 + 2, color.b); numbers.set(i * 4 + 3, color.a); } Ref accessor = make_new_accessor_without_data(TYPE_VEC4, COMPONENT_TYPE_SINGLE_FLOAT); PackedByteArray encoded_bytes = accessor->encode_floats_as_bytes(numbers); ERR_FAIL_COND_V_MSG(encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, encoded_bytes, p_buffer_view_target, 0, p_deduplicate); } GLTFAccessorIndex GLTFAccessor::encode_new_accessor_from_float64s(const Ref &p_gltf_state, const PackedFloat64Array &p_input_data, const GLTFBufferView::ArrayBufferTarget p_buffer_view_target, const bool p_deduplicate) { ERR_FAIL_COND_V_MSG(p_input_data.is_empty(), -1, "glTF export: Cannot encode an accessor from an empty array."); Ref accessor = make_new_accessor_without_data(TYPE_SCALAR, COMPONENT_TYPE_SINGLE_FLOAT); PackedByteArray encoded_bytes = accessor->encode_floats_as_bytes(p_input_data); ERR_FAIL_COND_V_MSG(encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, encoded_bytes, p_buffer_view_target, 0, p_deduplicate); } GLTFAccessorIndex GLTFAccessor::encode_new_accessor_from_int32s(const Ref &p_gltf_state, const PackedInt32Array &p_input_data, const GLTFBufferView::ArrayBufferTarget p_buffer_view_target, const bool p_deduplicate) { ERR_FAIL_COND_V_MSG(p_input_data.is_empty(), -1, "glTF export: Cannot encode an accessor from an empty array."); PackedInt64Array numbers; numbers.resize(p_input_data.size()); for (int64_t i = 0; i < p_input_data.size(); i++) { numbers.set(i, p_input_data[i]); } const GLTFComponentType component_type = get_minimal_integer_component_type_from_ints(numbers); Ref accessor = make_new_accessor_without_data(TYPE_SCALAR, component_type); PackedByteArray encoded_bytes = accessor->encode_ints_as_bytes(numbers); ERR_FAIL_COND_V_MSG(encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, encoded_bytes, p_buffer_view_target, 0, p_deduplicate); } GLTFAccessorIndex GLTFAccessor::encode_new_accessor_from_int64s(const Ref &p_gltf_state, const PackedInt64Array &p_input_data, const GLTFBufferView::ArrayBufferTarget p_buffer_view_target, const bool p_deduplicate) { ERR_FAIL_COND_V_MSG(p_input_data.is_empty(), -1, "glTF export: Cannot encode an accessor from an empty array."); const GLTFComponentType component_type = get_minimal_integer_component_type_from_ints(p_input_data); Ref accessor = make_new_accessor_without_data(TYPE_SCALAR, component_type); PackedByteArray encoded_bytes = accessor->encode_ints_as_bytes(p_input_data); ERR_FAIL_COND_V_MSG(encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, encoded_bytes, p_buffer_view_target, 0, p_deduplicate); } GLTFAccessorIndex GLTFAccessor::encode_new_accessor_from_quaternions(const Ref &p_gltf_state, const Vector &p_input_data, const GLTFBufferView::ArrayBufferTarget p_buffer_view_target, const bool p_deduplicate) { ERR_FAIL_COND_V_MSG(p_input_data.is_empty(), -1, "glTF export: Cannot encode an accessor from an empty array."); PackedFloat64Array numbers; numbers.resize(p_input_data.size() * 4); for (int64_t i = 0; i < p_input_data.size(); i++) { const Quaternion &quat = p_input_data[i]; numbers.set(i * 4, quat.x); numbers.set(i * 4 + 1, quat.y); numbers.set(i * 4 + 2, quat.z); numbers.set(i * 4 + 3, quat.w); } Ref accessor = make_new_accessor_without_data(TYPE_VEC4, COMPONENT_TYPE_SINGLE_FLOAT); PackedByteArray encoded_bytes = accessor->encode_floats_as_bytes(numbers); ERR_FAIL_COND_V_MSG(encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, encoded_bytes, p_buffer_view_target, 0, p_deduplicate); } GLTFAccessorIndex GLTFAccessor::encode_new_accessor_from_variants(const Ref &p_gltf_state, const Array &p_input_data, Variant::Type p_variant_type, GLTFAccessorType p_accessor_type, GLTFComponentType p_component_type, const GLTFBufferView::ArrayBufferTarget p_buffer_view_target, const bool p_deduplicate) { ERR_FAIL_COND_V_MSG(p_input_data.is_empty(), -1, "glTF export: Cannot encode an accessor from an empty array."); Ref accessor = make_new_accessor_without_data(p_accessor_type, p_component_type); // Write the data into a new buffer view. PackedByteArray encoded_bytes = accessor->encode_variants_as_bytes(p_input_data, p_variant_type); ERR_FAIL_COND_V_MSG(encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, encoded_bytes, p_buffer_view_target, 0, p_deduplicate); } GLTFAccessorIndex GLTFAccessor::encode_new_accessor_from_vector2s(const Ref &p_gltf_state, const PackedVector2Array &p_input_data, const GLTFBufferView::ArrayBufferTarget p_buffer_view_target, const bool p_deduplicate) { ERR_FAIL_COND_V_MSG(p_input_data.is_empty(), -1, "glTF export: Cannot encode an accessor from an empty array."); PackedFloat64Array numbers; numbers.resize(p_input_data.size() * 2); for (int64_t i = 0; i < p_input_data.size(); i++) { const Vector2 &vec = p_input_data[i]; numbers.set(i * 2, vec.x); numbers.set(i * 2 + 1, vec.y); } Ref accessor = make_new_accessor_without_data(TYPE_VEC2, COMPONENT_TYPE_SINGLE_FLOAT); PackedByteArray encoded_bytes = accessor->encode_floats_as_bytes(numbers); ERR_FAIL_COND_V_MSG(encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, encoded_bytes, p_buffer_view_target, 0, p_deduplicate); } GLTFAccessorIndex GLTFAccessor::encode_new_accessor_from_vector3s(const Ref &p_gltf_state, const PackedVector3Array &p_input_data, const GLTFBufferView::ArrayBufferTarget p_buffer_view_target, const bool p_deduplicate) { ERR_FAIL_COND_V_MSG(p_input_data.is_empty(), -1, "glTF export: Cannot encode an accessor from an empty array."); PackedFloat64Array numbers; numbers.resize(p_input_data.size() * 3); for (int64_t i = 0; i < p_input_data.size(); i++) { const Vector3 &vec = p_input_data[i]; numbers.set(i * 3, vec.x); numbers.set(i * 3 + 1, vec.y); numbers.set(i * 3 + 2, vec.z); } Ref accessor = make_new_accessor_without_data(TYPE_VEC3, COMPONENT_TYPE_SINGLE_FLOAT); PackedByteArray encoded_bytes = accessor->encode_floats_as_bytes(numbers); ERR_FAIL_COND_V_MSG(encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, encoded_bytes, p_buffer_view_target, 0, p_deduplicate); } GLTFAccessorIndex GLTFAccessor::encode_new_accessor_from_vector4s(const Ref &p_gltf_state, const PackedVector4Array &p_input_data, const GLTFBufferView::ArrayBufferTarget p_buffer_view_target, const bool p_deduplicate) { ERR_FAIL_COND_V_MSG(p_input_data.is_empty(), -1, "glTF export: Cannot encode an accessor from an empty array."); PackedFloat64Array numbers; numbers.resize(p_input_data.size() * 4); for (int64_t i = 0; i < p_input_data.size(); i++) { const Vector4 &vec = p_input_data[i]; numbers.set(i * 4, vec.x); numbers.set(i * 4 + 1, vec.y); numbers.set(i * 4 + 2, vec.z); numbers.set(i * 4 + 3, vec.w); } Ref accessor = make_new_accessor_without_data(TYPE_VEC4, COMPONENT_TYPE_SINGLE_FLOAT); PackedByteArray encoded_bytes = accessor->encode_floats_as_bytes(numbers); ERR_FAIL_COND_V_MSG(encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, encoded_bytes, p_buffer_view_target, 0, p_deduplicate); } GLTFAccessorIndex GLTFAccessor::encode_new_accessor_from_vector4is(const Ref &p_gltf_state, const Vector &p_input_data, const GLTFBufferView::ArrayBufferTarget p_buffer_view_target, const bool p_deduplicate) { ERR_FAIL_COND_V_MSG(p_input_data.is_empty(), -1, "glTF export: Cannot encode an accessor from an empty array."); PackedInt64Array numbers; numbers.resize(p_input_data.size() * 4); for (int64_t i = 0; i < p_input_data.size(); i++) { const Vector4i &vec = p_input_data[i]; numbers.set(i * 4, vec.x); numbers.set(i * 4 + 1, vec.y); numbers.set(i * 4 + 2, vec.z); numbers.set(i * 4 + 3, vec.w); } const GLTFComponentType component_type = get_minimal_integer_component_type_from_ints(numbers); Ref accessor = make_new_accessor_without_data(TYPE_VEC4, component_type); PackedByteArray encoded_bytes = accessor->encode_ints_as_bytes(numbers); ERR_FAIL_COND_V_MSG(encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, encoded_bytes, p_buffer_view_target, 0, p_deduplicate); } GLTFAccessorIndex GLTFAccessor::encode_new_sparse_accessor_from_vec3s(const Ref &p_gltf_state, const PackedVector3Array &p_input_data, const PackedVector3Array &p_base_reference_data, const double p_tolerance_multiplier, const GLTFBufferView::ArrayBufferTarget p_main_buffer_view_target, const bool p_deduplicate) { const int64_t input_size = p_input_data.size(); ERR_FAIL_COND_V_MSG(input_size == 0, -1, "glTF export: Cannot encode an accessor from an empty array."); const bool is_base_empty = p_base_reference_data.is_empty(); ERR_FAIL_COND_V_MSG(!is_base_empty && p_base_reference_data.size() != input_size, -1, "glTF export: Base reference data must either be empty, or have the same size as the main input data."); PackedInt64Array sparse_indices; PackedFloat64Array sparse_values; PackedFloat64Array dense_values; int64_t highest_index = 0; dense_values.resize(input_size * 3); for (int64_t i = 0; i < input_size; i++) { Vector3 vec = p_input_data[i]; Vector3 base_ref_vec; Vector3 displacement; if (is_base_empty) { base_ref_vec = Vector3(); displacement = vec; } else { base_ref_vec = p_base_reference_data[i]; displacement = vec - base_ref_vec; } if ((displacement * p_tolerance_multiplier).is_zero_approx()) { vec = base_ref_vec; } else { highest_index = i; sparse_indices.append(i); sparse_values.append(vec.x); sparse_values.append(vec.y); sparse_values.append(vec.z); } dense_values.set(i * 3, vec.x); dense_values.set(i * 3 + 1, vec.y); dense_values.set(i * 3 + 2, vec.z); } // Check if the sparse accessor actually saves space, or if it's better to just use a normal accessor. const int64_t sparse_count = sparse_indices.size(); const int64_t bytes_per_value_component = _get_bytes_per_component(COMPONENT_TYPE_SINGLE_FLOAT); const GLTFComponentType indices_component_type = _get_indices_component_type_for_size(highest_index); const int64_t sparse_data_bytes = _get_bytes_per_component(indices_component_type) * sparse_count + bytes_per_value_component * sparse_values.size(); const int64_t dense_data_bytes = bytes_per_value_component * 3 * input_size; // Sparse accessors require more JSON, a bit under 200 characters when minified, so factor that in. constexpr int64_t sparse_json_fluff = 200; Ref accessor = make_new_accessor_without_data(TYPE_VEC3, COMPONENT_TYPE_SINGLE_FLOAT); if (sparse_data_bytes + sparse_json_fluff >= dense_data_bytes) { // Sparse accessor is not worth it, just use a normal accessor instead. // However, note that we use the calculated dense values instead of the original input data. // This way, regardless of the underlying storage layout, the data is the same in both cases. PackedByteArray encoded_bytes = accessor->encode_floats_as_bytes(dense_values); ERR_FAIL_COND_V_MSG(encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, encoded_bytes, p_main_buffer_view_target, 0, p_deduplicate); } // Encode as a sparse accessor. if (sparse_count > 0) { accessor->set_sparse_count(sparse_count); accessor->set_sparse_indices_component_type(indices_component_type); accessor->_store_sparse_indices_into_state(p_gltf_state, sparse_indices, p_deduplicate); const PackedByteArray sparse_values_encoded_bytes = accessor->encode_floats_as_bytes(sparse_values); ERR_FAIL_COND_V_MSG(sparse_values_encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode sparse values as bytes."); // Note: Sparse values always use TARGET_NONE, it does NOT match the target of the main buffer view. const GLTFBufferViewIndex sparse_values_buffer_view_index = GLTFBufferView::write_new_buffer_view_into_state(p_gltf_state, sparse_values_encoded_bytes, bytes_per_value_component, GLTFBufferView::TARGET_NONE, -1, 0, p_deduplicate); accessor->set_sparse_values_buffer_view(sparse_values_buffer_view_index); } // If the base reference data is empty, just directly add the accessor with only sparse data. if (is_base_empty) { // This is similar to `encode_floats_as_bytes` + `store_accessor_data_into_state` but we don't write a buffer view. // Filter and update `count`, `min`, and `max` based on the given data. accessor->set_count(input_size); const PackedFloat64Array filtered_numbers = accessor->_filter_numbers(dense_values); accessor->_calculate_min_and_max(filtered_numbers); // Add the new accessor to the state, but check for duplicates first. TypedArray state_accessors = p_gltf_state->get_accessors(); const GLTFAccessorIndex accessor_count = state_accessors.size(); for (GLTFAccessorIndex i = 0; i < accessor_count; i++) { Ref existing_accessor = state_accessors[i]; if (accessor->is_equal_exact(existing_accessor)) { // An identical accessor already exists in the state, so just return the index. return i; } } state_accessors.append(accessor); p_gltf_state->set_accessors(state_accessors); return accessor_count; } // Encode the base reference alongside the sparse data. PackedFloat64Array base_reference_values; base_reference_values.resize(input_size * 3); for (int64_t i = 0; i < input_size; i++) { const Vector3 &base_ref_vec = p_base_reference_data[i]; base_reference_values.set(i * 3, base_ref_vec.x); base_reference_values.set(i * 3 + 1, base_ref_vec.y); base_reference_values.set(i * 3 + 2, base_ref_vec.z); } const PackedByteArray base_reference_encoded_bytes = accessor->encode_floats_as_bytes(base_reference_values); ERR_FAIL_COND_V_MSG(base_reference_encoded_bytes.is_empty(), -1, "glTF export: Accessor failed to encode data as bytes (was the input data empty?)."); return accessor->store_accessor_data_into_state(p_gltf_state, base_reference_encoded_bytes, p_main_buffer_view_target, 0, p_deduplicate); } // Dictionary conversion. Ref GLTFAccessor::from_dictionary(const Dictionary &p_dict) { // See https://github.com/KhronosGroup/glTF/blob/main/specification/2.0/schema/accessor.schema.json Ref accessor; accessor.instantiate(); if (p_dict.has("bufferView")) { // bufferView is optional. If not present, the accessor is considered to be zero-initialized. accessor->buffer_view = p_dict["bufferView"]; } if (p_dict.has("byteOffset")) { accessor->byte_offset = p_dict["byteOffset"]; } if (p_dict.has("componentType")) { accessor->component_type = (GLTFAccessor::GLTFComponentType)(int32_t)p_dict["componentType"]; } if (p_dict.has("count")) { accessor->count = p_dict["count"]; } if (accessor->count <= 0) { ERR_PRINT("glTF import: Invalid accessor count " + itos(accessor->count) + " for accessor. Accessor count must be greater than 0."); } if (p_dict.has("max")) { accessor->max = p_dict["max"]; } if (p_dict.has("min")) { accessor->min = p_dict["min"]; } if (p_dict.has("normalized")) { accessor->normalized = p_dict["normalized"]; } if (p_dict.has("sparse")) { // See https://github.com/KhronosGroup/glTF/blob/main/specification/2.0/schema/accessor.sparse.schema.json const Dictionary &sparse_dict = p_dict["sparse"]; ERR_FAIL_COND_V(!sparse_dict.has("count"), accessor); accessor->sparse_count = sparse_dict["count"]; ERR_FAIL_COND_V(!sparse_dict.has("indices"), accessor); const Dictionary &sparse_indices_dict = sparse_dict["indices"]; ERR_FAIL_COND_V(!sparse_indices_dict.has("bufferView"), accessor); accessor->sparse_indices_buffer_view = sparse_indices_dict["bufferView"]; ERR_FAIL_COND_V(!sparse_indices_dict.has("componentType"), accessor); accessor->sparse_indices_component_type = (GLTFAccessor::GLTFComponentType)(int32_t)sparse_indices_dict["componentType"]; if (sparse_indices_dict.has("byteOffset")) { accessor->sparse_indices_byte_offset = sparse_indices_dict["byteOffset"]; } ERR_FAIL_COND_V(!sparse_dict.has("values"), accessor); const Dictionary &sparse_values_dict = sparse_dict["values"]; ERR_FAIL_COND_V(!sparse_values_dict.has("bufferView"), accessor); accessor->sparse_values_buffer_view = sparse_values_dict["bufferView"]; if (sparse_values_dict.has("byteOffset")) { accessor->sparse_values_byte_offset = sparse_values_dict["byteOffset"]; } } accessor->accessor_type = _get_accessor_type_from_str(p_dict["type"]); return accessor; } Dictionary GLTFAccessor::to_dictionary() const { Dictionary dict; if (buffer_view != -1) { // bufferView may be omitted to zero-initialize the buffer. When this happens, byteOffset MUST also be omitted. if (byte_offset > 0) { dict["byteOffset"] = byte_offset; } dict["bufferView"] = buffer_view; } dict["componentType"] = component_type; dict["count"] = count; dict["max"] = max; dict["min"] = min; dict["normalized"] = normalized; dict["type"] = _get_accessor_type_name(); if (sparse_count > 0) { Dictionary sparse_indices_dict; sparse_indices_dict["bufferView"] = sparse_indices_buffer_view; sparse_indices_dict["componentType"] = sparse_indices_component_type; if (sparse_indices_byte_offset > 0) { sparse_indices_dict["byteOffset"] = sparse_indices_byte_offset; } Dictionary sparse_values_dict; sparse_values_dict["bufferView"] = sparse_values_buffer_view; if (sparse_values_byte_offset > 0) { sparse_values_dict["byteOffset"] = sparse_values_byte_offset; } Dictionary sparse_dict; sparse_dict["count"] = sparse_count; sparse_dict["indices"] = sparse_indices_dict; sparse_dict["values"] = sparse_values_dict; dict["sparse"] = sparse_dict; } return dict; }