/**************************************************************************/ /* metal_objects.mm */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ /**************************************************************************/ /* */ /* Portions of this code were derived from MoltenVK. */ /* */ /* Copyright (c) 2015-2023 The Brenwill Workshop Ltd. */ /* (http://www.brenwill.com) */ /* */ /* Licensed under the Apache License, Version 2.0 (the "License"); */ /* you may not use this file except in compliance with the License. */ /* You may obtain a copy of the License at */ /* */ /* http://www.apache.org/licenses/LICENSE-2.0 */ /* */ /* Unless required by applicable law or agreed to in writing, software */ /* distributed under the License is distributed on an "AS IS" BASIS, */ /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */ /* implied. See the License for the specific language governing */ /* permissions and limitations under the License. */ /**************************************************************************/ #import "metal_objects.h" #import "metal_utils.h" #import "pixel_formats.h" #import "rendering_device_driver_metal.h" #import "rendering_shader_container_metal.h" #import #import // We have to undefine these macros because they are defined in NSObjCRuntime.h. #undef MIN #undef MAX void MDCommandBuffer::begin_label(const char *p_label_name, const Color &p_color) { NSString *s = [[NSString alloc] initWithBytesNoCopy:(void *)p_label_name length:strlen(p_label_name) encoding:NSUTF8StringEncoding freeWhenDone:NO]; [commandBuffer pushDebugGroup:s]; } void MDCommandBuffer::end_label() { [commandBuffer popDebugGroup]; } void MDCommandBuffer::begin() { DEV_ASSERT(commandBuffer == nil && !state_begin); state_begin = true; binding_cache.clear(); } void MDCommandBuffer::end() { switch (type) { case MDCommandBufferStateType::None: return; case MDCommandBufferStateType::Render: return render_end_pass(); case MDCommandBufferStateType::Compute: return _end_compute_dispatch(); case MDCommandBufferStateType::Blit: return _end_blit(); } } void MDCommandBuffer::commit() { end(); [commandBuffer commit]; commandBuffer = nil; state_begin = false; } void MDCommandBuffer::bind_pipeline(RDD::PipelineID p_pipeline) { MDPipeline *p = (MDPipeline *)(p_pipeline.id); // End current encoder if it is a compute encoder or blit encoder, // as they do not have a defined end boundary in the RDD like render. if (type == MDCommandBufferStateType::Compute) { _end_compute_dispatch(); } else if (type == MDCommandBufferStateType::Blit) { _end_blit(); } if (p->type == MDPipelineType::Render) { DEV_ASSERT(type == MDCommandBufferStateType::Render); MDRenderPipeline *rp = (MDRenderPipeline *)p; if (render.encoder == nil) { // This error would happen if the render pass failed. ERR_FAIL_NULL_MSG(render.desc, "Render pass descriptor is null."); // This condition occurs when there are no attachments when calling render_next_subpass() // and is due to the SUPPORTS_FRAGMENT_SHADER_WITH_ONLY_SIDE_EFFECTS flag. render.desc.defaultRasterSampleCount = static_cast(rp->sample_count); // NOTE(sgc): This is to test rdar://FB13605547 and will be deleted once fix is confirmed. #if 0 if (render.pipeline->sample_count == 4) { static id tex = nil; static id res_tex = nil; static dispatch_once_t onceToken; dispatch_once(&onceToken, ^{ Size2i sz = render.frameBuffer->size; MTLTextureDescriptor *td = [MTLTextureDescriptor texture2DDescriptorWithPixelFormat:MTLPixelFormatRGBA8Unorm width:sz.width height:sz.height mipmapped:NO]; td.textureType = MTLTextureType2DMultisample; td.storageMode = MTLStorageModeMemoryless; td.usage = MTLTextureUsageRenderTarget; td.sampleCount = render.pipeline->sample_count; tex = [device_driver->get_device() newTextureWithDescriptor:td]; td.textureType = MTLTextureType2D; td.storageMode = MTLStorageModePrivate; td.usage = MTLTextureUsageShaderWrite; td.sampleCount = 1; res_tex = [device_driver->get_device() newTextureWithDescriptor:td]; }); render.desc.colorAttachments[0].texture = tex; render.desc.colorAttachments[0].loadAction = MTLLoadActionClear; render.desc.colorAttachments[0].storeAction = MTLStoreActionMultisampleResolve; render.desc.colorAttachments[0].resolveTexture = res_tex; } #endif render.encoder = [command_buffer() renderCommandEncoderWithDescriptor:render.desc]; } if (render.pipeline != rp) { render.dirty.set_flag((RenderState::DirtyFlag)(RenderState::DIRTY_PIPELINE | RenderState::DIRTY_RASTER)); // Mark all uniforms as dirty, as variants of a shader pipeline may have a different entry point ABI, // due to setting force_active_argument_buffer_resources = true for spirv_cross::CompilerMSL::Options. // As a result, uniform sets with the same layout will generate redundant binding warnings when // capturing a Metal frame in Xcode. // // If we don't mark as dirty, then some bindings will generate a validation error. binding_cache.clear(); render.mark_uniforms_dirty(); if (render.pipeline != nullptr && render.pipeline->depth_stencil != rp->depth_stencil) { render.dirty.set_flag(RenderState::DIRTY_DEPTH); } if (rp->raster_state.blend.enabled) { render.dirty.set_flag(RenderState::DIRTY_BLEND); } render.pipeline = rp; } } else if (p->type == MDPipelineType::Compute) { DEV_ASSERT(type == MDCommandBufferStateType::None); type = MDCommandBufferStateType::Compute; if (compute.pipeline != p) { compute.dirty.set_flag(ComputeState::DIRTY_PIPELINE); binding_cache.clear(); compute.mark_uniforms_dirty(); compute.pipeline = (MDComputePipeline *)p; } } } void MDCommandBuffer::encode_push_constant_data(RDD::ShaderID p_shader, VectorView p_data) { switch (type) { case MDCommandBufferStateType::Render: case MDCommandBufferStateType::Compute: { MDShader *shader = (MDShader *)(p_shader.id); if (shader->push_constants.binding == UINT32_MAX) { return; } push_constant_binding = shader->push_constants.binding; void const *ptr = p_data.ptr(); push_constant_data_len = p_data.size() * sizeof(uint32_t); DEV_ASSERT(push_constant_data_len <= sizeof(push_constant_data)); memcpy(push_constant_data, ptr, push_constant_data_len); if (push_constant_data_len > 0) { switch (type) { case MDCommandBufferStateType::Render: render.dirty.set_flag(RenderState::DirtyFlag::DIRTY_PUSH); break; case MDCommandBufferStateType::Compute: compute.dirty.set_flag(ComputeState::DirtyFlag::DIRTY_PUSH); break; default: break; } } } break; case MDCommandBufferStateType::Blit: case MDCommandBufferStateType::None: return; } } id MDCommandBuffer::_ensure_blit_encoder() { switch (type) { case MDCommandBufferStateType::None: break; case MDCommandBufferStateType::Render: render_end_pass(); break; case MDCommandBufferStateType::Compute: _end_compute_dispatch(); break; case MDCommandBufferStateType::Blit: return blit.encoder; } type = MDCommandBufferStateType::Blit; blit.encoder = command_buffer().blitCommandEncoder; return blit.encoder; } _FORCE_INLINE_ static MTLSize mipmapLevelSizeFromTexture(id p_tex, NSUInteger p_level) { MTLSize lvlSize; lvlSize.width = MAX(p_tex.width >> p_level, 1UL); lvlSize.height = MAX(p_tex.height >> p_level, 1UL); lvlSize.depth = MAX(p_tex.depth >> p_level, 1UL); return lvlSize; } void MDCommandBuffer::resolve_texture(RDD::TextureID p_src_texture, RDD::TextureLayout p_src_texture_layout, uint32_t p_src_layer, uint32_t p_src_mipmap, RDD::TextureID p_dst_texture, RDD::TextureLayout p_dst_texture_layout, uint32_t p_dst_layer, uint32_t p_dst_mipmap) { id src_tex = rid::get(p_src_texture); id dst_tex = rid::get(p_dst_texture); MTLRenderPassDescriptor *mtlRPD = [MTLRenderPassDescriptor renderPassDescriptor]; MTLRenderPassColorAttachmentDescriptor *mtlColorAttDesc = mtlRPD.colorAttachments[0]; mtlColorAttDesc.loadAction = MTLLoadActionLoad; mtlColorAttDesc.storeAction = MTLStoreActionMultisampleResolve; mtlColorAttDesc.texture = src_tex; mtlColorAttDesc.resolveTexture = dst_tex; mtlColorAttDesc.level = p_src_mipmap; mtlColorAttDesc.slice = p_src_layer; mtlColorAttDesc.resolveLevel = p_dst_mipmap; mtlColorAttDesc.resolveSlice = p_dst_layer; encodeRenderCommandEncoderWithDescriptor(mtlRPD, @"Resolve Image"); } void MDCommandBuffer::clear_color_texture(RDD::TextureID p_texture, RDD::TextureLayout p_texture_layout, const Color &p_color, const RDD::TextureSubresourceRange &p_subresources) { id src_tex = rid::get(p_texture); if (src_tex.parentTexture) { // Clear via the parent texture rather than the view. src_tex = src_tex.parentTexture; } PixelFormats &pf = device_driver->get_pixel_formats(); if (pf.isDepthFormat(src_tex.pixelFormat) || pf.isStencilFormat(src_tex.pixelFormat)) { ERR_FAIL_MSG("invalid: depth or stencil texture format"); } MTLRenderPassDescriptor *desc = MTLRenderPassDescriptor.renderPassDescriptor; if (p_subresources.aspect.has_flag(RDD::TEXTURE_ASPECT_COLOR_BIT)) { MTLRenderPassColorAttachmentDescriptor *caDesc = desc.colorAttachments[0]; caDesc.texture = src_tex; caDesc.loadAction = MTLLoadActionClear; caDesc.storeAction = MTLStoreActionStore; caDesc.clearColor = MTLClearColorMake(p_color.r, p_color.g, p_color.b, p_color.a); // Extract the mipmap levels that are to be updated. uint32_t mipLvlStart = p_subresources.base_mipmap; uint32_t mipLvlCnt = p_subresources.mipmap_count; uint32_t mipLvlEnd = mipLvlStart + mipLvlCnt; uint32_t levelCount = src_tex.mipmapLevelCount; // Extract the cube or array layers (slices) that are to be updated. bool is3D = src_tex.textureType == MTLTextureType3D; uint32_t layerStart = is3D ? 0 : p_subresources.base_layer; uint32_t layerCnt = p_subresources.layer_count; uint32_t layerEnd = layerStart + layerCnt; MetalFeatures const &features = device_driver->get_device_properties().features; // Iterate across mipmap levels and layers, and perform and empty render to clear each. for (uint32_t mipLvl = mipLvlStart; mipLvl < mipLvlEnd; mipLvl++) { ERR_FAIL_INDEX_MSG(mipLvl, levelCount, "mip level out of range"); caDesc.level = mipLvl; // If a 3D image, we need to get the depth for each level. if (is3D) { layerCnt = mipmapLevelSizeFromTexture(src_tex, mipLvl).depth; layerEnd = layerStart + layerCnt; } if ((features.layeredRendering && src_tex.sampleCount == 1) || features.multisampleLayeredRendering) { // We can clear all layers at once. if (is3D) { caDesc.depthPlane = layerStart; } else { caDesc.slice = layerStart; } desc.renderTargetArrayLength = layerCnt; encodeRenderCommandEncoderWithDescriptor(desc, @"Clear Image"); } else { for (uint32_t layer = layerStart; layer < layerEnd; layer++) { if (is3D) { caDesc.depthPlane = layer; } else { caDesc.slice = layer; } encodeRenderCommandEncoderWithDescriptor(desc, @"Clear Image"); } } } } } void MDCommandBuffer::clear_buffer(RDD::BufferID p_buffer, uint64_t p_offset, uint64_t p_size) { id blit_enc = _ensure_blit_encoder(); const RDM::BufferInfo *buffer = (const RDM::BufferInfo *)p_buffer.id; [blit_enc fillBuffer:buffer->metal_buffer range:NSMakeRange(p_offset, p_size) value:0]; } void MDCommandBuffer::copy_buffer(RDD::BufferID p_src_buffer, RDD::BufferID p_dst_buffer, VectorView p_regions) { const RDM::BufferInfo *src = (const RDM::BufferInfo *)p_src_buffer.id; const RDM::BufferInfo *dst = (const RDM::BufferInfo *)p_dst_buffer.id; id enc = _ensure_blit_encoder(); for (uint32_t i = 0; i < p_regions.size(); i++) { RDD::BufferCopyRegion region = p_regions[i]; [enc copyFromBuffer:src->metal_buffer sourceOffset:region.src_offset toBuffer:dst->metal_buffer destinationOffset:region.dst_offset size:region.size]; } } static MTLSize MTLSizeFromVector3i(Vector3i p_size) { return MTLSizeMake(p_size.x, p_size.y, p_size.z); } static MTLOrigin MTLOriginFromVector3i(Vector3i p_origin) { return MTLOriginMake(p_origin.x, p_origin.y, p_origin.z); } // Clamps the size so that the sum of the origin and size do not exceed the maximum size. static inline MTLSize clampMTLSize(MTLSize p_size, MTLOrigin p_origin, MTLSize p_max_size) { MTLSize clamped; clamped.width = MIN(p_size.width, p_max_size.width - p_origin.x); clamped.height = MIN(p_size.height, p_max_size.height - p_origin.y); clamped.depth = MIN(p_size.depth, p_max_size.depth - p_origin.z); return clamped; } API_AVAILABLE(macos(11.0), ios(14.0), tvos(14.0)) static bool isArrayTexture(MTLTextureType p_type) { return (p_type == MTLTextureType3D || p_type == MTLTextureType2DArray || p_type == MTLTextureType2DMultisampleArray || p_type == MTLTextureType1DArray); } _FORCE_INLINE_ static bool operator==(MTLSize p_a, MTLSize p_b) { return p_a.width == p_b.width && p_a.height == p_b.height && p_a.depth == p_b.depth; } void MDCommandBuffer::copy_texture(RDD::TextureID p_src_texture, RDD::TextureID p_dst_texture, VectorView p_regions) { id src = rid::get(p_src_texture); id dst = rid::get(p_dst_texture); id enc = _ensure_blit_encoder(); PixelFormats &pf = device_driver->get_pixel_formats(); MTLPixelFormat src_fmt = src.pixelFormat; bool src_is_compressed = pf.getFormatType(src_fmt) == MTLFormatType::Compressed; MTLPixelFormat dst_fmt = dst.pixelFormat; bool dst_is_compressed = pf.getFormatType(dst_fmt) == MTLFormatType::Compressed; // Validate copy. if (src.sampleCount != dst.sampleCount || pf.getBytesPerBlock(src_fmt) != pf.getBytesPerBlock(dst_fmt)) { ERR_FAIL_MSG("Cannot copy between incompatible pixel formats, such as formats of different pixel sizes, or between images with different sample counts."); } // If source and destination have different formats and at least one is compressed, a temporary buffer is required. bool need_tmp_buffer = (src_fmt != dst_fmt) && (src_is_compressed || dst_is_compressed); if (need_tmp_buffer) { ERR_FAIL_MSG("not implemented: copy with intermediate buffer"); } if (src_fmt != dst_fmt) { // Map the source pixel format to the dst through a texture view on the source texture. src = [src newTextureViewWithPixelFormat:dst_fmt]; } for (uint32_t i = 0; i < p_regions.size(); i++) { RDD::TextureCopyRegion region = p_regions[i]; MTLSize extent = MTLSizeFromVector3i(region.size); // If copies can be performed using direct texture-texture copying, do so. uint32_t src_level = region.src_subresources.mipmap; uint32_t src_base_layer = region.src_subresources.base_layer; MTLSize src_extent = mipmapLevelSizeFromTexture(src, src_level); uint32_t dst_level = region.dst_subresources.mipmap; uint32_t dst_base_layer = region.dst_subresources.base_layer; MTLSize dst_extent = mipmapLevelSizeFromTexture(dst, dst_level); // All layers may be copied at once, if the extent completely covers both images. if (src_extent == extent && dst_extent == extent) { [enc copyFromTexture:src sourceSlice:src_base_layer sourceLevel:src_level toTexture:dst destinationSlice:dst_base_layer destinationLevel:dst_level sliceCount:region.src_subresources.layer_count levelCount:1]; } else { MTLOrigin src_origin = MTLOriginFromVector3i(region.src_offset); MTLSize src_size = clampMTLSize(extent, src_origin, src_extent); uint32_t layer_count = 0; if ((src.textureType == MTLTextureType3D) != (dst.textureType == MTLTextureType3D)) { // In the case, the number of layers to copy is in extent.depth. Use that value, // then clamp the depth, so we don't try to copy more than Metal will allow. layer_count = extent.depth; src_size.depth = 1; } else { layer_count = region.src_subresources.layer_count; } MTLOrigin dst_origin = MTLOriginFromVector3i(region.dst_offset); for (uint32_t layer = 0; layer < layer_count; layer++) { // We can copy between a 3D and a 2D image easily. Just copy between // one slice of the 2D image and one plane of the 3D image at a time. if ((src.textureType == MTLTextureType3D) == (dst.textureType == MTLTextureType3D)) { [enc copyFromTexture:src sourceSlice:src_base_layer + layer sourceLevel:src_level sourceOrigin:src_origin sourceSize:src_size toTexture:dst destinationSlice:dst_base_layer + layer destinationLevel:dst_level destinationOrigin:dst_origin]; } else if (src.textureType == MTLTextureType3D) { [enc copyFromTexture:src sourceSlice:src_base_layer sourceLevel:src_level sourceOrigin:MTLOriginMake(src_origin.x, src_origin.y, src_origin.z + layer) sourceSize:src_size toTexture:dst destinationSlice:dst_base_layer + layer destinationLevel:dst_level destinationOrigin:dst_origin]; } else { DEV_ASSERT(dst.textureType == MTLTextureType3D); [enc copyFromTexture:src sourceSlice:src_base_layer + layer sourceLevel:src_level sourceOrigin:src_origin sourceSize:src_size toTexture:dst destinationSlice:dst_base_layer destinationLevel:dst_level destinationOrigin:MTLOriginMake(dst_origin.x, dst_origin.y, dst_origin.z + layer)]; } } } } } void MDCommandBuffer::copy_buffer_to_texture(RDD::BufferID p_src_buffer, RDD::TextureID p_dst_texture, VectorView p_regions) { _copy_texture_buffer(CopySource::Buffer, p_dst_texture, p_src_buffer, p_regions); } void MDCommandBuffer::copy_texture_to_buffer(RDD::TextureID p_src_texture, RDD::BufferID p_dst_buffer, VectorView p_regions) { _copy_texture_buffer(CopySource::Texture, p_src_texture, p_dst_buffer, p_regions); } void MDCommandBuffer::_copy_texture_buffer(CopySource p_source, RDD::TextureID p_texture, RDD::BufferID p_buffer, VectorView p_regions) { const RDM::BufferInfo *buffer = (const RDM::BufferInfo *)p_buffer.id; id texture = rid::get(p_texture); id enc = _ensure_blit_encoder(); PixelFormats &pf = device_driver->get_pixel_formats(); MTLPixelFormat mtlPixFmt = texture.pixelFormat; MTLBlitOption options = MTLBlitOptionNone; if (pf.isPVRTCFormat(mtlPixFmt)) { options |= MTLBlitOptionRowLinearPVRTC; } for (uint32_t i = 0; i < p_regions.size(); i++) { RDD::BufferTextureCopyRegion region = p_regions[i]; uint32_t mip_level = region.texture_subresources.mipmap; MTLOrigin txt_origin = MTLOriginMake(region.texture_offset.x, region.texture_offset.y, region.texture_offset.z); MTLSize src_extent = mipmapLevelSizeFromTexture(texture, mip_level); MTLSize txt_size = clampMTLSize(MTLSizeMake(region.texture_region_size.x, region.texture_region_size.y, region.texture_region_size.z), txt_origin, src_extent); uint32_t buffImgWd = region.texture_region_size.x; uint32_t buffImgHt = region.texture_region_size.y; NSUInteger bytesPerRow = pf.getBytesPerRow(mtlPixFmt, buffImgWd); NSUInteger bytesPerImg = pf.getBytesPerLayer(mtlPixFmt, bytesPerRow, buffImgHt); MTLBlitOption blit_options = options; if (pf.isDepthFormat(mtlPixFmt) && pf.isStencilFormat(mtlPixFmt)) { bool want_depth = flags::all(region.texture_subresources.aspect, RDD::TEXTURE_ASPECT_DEPTH_BIT); bool want_stencil = flags::all(region.texture_subresources.aspect, RDD::TEXTURE_ASPECT_STENCIL_BIT); // The stencil component is always 1 byte per pixel. // Don't reduce depths of 32-bit depth/stencil formats. if (want_depth && !want_stencil) { if (pf.getBytesPerTexel(mtlPixFmt) != 4) { bytesPerRow -= buffImgWd; bytesPerImg -= buffImgWd * buffImgHt; } blit_options |= MTLBlitOptionDepthFromDepthStencil; } else if (want_stencil && !want_depth) { bytesPerRow = buffImgWd; bytesPerImg = buffImgWd * buffImgHt; blit_options |= MTLBlitOptionStencilFromDepthStencil; } } if (!isArrayTexture(texture.textureType)) { bytesPerImg = 0; } if (p_source == CopySource::Buffer) { for (uint32_t lyrIdx = 0; lyrIdx < region.texture_subresources.layer_count; lyrIdx++) { [enc copyFromBuffer:buffer->metal_buffer sourceOffset:region.buffer_offset + (bytesPerImg * lyrIdx) sourceBytesPerRow:bytesPerRow sourceBytesPerImage:bytesPerImg sourceSize:txt_size toTexture:texture destinationSlice:region.texture_subresources.base_layer + lyrIdx destinationLevel:mip_level destinationOrigin:txt_origin options:blit_options]; } } else { for (uint32_t lyrIdx = 0; lyrIdx < region.texture_subresources.layer_count; lyrIdx++) { [enc copyFromTexture:texture sourceSlice:region.texture_subresources.base_layer + lyrIdx sourceLevel:mip_level sourceOrigin:txt_origin sourceSize:txt_size toBuffer:buffer->metal_buffer destinationOffset:region.buffer_offset + (bytesPerImg * lyrIdx) destinationBytesPerRow:bytesPerRow destinationBytesPerImage:bytesPerImg options:blit_options]; } } } } void MDCommandBuffer::encodeRenderCommandEncoderWithDescriptor(MTLRenderPassDescriptor *p_desc, NSString *p_label) { switch (type) { case MDCommandBufferStateType::None: break; case MDCommandBufferStateType::Render: render_end_pass(); break; case MDCommandBufferStateType::Compute: _end_compute_dispatch(); break; case MDCommandBufferStateType::Blit: _end_blit(); break; } id enc = [command_buffer() renderCommandEncoderWithDescriptor:p_desc]; if (p_label != nil) { [enc pushDebugGroup:p_label]; [enc popDebugGroup]; } [enc endEncoding]; } #pragma mark - Render Commands void MDCommandBuffer::render_bind_uniform_sets(VectorView p_uniform_sets, RDD::ShaderID p_shader, uint32_t p_first_set_index, uint32_t p_set_count, uint32_t p_dynamic_offsets) { DEV_ASSERT(type == MDCommandBufferStateType::Render); render.dynamic_offsets |= p_dynamic_offsets; if (uint32_t new_size = p_first_set_index + p_set_count; render.uniform_sets.size() < new_size) { uint32_t s = render.uniform_sets.size(); render.uniform_sets.resize(new_size); // Set intermediate values to null. std::fill(&render.uniform_sets[s], render.uniform_sets.end().operator->(), nullptr); } const MDShader *shader = (const MDShader *)p_shader.id; DynamicOffsetLayout layout = shader->dynamic_offset_layout; for (size_t i = 0; i < p_set_count; ++i) { MDUniformSet *set = (MDUniformSet *)(p_uniform_sets[i].id); uint32_t index = p_first_set_index + i; if (render.uniform_sets[index] != set || layout.get_count(index) > 0) { render.dirty.set_flag(RenderState::DIRTY_UNIFORMS); render.uniform_set_mask |= 1ULL << index; render.uniform_sets[index] = set; } } } void MDCommandBuffer::render_clear_attachments(VectorView p_attachment_clears, VectorView p_rects) { DEV_ASSERT(type == MDCommandBufferStateType::Render); const MDSubpass &subpass = render.get_subpass(); uint32_t vertex_count = p_rects.size() * 6 * subpass.view_count; simd::float4 *vertices = ALLOCA_ARRAY(simd::float4, vertex_count); simd::float4 clear_colors[ClearAttKey::ATTACHMENT_COUNT]; Size2i size = render.frameBuffer->size; Rect2i render_area = render.clip_to_render_area({ { 0, 0 }, size }); size = Size2i(render_area.position.x + render_area.size.width, render_area.position.y + render_area.size.height); _populate_vertices(vertices, size, p_rects); ClearAttKey key; key.sample_count = render.pass->get_sample_count(); if (subpass.view_count > 1) { key.enable_layered_rendering(); } float depth_value = 0; uint32_t stencil_value = 0; for (uint32_t i = 0; i < p_attachment_clears.size(); i++) { RDD::AttachmentClear const &attClear = p_attachment_clears[i]; uint32_t attachment_index; if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_COLOR_BIT)) { attachment_index = attClear.color_attachment; } else { attachment_index = subpass.depth_stencil_reference.attachment; } MDAttachment const &mda = render.pass->attachments[attachment_index]; if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_COLOR_BIT)) { key.set_color_format(attachment_index, mda.format); clear_colors[attachment_index] = { attClear.value.color.r, attClear.value.color.g, attClear.value.color.b, attClear.value.color.a }; } if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT)) { key.set_depth_format(mda.format); depth_value = attClear.value.depth; } if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT)) { key.set_stencil_format(mda.format); stencil_value = attClear.value.stencil; } } clear_colors[ClearAttKey::DEPTH_INDEX] = { depth_value, depth_value, depth_value, depth_value }; id enc = render.encoder; MDResourceCache &cache = device_driver->get_resource_cache(); [enc pushDebugGroup:@"ClearAttachments"]; [enc setRenderPipelineState:cache.get_clear_render_pipeline_state(key, nil)]; [enc setDepthStencilState:cache.get_depth_stencil_state( key.is_depth_enabled(), key.is_stencil_enabled())]; [enc setStencilReferenceValue:stencil_value]; [enc setCullMode:MTLCullModeNone]; [enc setTriangleFillMode:MTLTriangleFillModeFill]; [enc setDepthBias:0 slopeScale:0 clamp:0]; [enc setViewport:{ 0, 0, (double)size.width, (double)size.height, 0.0, 1.0 }]; [enc setScissorRect:{ 0, 0, (NSUInteger)size.width, (NSUInteger)size.height }]; [enc setVertexBytes:clear_colors length:sizeof(clear_colors) atIndex:0]; [enc setFragmentBytes:clear_colors length:sizeof(clear_colors) atIndex:0]; [enc setVertexBytes:vertices length:vertex_count * sizeof(vertices[0]) atIndex:device_driver->get_metal_buffer_index_for_vertex_attribute_binding(VERT_CONTENT_BUFFER_INDEX)]; [enc drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 vertexCount:vertex_count]; [enc popDebugGroup]; render.dirty.set_flag((RenderState::DirtyFlag)(RenderState::DIRTY_PIPELINE | RenderState::DIRTY_DEPTH | RenderState::DIRTY_RASTER)); binding_cache.clear(); render.mark_uniforms_dirty({ 0 }); // Mark index 0 dirty, if there is already a binding for index 0. render.mark_viewport_dirty(); render.mark_scissors_dirty(); render.mark_vertex_dirty(); render.mark_blend_dirty(); } void MDCommandBuffer::_render_set_dirty_state() { _render_bind_uniform_sets(); if (render.dirty.has_flag(RenderState::DIRTY_PUSH)) { if (push_constant_binding != UINT32_MAX) { [render.encoder setVertexBytes:push_constant_data length:push_constant_data_len atIndex:push_constant_binding]; [render.encoder setFragmentBytes:push_constant_data length:push_constant_data_len atIndex:push_constant_binding]; } } MDSubpass const &subpass = render.get_subpass(); if (subpass.view_count > 1) { uint32_t view_range[2] = { 0, subpass.view_count }; [render.encoder setVertexBytes:view_range length:sizeof(view_range) atIndex:VIEW_MASK_BUFFER_INDEX]; [render.encoder setFragmentBytes:view_range length:sizeof(view_range) atIndex:VIEW_MASK_BUFFER_INDEX]; } if (render.dirty.has_flag(RenderState::DIRTY_PIPELINE)) { [render.encoder setRenderPipelineState:render.pipeline->state]; } if (render.dirty.has_flag(RenderState::DIRTY_VIEWPORT)) { [render.encoder setViewports:render.viewports.ptr() count:render.viewports.size()]; } if (render.dirty.has_flag(RenderState::DIRTY_DEPTH)) { [render.encoder setDepthStencilState:render.pipeline->depth_stencil]; } if (render.dirty.has_flag(RenderState::DIRTY_RASTER)) { render.pipeline->raster_state.apply(render.encoder); } if (render.dirty.has_flag(RenderState::DIRTY_SCISSOR) && !render.scissors.is_empty()) { size_t len = render.scissors.size(); MTLScissorRect *rects = ALLOCA_ARRAY(MTLScissorRect, len); for (size_t i = 0; i < len; i++) { rects[i] = render.clip_to_render_area(render.scissors[i]); } [render.encoder setScissorRects:rects count:len]; } if (render.dirty.has_flag(RenderState::DIRTY_BLEND) && render.blend_constants.has_value()) { [render.encoder setBlendColorRed:render.blend_constants->r green:render.blend_constants->g blue:render.blend_constants->b alpha:render.blend_constants->a]; } if (render.dirty.has_flag(RenderState::DIRTY_VERTEX)) { uint32_t p_binding_count = render.vertex_buffers.size(); uint32_t first = device_driver->get_metal_buffer_index_for_vertex_attribute_binding(p_binding_count - 1); [render.encoder setVertexBuffers:render.vertex_buffers.ptr() offsets:render.vertex_offsets.ptr() withRange:NSMakeRange(first, p_binding_count)]; } render.resource_tracker.encode(render.encoder); render.dirty.clear(); } void MDCommandBuffer::render_set_viewport(VectorView p_viewports) { render.viewports.resize(p_viewports.size()); for (uint32_t i = 0; i < p_viewports.size(); i += 1) { Rect2i const &vp = p_viewports[i]; render.viewports[i] = { .originX = static_cast(vp.position.x), .originY = static_cast(vp.position.y), .width = static_cast(vp.size.width), .height = static_cast(vp.size.height), .znear = 0.0, .zfar = 1.0, }; } render.dirty.set_flag(RenderState::DIRTY_VIEWPORT); } void MDCommandBuffer::render_set_scissor(VectorView p_scissors) { render.scissors.resize(p_scissors.size()); for (uint32_t i = 0; i < p_scissors.size(); i += 1) { Rect2i const &vp = p_scissors[i]; render.scissors[i] = { .x = static_cast(vp.position.x), .y = static_cast(vp.position.y), .width = static_cast(vp.size.width), .height = static_cast(vp.size.height), }; } render.dirty.set_flag(RenderState::DIRTY_SCISSOR); } void MDCommandBuffer::render_set_blend_constants(const Color &p_constants) { DEV_ASSERT(type == MDCommandBufferStateType::Render); if (render.blend_constants != p_constants) { render.blend_constants = p_constants; render.dirty.set_flag(RenderState::DIRTY_BLEND); } } void ResourceTracker::merge_from(const ResourceUsageMap &p_from) { for (KeyValue const &keyval : p_from) { ResourceVector *resources = _current.getptr(keyval.key); if (resources == nullptr) { resources = &_current.insert(keyval.key, ResourceVector())->value; } // Reserve space for the new resources, assuming they are all added. resources->reserve(resources->size() + keyval.value.size()); uint32_t i = 0, j = 0; MTLResourceUnsafe *resources_ptr = resources->ptr(); const MTLResourceUnsafe *keyval_ptr = keyval.value.ptr(); // 2-way merge. while (i < resources->size() && j < keyval.value.size()) { if (resources_ptr[i] < keyval_ptr[j]) { i++; } else if (resources_ptr[i] > keyval_ptr[j]) { ResourceUsageEntry *existing = nullptr; if ((existing = _previous.getptr(keyval_ptr[j])) == nullptr) { existing = &_previous.insert(keyval_ptr[j], keyval.key)->value; resources->insert(i, keyval_ptr[j]); } else { if (existing->usage != keyval.key) { existing->usage |= keyval.key; resources->insert(i, keyval_ptr[j]); } } i++; j++; } else { i++; j++; } } // Append the remaining resources. for (; j < keyval.value.size(); j++) { ResourceUsageEntry *existing = nullptr; if ((existing = _previous.getptr(keyval_ptr[j])) == nullptr) { existing = &_previous.insert(keyval_ptr[j], keyval.key)->value; resources->push_back(keyval_ptr[j]); } else { if (existing->usage != keyval.key) { existing->usage |= keyval.key; resources->push_back(keyval_ptr[j]); } } } } } void ResourceTracker::encode(id __unsafe_unretained p_enc) { for (KeyValue const &keyval : _current) { if (keyval.value.is_empty()) { continue; } MTLResourceUsage vert_usage = resource_usage_for_stage(keyval.key, RDD::ShaderStage::SHADER_STAGE_VERTEX); MTLResourceUsage frag_usage = resource_usage_for_stage(keyval.key, RDD::ShaderStage::SHADER_STAGE_FRAGMENT); if (vert_usage == frag_usage) { [p_enc useResources:keyval.value.ptr() count:keyval.value.size() usage:vert_usage stages:MTLRenderStageVertex | MTLRenderStageFragment]; } else { if (vert_usage != 0) { [p_enc useResources:keyval.value.ptr() count:keyval.value.size() usage:vert_usage stages:MTLRenderStageVertex]; } if (frag_usage != 0) { [p_enc useResources:keyval.value.ptr() count:keyval.value.size() usage:frag_usage stages:MTLRenderStageFragment]; } } } // Keep the keys for now and clear the vectors to reduce churn. for (KeyValue &v : _current) { v.value.clear(); } } void ResourceTracker::encode(id __unsafe_unretained p_enc) { for (KeyValue const &keyval : _current) { if (keyval.value.is_empty()) { continue; } MTLResourceUsage usage = resource_usage_for_stage(keyval.key, RDD::ShaderStage::SHADER_STAGE_COMPUTE); if (usage != 0) { [p_enc useResources:keyval.value.ptr() count:keyval.value.size() usage:usage]; } } // Keep the keys for now and clear the vectors to reduce churn. for (KeyValue &v : _current) { v.value.clear(); } } void ResourceTracker::reset() { // Keep the keys for now, as they are likely to be used repeatedly. for (KeyValue &v : _previous) { if (v.value.usage == ResourceUnused) { v.value.unused++; if (v.value.unused >= RESOURCE_UNUSED_CLEANUP_COUNT) { _scratch.push_back(v.key); } } else { v.value = ResourceUnused; v.value.unused = 0; } } // Clear up resources that weren't used for the last pass. for (const MTLResourceUnsafe &res : _scratch) { _previous.erase(res); } _scratch.clear(); } void MDCommandBuffer::_render_bind_uniform_sets() { DEV_ASSERT(type == MDCommandBufferStateType::Render); if (!render.dirty.has_flag(RenderState::DIRTY_UNIFORMS)) { return; } render.dirty.clear_flag(RenderState::DIRTY_UNIFORMS); uint64_t set_uniforms = render.uniform_set_mask; render.uniform_set_mask = 0; MDRenderShader *shader = render.pipeline->shader; const uint32_t dynamic_offsets = render.dynamic_offsets; while (set_uniforms != 0) { // Find the index of the next set bit. uint32_t index = (uint32_t)__builtin_ctzll(set_uniforms); // Clear the set bit. set_uniforms &= (set_uniforms - 1); MDUniformSet *set = render.uniform_sets[index]; if (set == nullptr || index >= (uint32_t)shader->sets.size()) { continue; } if (shader->uses_argument_buffers) { set->bind_uniforms_argument_buffers(shader, render, index, dynamic_offsets, device_driver->frame_index(), device_driver->frame_count()); } else { DirectEncoder de(render.encoder, binding_cache); set->bind_uniforms_direct(shader, de, index, dynamic_offsets); } } } void MDCommandBuffer::_populate_vertices(simd::float4 *p_vertices, Size2i p_fb_size, VectorView p_rects) { uint32_t idx = 0; for (uint32_t i = 0; i < p_rects.size(); i++) { Rect2i const &rect = p_rects[i]; idx = _populate_vertices(p_vertices, idx, rect, p_fb_size); } } uint32_t MDCommandBuffer::_populate_vertices(simd::float4 *p_vertices, uint32_t p_index, Rect2i const &p_rect, Size2i p_fb_size) { // Determine the positions of the four edges of the // clear rectangle as a fraction of the attachment size. float leftPos = (float)(p_rect.position.x) / (float)p_fb_size.width; float rightPos = (float)(p_rect.size.width) / (float)p_fb_size.width + leftPos; float bottomPos = (float)(p_rect.position.y) / (float)p_fb_size.height; float topPos = (float)(p_rect.size.height) / (float)p_fb_size.height + bottomPos; // Transform to clip-space coordinates, which are bounded by (-1.0 < p < 1.0) in clip-space. leftPos = (leftPos * 2.0f) - 1.0f; rightPos = (rightPos * 2.0f) - 1.0f; bottomPos = (bottomPos * 2.0f) - 1.0f; topPos = (topPos * 2.0f) - 1.0f; simd::float4 vtx; uint32_t idx = p_index; uint32_t endLayer = render.get_subpass().view_count; for (uint32_t layer = 0; layer < endLayer; layer++) { vtx.z = 0.0; vtx.w = (float)layer; // Top left vertex - First triangle. vtx.y = topPos; vtx.x = leftPos; p_vertices[idx++] = vtx; // Bottom left vertex. vtx.y = bottomPos; vtx.x = leftPos; p_vertices[idx++] = vtx; // Bottom right vertex. vtx.y = bottomPos; vtx.x = rightPos; p_vertices[idx++] = vtx; // Bottom right vertex - Second triangle. p_vertices[idx++] = vtx; // Top right vertex. vtx.y = topPos; vtx.x = rightPos; p_vertices[idx++] = vtx; // Top left vertex. vtx.y = topPos; vtx.x = leftPos; p_vertices[idx++] = vtx; } return idx; } void MDCommandBuffer::render_begin_pass(RDD::RenderPassID p_render_pass, RDD::FramebufferID p_frameBuffer, RDD::CommandBufferType p_cmd_buffer_type, const Rect2i &p_rect, VectorView p_clear_values) { DEV_ASSERT(command_buffer() != nil); end(); MDRenderPass *pass = (MDRenderPass *)(p_render_pass.id); MDFrameBuffer *fb = (MDFrameBuffer *)(p_frameBuffer.id); type = MDCommandBufferStateType::Render; render.pass = pass; render.current_subpass = UINT32_MAX; render.render_area = p_rect; render.clear_values.resize(p_clear_values.size()); for (uint32_t i = 0; i < p_clear_values.size(); i++) { render.clear_values[i] = p_clear_values[i]; } render.is_rendering_entire_area = (p_rect.position == Point2i(0, 0)) && p_rect.size == fb->size; render.frameBuffer = fb; render_next_subpass(); } void MDCommandBuffer::_end_render_pass() { MDFrameBuffer const &fb_info = *render.frameBuffer; MDSubpass const &subpass = render.get_subpass(); PixelFormats &pf = device_driver->get_pixel_formats(); for (uint32_t i = 0; i < subpass.resolve_references.size(); i++) { uint32_t color_index = subpass.color_references[i].attachment; uint32_t resolve_index = subpass.resolve_references[i].attachment; DEV_ASSERT((color_index == RDD::AttachmentReference::UNUSED) == (resolve_index == RDD::AttachmentReference::UNUSED)); if (color_index == RDD::AttachmentReference::UNUSED || !fb_info.has_texture(color_index)) { continue; } id resolve_tex = fb_info.get_texture(resolve_index); CRASH_COND_MSG(!flags::all(pf.getCapabilities(resolve_tex.pixelFormat), kMTLFmtCapsResolve), "not implemented: unresolvable texture types"); // see: https://github.com/KhronosGroup/MoltenVK/blob/d20d13fe2735adb845636a81522df1b9d89c0fba/MoltenVK/MoltenVK/GPUObjects/MVKRenderPass.mm#L407 } render.end_encoding(); } void MDCommandBuffer::_render_clear_render_area() { MDRenderPass const &pass = *render.pass; MDSubpass const &subpass = render.get_subpass(); uint32_t ds_index = subpass.depth_stencil_reference.attachment; bool clear_depth = (ds_index != RDD::AttachmentReference::UNUSED && pass.attachments[ds_index].shouldClear(subpass, false)); bool clear_stencil = (ds_index != RDD::AttachmentReference::UNUSED && pass.attachments[ds_index].shouldClear(subpass, true)); uint32_t color_count = subpass.color_references.size(); uint32_t clears_size = color_count + (clear_depth || clear_stencil ? 1 : 0); if (clears_size == 0) { return; } RDD::AttachmentClear *clears = ALLOCA_ARRAY(RDD::AttachmentClear, clears_size); uint32_t clears_count = 0; for (uint32_t i = 0; i < color_count; i++) { uint32_t idx = subpass.color_references[i].attachment; if (idx != RDD::AttachmentReference::UNUSED && pass.attachments[idx].shouldClear(subpass, false)) { clears[clears_count++] = { .aspect = RDD::TEXTURE_ASPECT_COLOR_BIT, .color_attachment = idx, .value = render.clear_values[idx] }; } } if (clear_depth || clear_stencil) { MDAttachment const &attachment = pass.attachments[ds_index]; BitField bits = {}; if (clear_depth && attachment.type & MDAttachmentType::Depth) { bits.set_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT); } if (clear_stencil && attachment.type & MDAttachmentType::Stencil) { bits.set_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT); } clears[clears_count++] = { .aspect = bits, .color_attachment = ds_index, .value = render.clear_values[ds_index] }; } if (clears_count == 0) { return; } render_clear_attachments(VectorView(clears, clears_count), { render.render_area }); } void MDCommandBuffer::render_next_subpass() { DEV_ASSERT(command_buffer() != nil); if (render.current_subpass == UINT32_MAX) { render.current_subpass = 0; } else { _end_render_pass(); render.current_subpass++; } MDFrameBuffer const &fb = *render.frameBuffer; MDRenderPass const &pass = *render.pass; MDSubpass const &subpass = render.get_subpass(); MTLRenderPassDescriptor *desc = MTLRenderPassDescriptor.renderPassDescriptor; if (subpass.view_count > 1) { desc.renderTargetArrayLength = subpass.view_count; } PixelFormats &pf = device_driver->get_pixel_formats(); uint32_t attachmentCount = 0; for (uint32_t i = 0; i < subpass.color_references.size(); i++) { uint32_t idx = subpass.color_references[i].attachment; if (idx == RDD::AttachmentReference::UNUSED) { continue; } attachmentCount += 1; MTLRenderPassColorAttachmentDescriptor *ca = desc.colorAttachments[i]; uint32_t resolveIdx = subpass.resolve_references.is_empty() ? RDD::AttachmentReference::UNUSED : subpass.resolve_references[i].attachment; bool has_resolve = resolveIdx != RDD::AttachmentReference::UNUSED; bool can_resolve = true; if (resolveIdx != RDD::AttachmentReference::UNUSED) { id resolve_tex = fb.get_texture(resolveIdx); can_resolve = flags::all(pf.getCapabilities(resolve_tex.pixelFormat), kMTLFmtCapsResolve); if (can_resolve) { ca.resolveTexture = resolve_tex; } else { CRASH_NOW_MSG("unimplemented: using a texture format that is not supported for resolve"); } } MDAttachment const &attachment = pass.attachments[idx]; id tex = fb.get_texture(idx); ERR_FAIL_NULL_MSG(tex, "Frame buffer color texture is null."); if ((attachment.type & MDAttachmentType::Color)) { if (attachment.configureDescriptor(ca, pf, subpass, tex, render.is_rendering_entire_area, has_resolve, can_resolve, false)) { Color clearColor = render.clear_values[idx].color; ca.clearColor = MTLClearColorMake(clearColor.r, clearColor.g, clearColor.b, clearColor.a); } } } if (subpass.depth_stencil_reference.attachment != RDD::AttachmentReference::UNUSED) { attachmentCount += 1; uint32_t idx = subpass.depth_stencil_reference.attachment; MDAttachment const &attachment = pass.attachments[idx]; id tex = fb.get_texture(idx); ERR_FAIL_NULL_MSG(tex, "Frame buffer depth / stencil texture is null."); if (attachment.type & MDAttachmentType::Depth) { MTLRenderPassDepthAttachmentDescriptor *da = desc.depthAttachment; if (attachment.configureDescriptor(da, pf, subpass, tex, render.is_rendering_entire_area, false, false, false)) { da.clearDepth = render.clear_values[idx].depth; } } if (attachment.type & MDAttachmentType::Stencil) { MTLRenderPassStencilAttachmentDescriptor *sa = desc.stencilAttachment; if (attachment.configureDescriptor(sa, pf, subpass, tex, render.is_rendering_entire_area, false, false, true)) { sa.clearStencil = render.clear_values[idx].stencil; } } } desc.renderTargetWidth = MAX((NSUInteger)MIN(render.render_area.position.x + render.render_area.size.width, fb.size.width), 1u); desc.renderTargetHeight = MAX((NSUInteger)MIN(render.render_area.position.y + render.render_area.size.height, fb.size.height), 1u); if (attachmentCount == 0) { // If there are no attachments, delay the creation of the encoder, // so we can use a matching sample count for the pipeline, by setting // the defaultRasterSampleCount from the pipeline's sample count. render.desc = desc; } else { render.encoder = [command_buffer() renderCommandEncoderWithDescriptor:desc]; if (!render.is_rendering_entire_area) { _render_clear_render_area(); } // With a new encoder, all state is dirty. render.dirty.set_flag(RenderState::DIRTY_ALL); } } void MDCommandBuffer::render_draw(uint32_t p_vertex_count, uint32_t p_instance_count, uint32_t p_base_vertex, uint32_t p_first_instance) { DEV_ASSERT(type == MDCommandBufferStateType::Render); ERR_FAIL_NULL_MSG(render.pipeline, "No pipeline set for render command buffer."); _render_set_dirty_state(); MDSubpass const &subpass = render.get_subpass(); if (subpass.view_count > 1) { p_instance_count *= subpass.view_count; } DEV_ASSERT(render.dirty == 0); id enc = render.encoder; [enc drawPrimitives:render.pipeline->raster_state.render_primitive vertexStart:p_base_vertex vertexCount:p_vertex_count instanceCount:p_instance_count baseInstance:p_first_instance]; } void MDCommandBuffer::render_bind_vertex_buffers(uint32_t p_binding_count, const RDD::BufferID *p_buffers, const uint64_t *p_offsets) { DEV_ASSERT(type == MDCommandBufferStateType::Render); render.vertex_buffers.resize(p_binding_count); render.vertex_offsets.resize(p_binding_count); // Reverse the buffers, as their bindings are assigned in descending order. for (uint32_t i = 0; i < p_binding_count; i += 1) { const RenderingDeviceDriverMetal::BufferInfo *buf_info = (const RenderingDeviceDriverMetal::BufferInfo *)p_buffers[p_binding_count - i - 1].id; render.vertex_buffers[i] = buf_info->metal_buffer; render.vertex_offsets[i] = p_offsets[p_binding_count - i - 1]; } if (render.encoder) { uint32_t first = device_driver->get_metal_buffer_index_for_vertex_attribute_binding(p_binding_count - 1); [render.encoder setVertexBuffers:render.vertex_buffers.ptr() offsets:render.vertex_offsets.ptr() withRange:NSMakeRange(first, p_binding_count)]; render.dirty.clear_flag(RenderState::DIRTY_VERTEX); } else { render.dirty.set_flag(RenderState::DIRTY_VERTEX); } } void MDCommandBuffer::render_bind_index_buffer(RDD::BufferID p_buffer, RDD::IndexBufferFormat p_format, uint64_t p_offset) { DEV_ASSERT(type == MDCommandBufferStateType::Render); const RenderingDeviceDriverMetal::BufferInfo *buffer = (const RenderingDeviceDriverMetal::BufferInfo *)p_buffer.id; render.index_buffer = buffer->metal_buffer; render.index_type = p_format == RDD::IndexBufferFormat::INDEX_BUFFER_FORMAT_UINT16 ? MTLIndexTypeUInt16 : MTLIndexTypeUInt32; render.index_offset = p_offset; } void MDCommandBuffer::render_draw_indexed(uint32_t p_index_count, uint32_t p_instance_count, uint32_t p_first_index, int32_t p_vertex_offset, uint32_t p_first_instance) { DEV_ASSERT(type == MDCommandBufferStateType::Render); ERR_FAIL_NULL_MSG(render.pipeline, "No pipeline set for render command buffer."); _render_set_dirty_state(); MDSubpass const &subpass = render.get_subpass(); if (subpass.view_count > 1) { p_instance_count *= subpass.view_count; } id enc = render.encoder; uint32_t index_offset = render.index_offset; index_offset += p_first_index * (render.index_type == MTLIndexTypeUInt16 ? sizeof(uint16_t) : sizeof(uint32_t)); [enc drawIndexedPrimitives:render.pipeline->raster_state.render_primitive indexCount:p_index_count indexType:render.index_type indexBuffer:render.index_buffer indexBufferOffset:index_offset instanceCount:p_instance_count baseVertex:p_vertex_offset baseInstance:p_first_instance]; } void MDCommandBuffer::render_draw_indexed_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) { DEV_ASSERT(type == MDCommandBufferStateType::Render); ERR_FAIL_NULL_MSG(render.pipeline, "No pipeline set for render command buffer."); _render_set_dirty_state(); id enc = render.encoder; const RenderingDeviceDriverMetal::BufferInfo *indirect_buffer = (const RenderingDeviceDriverMetal::BufferInfo *)p_indirect_buffer.id; NSUInteger indirect_offset = p_offset; for (uint32_t i = 0; i < p_draw_count; i++) { [enc drawIndexedPrimitives:render.pipeline->raster_state.render_primitive indexType:render.index_type indexBuffer:render.index_buffer indexBufferOffset:0 indirectBuffer:indirect_buffer->metal_buffer indirectBufferOffset:indirect_offset]; indirect_offset += p_stride; } } void MDCommandBuffer::render_draw_indexed_indirect_count(RDD::BufferID p_indirect_buffer, uint64_t p_offset, RDD::BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) { ERR_FAIL_MSG("not implemented"); } void MDCommandBuffer::render_draw_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) { DEV_ASSERT(type == MDCommandBufferStateType::Render); ERR_FAIL_NULL_MSG(render.pipeline, "No pipeline set for render command buffer."); _render_set_dirty_state(); id enc = render.encoder; const RenderingDeviceDriverMetal::BufferInfo *indirect_buffer = (const RenderingDeviceDriverMetal::BufferInfo *)p_indirect_buffer.id; NSUInteger indirect_offset = p_offset; for (uint32_t i = 0; i < p_draw_count; i++) { [enc drawPrimitives:render.pipeline->raster_state.render_primitive indirectBuffer:indirect_buffer->metal_buffer indirectBufferOffset:indirect_offset]; indirect_offset += p_stride; } } void MDCommandBuffer::render_draw_indirect_count(RDD::BufferID p_indirect_buffer, uint64_t p_offset, RDD::BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) { ERR_FAIL_MSG("not implemented"); } void MDCommandBuffer::render_end_pass() { DEV_ASSERT(type == MDCommandBufferStateType::Render); render.end_encoding(); render.reset(); reset(); } #pragma mark - RenderState void MDCommandBuffer::RenderState::reset() { pass = nil; frameBuffer = nil; pipeline = nil; current_subpass = UINT32_MAX; render_area = {}; is_rendering_entire_area = false; desc = nil; encoder = nil; index_buffer = nil; index_type = MTLIndexTypeUInt16; dirty = DIRTY_NONE; uniform_sets.clear(); dynamic_offsets = 0; uniform_set_mask = 0; clear_values.clear(); viewports.clear(); scissors.clear(); blend_constants.reset(); vertex_buffers.clear(); vertex_offsets.clear(); resource_tracker.reset(); } void MDCommandBuffer::RenderState::end_encoding() { if (encoder == nil) { return; } [encoder endEncoding]; encoder = nil; } #pragma mark - ComputeState void MDCommandBuffer::ComputeState::end_encoding() { if (encoder == nil) { return; } [encoder endEncoding]; encoder = nil; } #pragma mark - Compute void MDCommandBuffer::_compute_set_dirty_state() { if (compute.dirty.has_flag(ComputeState::DIRTY_PIPELINE)) { compute.encoder = [command_buffer() computeCommandEncoderWithDispatchType:MTLDispatchTypeConcurrent]; [compute.encoder setComputePipelineState:compute.pipeline->state]; } _compute_bind_uniform_sets(); if (compute.dirty.has_flag(ComputeState::DIRTY_PUSH)) { if (push_constant_binding != UINT32_MAX) { [compute.encoder setBytes:push_constant_data length:push_constant_data_len atIndex:push_constant_binding]; } } compute.resource_tracker.encode(compute.encoder); compute.dirty.clear(); } void MDCommandBuffer::_compute_bind_uniform_sets() { DEV_ASSERT(type == MDCommandBufferStateType::Compute); if (!compute.dirty.has_flag(ComputeState::DIRTY_UNIFORMS)) { return; } compute.dirty.clear_flag(ComputeState::DIRTY_UNIFORMS); uint64_t set_uniforms = compute.uniform_set_mask; compute.uniform_set_mask = 0; MDComputeShader *shader = compute.pipeline->shader; const uint32_t dynamic_offsets = compute.dynamic_offsets; while (set_uniforms != 0) { // Find the index of the next set bit. uint32_t index = (uint32_t)__builtin_ctzll(set_uniforms); // Clear the set bit. set_uniforms &= (set_uniforms - 1); MDUniformSet *set = compute.uniform_sets[index]; if (set == nullptr || index >= (uint32_t)shader->sets.size()) { continue; } if (shader->uses_argument_buffers) { set->bind_uniforms_argument_buffers(shader, compute, index, dynamic_offsets, device_driver->frame_index(), device_driver->frame_count()); } else { DirectEncoder de(compute.encoder, binding_cache); set->bind_uniforms_direct(shader, de, index, dynamic_offsets); } } } void MDCommandBuffer::ComputeState::reset() { pipeline = nil; encoder = nil; dirty = DIRTY_NONE; uniform_sets.clear(); dynamic_offsets = 0; uniform_set_mask = 0; resource_tracker.reset(); } void MDCommandBuffer::compute_bind_uniform_sets(VectorView p_uniform_sets, RDD::ShaderID p_shader, uint32_t p_first_set_index, uint32_t p_set_count, uint32_t p_dynamic_offsets) { DEV_ASSERT(type == MDCommandBufferStateType::Compute); compute.dynamic_offsets |= p_dynamic_offsets; if (uint32_t new_size = p_first_set_index + p_set_count; compute.uniform_sets.size() < new_size) { uint32_t s = compute.uniform_sets.size(); compute.uniform_sets.resize(new_size); // Set intermediate values to null. std::fill(&compute.uniform_sets[s], compute.uniform_sets.end().operator->(), nullptr); } const MDShader *shader = (const MDShader *)p_shader.id; DynamicOffsetLayout layout = shader->dynamic_offset_layout; for (size_t i = 0; i < p_set_count; ++i) { MDUniformSet *set = (MDUniformSet *)(p_uniform_sets[i].id); uint32_t index = p_first_set_index + i; if (compute.uniform_sets[index] != set || layout.get_count(index) > 0) { compute.dirty.set_flag(ComputeState::DIRTY_UNIFORMS); compute.uniform_set_mask |= 1ULL << index; compute.uniform_sets[index] = set; } } } void MDCommandBuffer::compute_dispatch(uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups) { DEV_ASSERT(type == MDCommandBufferStateType::Compute); _compute_set_dirty_state(); MTLRegion region = MTLRegionMake3D(0, 0, 0, p_x_groups, p_y_groups, p_z_groups); id enc = compute.encoder; [enc dispatchThreadgroups:region.size threadsPerThreadgroup:compute.pipeline->compute_state.local]; } void MDCommandBuffer::compute_dispatch_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset) { DEV_ASSERT(type == MDCommandBufferStateType::Compute); _compute_set_dirty_state(); const RenderingDeviceDriverMetal::BufferInfo *indirectBuffer = (const RenderingDeviceDriverMetal::BufferInfo *)p_indirect_buffer.id; id enc = compute.encoder; [enc dispatchThreadgroupsWithIndirectBuffer:indirectBuffer->metal_buffer indirectBufferOffset:p_offset threadsPerThreadgroup:compute.pipeline->compute_state.local]; } void MDCommandBuffer::reset() { push_constant_data_len = 0; type = MDCommandBufferStateType::None; } void MDCommandBuffer::_end_compute_dispatch() { DEV_ASSERT(type == MDCommandBufferStateType::Compute); compute.end_encoding(); compute.reset(); reset(); } void MDCommandBuffer::_end_blit() { DEV_ASSERT(type == MDCommandBufferStateType::Blit); [blit.encoder endEncoding]; blit.reset(); reset(); } MDComputeShader::MDComputeShader(CharString p_name, Vector p_sets, bool p_uses_argument_buffers, MDLibrary *p_kernel) : MDShader(p_name, p_sets, p_uses_argument_buffers), kernel(p_kernel) { } MDRenderShader::MDRenderShader(CharString p_name, Vector p_sets, bool p_needs_view_mask_buffer, bool p_uses_argument_buffers, MDLibrary *_Nonnull p_vert, MDLibrary *_Nonnull p_frag) : MDShader(p_name, p_sets, p_uses_argument_buffers), needs_view_mask_buffer(p_needs_view_mask_buffer), vert(p_vert), frag(p_frag) { } void DirectEncoder::set(__unsafe_unretained id *p_textures, NSRange p_range) { if (cache.update(p_range, p_textures)) { switch (mode) { case RENDER: { id __unsafe_unretained enc = (id)encoder; [enc setVertexTextures:p_textures withRange:p_range]; [enc setFragmentTextures:p_textures withRange:p_range]; } break; case COMPUTE: { id __unsafe_unretained enc = (id)encoder; [enc setTextures:p_textures withRange:p_range]; } break; } } } void DirectEncoder::set(__unsafe_unretained id *p_buffers, const NSUInteger *p_offsets, NSRange p_range) { if (cache.update(p_range, p_buffers, p_offsets)) { switch (mode) { case RENDER: { id __unsafe_unretained enc = (id)encoder; [enc setVertexBuffers:p_buffers offsets:p_offsets withRange:p_range]; [enc setFragmentBuffers:p_buffers offsets:p_offsets withRange:p_range]; } break; case COMPUTE: { id __unsafe_unretained enc = (id)encoder; [enc setBuffers:p_buffers offsets:p_offsets withRange:p_range]; } break; } } } void DirectEncoder::set(id __unsafe_unretained p_buffer, const NSUInteger p_offset, uint32_t p_index) { if (cache.update(p_buffer, p_offset, p_index)) { switch (mode) { case RENDER: { id __unsafe_unretained enc = (id)encoder; [enc setVertexBuffer:p_buffer offset:p_offset atIndex:p_index]; [enc setFragmentBuffer:p_buffer offset:p_offset atIndex:p_index]; } break; case COMPUTE: { id __unsafe_unretained enc = (id)encoder; [enc setBuffer:p_buffer offset:p_offset atIndex:p_index]; } break; } } } void DirectEncoder::set(__unsafe_unretained id *p_samplers, NSRange p_range) { if (cache.update(p_range, p_samplers)) { switch (mode) { case RENDER: { id __unsafe_unretained enc = (id)encoder; [enc setVertexSamplerStates:p_samplers withRange:p_range]; [enc setFragmentSamplerStates:p_samplers withRange:p_range]; } break; case COMPUTE: { id __unsafe_unretained enc = (id)encoder; [enc setSamplerStates:p_samplers withRange:p_range]; } break; } } } void MDUniformSet::bind_uniforms_argument_buffers(MDShader *p_shader, MDCommandBuffer::RenderState &p_state, uint32_t p_set_index, uint32_t p_dynamic_offsets, uint32_t p_frame_idx, uint32_t p_frame_count) { DEV_ASSERT(p_shader->uses_argument_buffers); DEV_ASSERT(p_state.encoder != nil); DEV_ASSERT(p_shader->dynamic_offset_layout.is_empty()); // Argument buffers do not support dynamic offsets. id __unsafe_unretained enc = p_state.encoder; p_state.resource_tracker.merge_from(usage_to_resources); [enc setVertexBuffer:arg_buffer offset:0 atIndex:p_set_index]; [enc setFragmentBuffer:arg_buffer offset:0 atIndex:p_set_index]; } void MDUniformSet::bind_uniforms_direct(MDShader *p_shader, DirectEncoder p_enc, uint32_t p_set_index, uint32_t p_dynamic_offsets) { DEV_ASSERT(!p_shader->uses_argument_buffers); UniformSet const &set = p_shader->sets[p_set_index]; DynamicOffsetLayout layout = p_shader->dynamic_offset_layout; uint32_t dynamic_index = 0; for (uint32_t i = 0; i < MIN(uniforms.size(), set.uniforms.size()); i++) { RDD::BoundUniform const &uniform = uniforms[i]; const UniformInfo &ui = set.uniforms[i]; const UniformInfo::Indexes &indexes = ui.slot; uint32_t frame_idx; if (uniform.is_dynamic()) { uint32_t shift = layout.get_offset_index_shift(p_set_index, dynamic_index); dynamic_index++; frame_idx = (p_dynamic_offsets >> shift) & 0xf; } else { frame_idx = 0; } switch (uniform.type) { case RDD::UNIFORM_TYPE_SAMPLER: { size_t count = uniform.ids.size(); id __unsafe_unretained *objects = ALLOCA_ARRAY(id __unsafe_unretained, count); for (size_t j = 0; j < count; j += 1) { objects[j] = rid::get(uniform.ids[j].id); } NSRange sampler_range = NSMakeRange(indexes.sampler, count); p_enc.set(objects, sampler_range); } break; case RDD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE: { size_t count = uniform.ids.size() / 2; id __unsafe_unretained *textures = ALLOCA_ARRAY(id __unsafe_unretained, count); id __unsafe_unretained *samplers = ALLOCA_ARRAY(id __unsafe_unretained, count); for (uint32_t j = 0; j < count; j += 1) { id sampler = rid::get(uniform.ids[j * 2 + 0]); id texture = rid::get(uniform.ids[j * 2 + 1]); samplers[j] = sampler; textures[j] = texture; } NSRange sampler_range = NSMakeRange(indexes.sampler, count); NSRange texture_range = NSMakeRange(indexes.texture, count); p_enc.set(samplers, sampler_range); p_enc.set(textures, texture_range); } break; case RDD::UNIFORM_TYPE_TEXTURE: { size_t count = uniform.ids.size(); id __unsafe_unretained *objects = ALLOCA_ARRAY(id __unsafe_unretained, count); for (size_t j = 0; j < count; j += 1) { id obj = rid::get(uniform.ids[j]); objects[j] = obj; } NSRange texture_range = NSMakeRange(indexes.texture, count); p_enc.set(objects, texture_range); } break; case RDD::UNIFORM_TYPE_IMAGE: { size_t count = uniform.ids.size(); id __unsafe_unretained *objects = ALLOCA_ARRAY(id __unsafe_unretained, count); for (size_t j = 0; j < count; j += 1) { id obj = rid::get(uniform.ids[j]); objects[j] = obj; } NSRange texture_range = NSMakeRange(indexes.texture, count); p_enc.set(objects, texture_range); if (indexes.buffer != UINT32_MAX) { // Emulated atomic image access. id __unsafe_unretained *bufs = ALLOCA_ARRAY(id __unsafe_unretained, count); for (size_t j = 0; j < count; j += 1) { id obj = rid::get(uniform.ids[j]); id tex = obj.parentTexture ? obj.parentTexture : obj; id buf = tex.buffer; bufs[j] = buf; } NSUInteger *offs = ALLOCA_ARRAY(NSUInteger, count); bzero(offs, sizeof(NSUInteger) * count); NSRange buffer_range = NSMakeRange(indexes.buffer, count); p_enc.set(bufs, offs, buffer_range); } } break; case RDD::UNIFORM_TYPE_TEXTURE_BUFFER: { ERR_PRINT("not implemented: UNIFORM_TYPE_TEXTURE_BUFFER"); } break; case RDD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER: { ERR_PRINT("not implemented: UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER"); } break; case RDD::UNIFORM_TYPE_IMAGE_BUFFER: { CRASH_NOW_MSG("not implemented: UNIFORM_TYPE_IMAGE_BUFFER"); } break; case RDD::UNIFORM_TYPE_UNIFORM_BUFFER: case RDD::UNIFORM_TYPE_STORAGE_BUFFER: { const RDM::BufferInfo *buf_info = (const RDM::BufferInfo *)uniform.ids[0].id; p_enc.set(buf_info->metal_buffer, 0, indexes.buffer); } break; case RDD::UNIFORM_TYPE_UNIFORM_BUFFER_DYNAMIC: case RDD::UNIFORM_TYPE_STORAGE_BUFFER_DYNAMIC: { const MetalBufferDynamicInfo *buf_info = (const MetalBufferDynamicInfo *)uniform.ids[0].id; p_enc.set(buf_info->metal_buffer, frame_idx * buf_info->size_bytes, indexes.buffer); } break; case RDD::UNIFORM_TYPE_INPUT_ATTACHMENT: { size_t count = uniform.ids.size(); id __unsafe_unretained *objects = ALLOCA_ARRAY(id __unsafe_unretained, count); for (size_t j = 0; j < count; j += 1) { id obj = rid::get(uniform.ids[j]); objects[j] = obj; } NSRange texture_range = NSMakeRange(indexes.texture, count); p_enc.set(objects, texture_range); } break; default: { DEV_ASSERT(false); } } } } void MDUniformSet::bind_uniforms_argument_buffers(MDShader *p_shader, MDCommandBuffer::ComputeState &p_state, uint32_t p_set_index, uint32_t p_dynamic_offsets, uint32_t p_frame_idx, uint32_t p_frame_count) { DEV_ASSERT(p_shader->uses_argument_buffers); DEV_ASSERT(p_state.encoder != nil); id enc = p_state.encoder; p_state.resource_tracker.merge_from(usage_to_resources); [enc setBuffer:arg_buffer offset:0 atIndex:p_set_index]; } MTLFmtCaps MDSubpass::getRequiredFmtCapsForAttachmentAt(uint32_t p_index) const { MTLFmtCaps caps = kMTLFmtCapsNone; for (RDD::AttachmentReference const &ar : input_references) { if (ar.attachment == p_index) { flags::set(caps, kMTLFmtCapsRead); break; } } for (RDD::AttachmentReference const &ar : color_references) { if (ar.attachment == p_index) { flags::set(caps, kMTLFmtCapsColorAtt); break; } } for (RDD::AttachmentReference const &ar : resolve_references) { if (ar.attachment == p_index) { flags::set(caps, kMTLFmtCapsResolve); break; } } if (depth_stencil_reference.attachment == p_index) { flags::set(caps, kMTLFmtCapsDSAtt); } return caps; } void MDAttachment::linkToSubpass(const MDRenderPass &p_pass) { firstUseSubpassIndex = UINT32_MAX; lastUseSubpassIndex = 0; for (MDSubpass const &subpass : p_pass.subpasses) { MTLFmtCaps reqCaps = subpass.getRequiredFmtCapsForAttachmentAt(index); if (reqCaps) { firstUseSubpassIndex = MIN(subpass.subpass_index, firstUseSubpassIndex); lastUseSubpassIndex = MAX(subpass.subpass_index, lastUseSubpassIndex); } } } MTLStoreAction MDAttachment::getMTLStoreAction(MDSubpass const &p_subpass, bool p_is_rendering_entire_area, bool p_has_resolve, bool p_can_resolve, bool p_is_stencil) const { if (!p_is_rendering_entire_area || !isLastUseOf(p_subpass)) { return p_has_resolve && p_can_resolve ? MTLStoreActionStoreAndMultisampleResolve : MTLStoreActionStore; } switch (p_is_stencil ? stencilStoreAction : storeAction) { case MTLStoreActionStore: return p_has_resolve && p_can_resolve ? MTLStoreActionStoreAndMultisampleResolve : MTLStoreActionStore; case MTLStoreActionDontCare: return p_has_resolve ? (p_can_resolve ? MTLStoreActionMultisampleResolve : MTLStoreActionStore) : MTLStoreActionDontCare; default: return MTLStoreActionStore; } } bool MDAttachment::configureDescriptor(MTLRenderPassAttachmentDescriptor *p_desc, PixelFormats &p_pf, MDSubpass const &p_subpass, id p_attachment, bool p_is_rendering_entire_area, bool p_has_resolve, bool p_can_resolve, bool p_is_stencil) const { p_desc.texture = p_attachment; MTLLoadAction load; if (!p_is_rendering_entire_area || !isFirstUseOf(p_subpass)) { load = MTLLoadActionLoad; } else { load = p_is_stencil ? stencilLoadAction : loadAction; } p_desc.loadAction = load; MTLPixelFormat mtlFmt = p_attachment.pixelFormat; bool isDepthFormat = p_pf.isDepthFormat(mtlFmt); bool isStencilFormat = p_pf.isStencilFormat(mtlFmt); if (isStencilFormat && !p_is_stencil && !isDepthFormat) { p_desc.storeAction = MTLStoreActionDontCare; } else { p_desc.storeAction = getMTLStoreAction(p_subpass, p_is_rendering_entire_area, p_has_resolve, p_can_resolve, p_is_stencil); } return load == MTLLoadActionClear; } bool MDAttachment::shouldClear(const MDSubpass &p_subpass, bool p_is_stencil) const { // If the subpass is not the first subpass to use this attachment, don't clear this attachment. if (p_subpass.subpass_index != firstUseSubpassIndex) { return false; } return (p_is_stencil ? stencilLoadAction : loadAction) == MTLLoadActionClear; } MDRenderPass::MDRenderPass(Vector &p_attachments, Vector &p_subpasses) : attachments(p_attachments), subpasses(p_subpasses) { for (MDAttachment &att : attachments) { att.linkToSubpass(*this); } } #pragma mark - Resource Factory id MDResourceFactory::new_func(NSString *p_source, NSString *p_name, NSError **p_error) { @autoreleasepool { NSError *err = nil; MTLCompileOptions *options = [MTLCompileOptions new]; id device = device_driver->get_device(); id mtlLib = [device newLibraryWithSource:p_source options:options error:&err]; if (err) { if (p_error != nil) { *p_error = err; } } return [mtlLib newFunctionWithName:p_name]; } } id MDResourceFactory::new_clear_vert_func(ClearAttKey &p_key) { @autoreleasepool { NSString *msl = [NSString stringWithFormat:@R"( #include using namespace metal; typedef struct { float4 a_position [[attribute(0)]]; } AttributesPos; typedef struct { float4 colors[9]; } ClearColorsIn; typedef struct { float4 v_position [[position]]; uint layer%s; } VaryingsPos; vertex VaryingsPos vertClear(AttributesPos attributes [[stage_in]], constant ClearColorsIn& ccIn [[buffer(0)]]) { VaryingsPos varyings; varyings.v_position = float4(attributes.a_position.x, -attributes.a_position.y, ccIn.colors[%d].r, 1.0); varyings.layer = uint(attributes.a_position.w); return varyings; } )", p_key.is_layered_rendering_enabled() ? " [[render_target_array_index]]" : "", ClearAttKey::DEPTH_INDEX]; return new_func(msl, @"vertClear", nil); } } id MDResourceFactory::new_clear_frag_func(ClearAttKey &p_key) { @autoreleasepool { NSMutableString *msl = [NSMutableString stringWithCapacity:2048]; [msl appendFormat:@R"( #include using namespace metal; typedef struct { float4 v_position [[position]]; } VaryingsPos; typedef struct { float4 colors[9]; } ClearColorsIn; typedef struct { )"]; for (uint32_t caIdx = 0; caIdx < ClearAttKey::COLOR_COUNT; caIdx++) { if (p_key.is_enabled(caIdx)) { NSString *typeStr = get_format_type_string((MTLPixelFormat)p_key.pixel_formats[caIdx]); [msl appendFormat:@" %@4 color%u [[color(%u)]];\n", typeStr, caIdx, caIdx]; } } [msl appendFormat:@R"(} ClearColorsOut; fragment ClearColorsOut fragClear(VaryingsPos varyings [[stage_in]], constant ClearColorsIn& ccIn [[buffer(0)]]) { ClearColorsOut ccOut; )"]; for (uint32_t caIdx = 0; caIdx < ClearAttKey::COLOR_COUNT; caIdx++) { if (p_key.is_enabled(caIdx)) { NSString *typeStr = get_format_type_string((MTLPixelFormat)p_key.pixel_formats[caIdx]); [msl appendFormat:@" ccOut.color%u = %@4(ccIn.colors[%u]);\n", caIdx, typeStr, caIdx]; } } [msl appendString:@R"( return ccOut; })"]; return new_func(msl, @"fragClear", nil); } } NSString *MDResourceFactory::get_format_type_string(MTLPixelFormat p_fmt) { switch (device_driver->get_pixel_formats().getFormatType(p_fmt)) { case MTLFormatType::ColorInt8: case MTLFormatType::ColorInt16: return @"short"; case MTLFormatType::ColorUInt8: case MTLFormatType::ColorUInt16: return @"ushort"; case MTLFormatType::ColorInt32: return @"int"; case MTLFormatType::ColorUInt32: return @"uint"; case MTLFormatType::ColorHalf: return @"half"; case MTLFormatType::ColorFloat: case MTLFormatType::DepthStencil: case MTLFormatType::Compressed: return @"float"; case MTLFormatType::None: return @"unexpected_MTLPixelFormatInvalid"; } } id MDResourceFactory::new_depth_stencil_state(bool p_use_depth, bool p_use_stencil) { MTLDepthStencilDescriptor *dsDesc = [MTLDepthStencilDescriptor new]; dsDesc.depthCompareFunction = MTLCompareFunctionAlways; dsDesc.depthWriteEnabled = p_use_depth; if (p_use_stencil) { MTLStencilDescriptor *sDesc = [MTLStencilDescriptor new]; sDesc.stencilCompareFunction = MTLCompareFunctionAlways; sDesc.stencilFailureOperation = MTLStencilOperationReplace; sDesc.depthFailureOperation = MTLStencilOperationReplace; sDesc.depthStencilPassOperation = MTLStencilOperationReplace; dsDesc.frontFaceStencil = sDesc; dsDesc.backFaceStencil = sDesc; } else { dsDesc.frontFaceStencil = nil; dsDesc.backFaceStencil = nil; } return [device_driver->get_device() newDepthStencilStateWithDescriptor:dsDesc]; } id MDResourceFactory::new_clear_pipeline_state(ClearAttKey &p_key, NSError **p_error) { PixelFormats &pixFmts = device_driver->get_pixel_formats(); id vtxFunc = new_clear_vert_func(p_key); id fragFunc = new_clear_frag_func(p_key); MTLRenderPipelineDescriptor *plDesc = [MTLRenderPipelineDescriptor new]; plDesc.label = @"ClearRenderAttachments"; plDesc.vertexFunction = vtxFunc; plDesc.fragmentFunction = fragFunc; plDesc.rasterSampleCount = p_key.sample_count; plDesc.inputPrimitiveTopology = MTLPrimitiveTopologyClassTriangle; for (uint32_t caIdx = 0; caIdx < ClearAttKey::COLOR_COUNT; caIdx++) { MTLRenderPipelineColorAttachmentDescriptor *colorDesc = plDesc.colorAttachments[caIdx]; colorDesc.pixelFormat = (MTLPixelFormat)p_key.pixel_formats[caIdx]; colorDesc.writeMask = p_key.is_enabled(caIdx) ? MTLColorWriteMaskAll : MTLColorWriteMaskNone; } MTLPixelFormat mtlDepthFormat = p_key.depth_format(); if (pixFmts.isDepthFormat(mtlDepthFormat)) { plDesc.depthAttachmentPixelFormat = mtlDepthFormat; } MTLPixelFormat mtlStencilFormat = p_key.stencil_format(); if (pixFmts.isStencilFormat(mtlStencilFormat)) { plDesc.stencilAttachmentPixelFormat = mtlStencilFormat; } MTLVertexDescriptor *vtxDesc = plDesc.vertexDescriptor; // Vertex attribute descriptors. MTLVertexAttributeDescriptorArray *vaDescArray = vtxDesc.attributes; MTLVertexAttributeDescriptor *vaDesc; NSUInteger vtxBuffIdx = device_driver->get_metal_buffer_index_for_vertex_attribute_binding(VERT_CONTENT_BUFFER_INDEX); NSUInteger vtxStride = 0; // Vertex location. vaDesc = vaDescArray[0]; vaDesc.format = MTLVertexFormatFloat4; vaDesc.bufferIndex = vtxBuffIdx; vaDesc.offset = vtxStride; vtxStride += sizeof(simd::float4); // Vertex attribute buffer. MTLVertexBufferLayoutDescriptorArray *vbDescArray = vtxDesc.layouts; MTLVertexBufferLayoutDescriptor *vbDesc = vbDescArray[vtxBuffIdx]; vbDesc.stepFunction = MTLVertexStepFunctionPerVertex; vbDesc.stepRate = 1; vbDesc.stride = vtxStride; return [device_driver->get_device() newRenderPipelineStateWithDescriptor:plDesc error:p_error]; } id MDResourceCache::get_clear_render_pipeline_state(ClearAttKey &p_key, NSError **p_error) { HashMap::ConstIterator it = clear_states.find(p_key); if (it != clear_states.end()) { return it->value; } id state = resource_factory->new_clear_pipeline_state(p_key, p_error); clear_states[p_key] = state; return state; } id MDResourceCache::get_depth_stencil_state(bool p_use_depth, bool p_use_stencil) { id __strong *val; if (p_use_depth && p_use_stencil) { val = &clear_depth_stencil_state.all; } else if (p_use_depth) { val = &clear_depth_stencil_state.depth_only; } else if (p_use_stencil) { val = &clear_depth_stencil_state.stencil_only; } else { val = &clear_depth_stencil_state.none; } DEV_ASSERT(val != nullptr); if (*val == nil) { *val = resource_factory->new_depth_stencil_state(p_use_depth, p_use_stencil); } return *val; } static const char *SHADER_STAGE_NAMES[] = { [RD::SHADER_STAGE_VERTEX] = "vert", [RD::SHADER_STAGE_FRAGMENT] = "frag", [RD::SHADER_STAGE_TESSELATION_CONTROL] = "tess_ctrl", [RD::SHADER_STAGE_TESSELATION_EVALUATION] = "tess_eval", [RD::SHADER_STAGE_COMPUTE] = "comp", }; void ShaderCacheEntry::notify_free() const { owner.shader_cache_free_entry(key); } @interface MDLibrary () - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry #ifdef DEV_ENABLED source:(NSString *)source; #endif ; @end /// Loads the MTLLibrary when the library is first accessed. @interface MDLazyLibrary : MDLibrary { id _library; NSError *_error; std::shared_mutex _mu; bool _loaded; id _device; NSString *_source; MTLCompileOptions *_options; } - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device source:(NSString *)source options:(MTLCompileOptions *)options; @end /// Loads the MTLLibrary immediately on initialization, using an asynchronous API. @interface MDImmediateLibrary : MDLibrary { id _library; NSError *_error; std::mutex _cv_mutex; std::condition_variable _cv; std::atomic _complete; bool _ready; } - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device source:(NSString *)source options:(MTLCompileOptions *)options; @end @interface MDBinaryLibrary : MDLibrary { id _library; NSError *_error; } - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device #ifdef DEV_ENABLED source:(NSString *)source #endif data:(dispatch_data_t)data; @end @implementation MDLibrary + (instancetype)newLibraryWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device source:(NSString *)source options:(MTLCompileOptions *)options strategy:(ShaderLoadStrategy)strategy { switch (strategy) { case ShaderLoadStrategy::IMMEDIATE: [[fallthrough]]; default: return [[MDImmediateLibrary alloc] initWithCacheEntry:entry device:device source:source options:options]; case ShaderLoadStrategy::LAZY: return [[MDLazyLibrary alloc] initWithCacheEntry:entry device:device source:source options:options]; } } + (instancetype)newLibraryWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device #ifdef DEV_ENABLED source:(NSString *)source #endif data:(dispatch_data_t)data { return [[MDBinaryLibrary alloc] initWithCacheEntry:entry device:device #ifdef DEV_ENABLED source:source #endif data:data]; } #ifdef DEV_ENABLED - (NSString *)originalSource { return _original_source; } #endif - (id)library { CRASH_NOW_MSG("Not implemented"); return nil; } - (NSError *)error { CRASH_NOW_MSG("Not implemented"); return nil; } - (void)setLabel:(NSString *)label { } - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry #ifdef DEV_ENABLED source:(NSString *)source #endif { self = [super init]; _entry = entry; _entry->library = self; #ifdef DEV_ENABLED _original_source = source; #endif return self; } - (void)dealloc { _entry->notify_free(); } @end @implementation MDImmediateLibrary - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device source:(NSString *)source options:(MTLCompileOptions *)options { self = [super initWithCacheEntry:entry #ifdef DEV_ENABLED source:source #endif ]; _complete = false; _ready = false; __block os_signpost_id_t compile_id = (os_signpost_id_t)(uintptr_t)self; os_signpost_interval_begin(LOG_INTERVALS, compile_id, "shader_compile", "shader_name=%{public}s stage=%{public}s hash=%X", entry->name.get_data(), SHADER_STAGE_NAMES[entry->stage], entry->key.short_sha()); [device newLibraryWithSource:source options:options completionHandler:^(id library, NSError *error) { os_signpost_interval_end(LOG_INTERVALS, compile_id, "shader_compile"); self->_library = library; self->_error = error; if (error) { ERR_PRINT(vformat(U"Error compiling shader %s: %s", entry->name.get_data(), error.localizedDescription.UTF8String)); } { std::lock_guard lock(self->_cv_mutex); _ready = true; } _cv.notify_all(); _complete = true; }]; return self; } - (id)library { if (!_complete) { std::unique_lock lock(_cv_mutex); _cv.wait(lock, [&] { return _ready; }); } return _library; } - (NSError *)error { if (!_complete) { std::unique_lock lock(_cv_mutex); _cv.wait(lock, [&] { return _ready; }); } return _error; } @end @implementation MDLazyLibrary - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device source:(NSString *)source options:(MTLCompileOptions *)options { self = [super initWithCacheEntry:entry #ifdef DEV_ENABLED source:source #endif ]; _device = device; _source = source; _options = options; return self; } - (void)load { { std::shared_lock lock(_mu); if (_loaded) { return; } } std::unique_lock lock(_mu); if (_loaded) { return; } __block os_signpost_id_t compile_id = (os_signpost_id_t)(uintptr_t)self; os_signpost_interval_begin(LOG_INTERVALS, compile_id, "shader_compile", "shader_name=%{public}s stage=%{public}s hash=%X", _entry->name.get_data(), SHADER_STAGE_NAMES[_entry->stage], _entry->key.short_sha()); NSError *error; _library = [_device newLibraryWithSource:_source options:_options error:&error]; os_signpost_interval_end(LOG_INTERVALS, compile_id, "shader_compile"); _device = nil; _source = nil; _options = nil; _loaded = true; } - (id)library { [self load]; return _library; } - (NSError *)error { [self load]; return _error; } @end @implementation MDBinaryLibrary - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device #ifdef DEV_ENABLED source:(NSString *)source #endif data:(dispatch_data_t)data { self = [super initWithCacheEntry:entry #ifdef DEV_ENABLED source:source #endif ]; NSError *error = nil; _library = [device newLibraryWithData:data error:&error]; if (error != nil) { _error = error; NSString *desc = [error description]; ERR_PRINT(vformat("Unable to load shader library: %s", desc.UTF8String)); } return self; } - (id)library { return _library; } - (NSError *)error { return _error; } @end