/**************************************************************************/ /* spline_ik_3d.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "spline_ik_3d.h" bool SplineIK3D::_set(const StringName &p_path, const Variant &p_value) { String path = p_path; if (path.begins_with("settings/")) { int which = path.get_slicec('/', 1).to_int(); String what = path.get_slicec('/', 2); ERR_FAIL_INDEX_V(which, (int)settings.size(), false); if (what == "path_3d") { set_path_3d(which, p_value); } else if (what == "tilt_enabled") { set_tilt_enabled(which, p_value); } else if (what == "tilt_fade_in") { set_tilt_fade_in(which, p_value); } else if (what == "tilt_fade_out") { set_tilt_fade_out(which, p_value); } else { return false; } } return true; } bool SplineIK3D::_get(const StringName &p_path, Variant &r_ret) const { String path = p_path; if (path.begins_with("settings/")) { int which = path.get_slicec('/', 1).to_int(); String what = path.get_slicec('/', 2); ERR_FAIL_INDEX_V(which, (int)settings.size(), false); if (what == "path_3d") { r_ret = get_path_3d(which); } else if (what == "tilt_enabled") { r_ret = is_tilt_enabled(which); } else if (what == "tilt_fade_in") { r_ret = get_tilt_fade_in(which); } else if (what == "tilt_fade_out") { r_ret = get_tilt_fade_out(which); } else { return false; } } return true; } void SplineIK3D::_get_property_list(List *p_list) const { LocalVector props; for (uint32_t i = 0; i < settings.size(); i++) { String path = "settings/" + itos(i) + "/"; props.push_back(PropertyInfo(Variant::NODE_PATH, path + "path_3d", PROPERTY_HINT_NODE_PATH_VALID_TYPES, "Path3D")); props.push_back(PropertyInfo(Variant::BOOL, path + "tilt_enabled")); props.push_back(PropertyInfo(Variant::INT, path + "tilt_fade_in", PROPERTY_HINT_RANGE, "-1,100,1,or_greater")); props.push_back(PropertyInfo(Variant::INT, path + "tilt_fade_out", PROPERTY_HINT_RANGE, "-1,100,1,or_greater")); } for (PropertyInfo &p : props) { _validate_dynamic_prop(p); p_list->push_back(p); } ChainIK3D::get_property_list(p_list); } void SplineIK3D::_validate_dynamic_prop(PropertyInfo &p_property) const { PackedStringArray split = p_property.name.split("/"); if (split.size() > 2 && split[0] == "settings") { int which = split[1].to_int(); if (split[2].begins_with("tilt_") && get_path_3d(which).is_empty()) { p_property.usage = PROPERTY_USAGE_NONE; } else if (split[2].begins_with("tilt_fade_") && !is_tilt_enabled(which)) { p_property.usage = PROPERTY_USAGE_NONE; } } } PackedStringArray SplineIK3D::get_configuration_warnings() const { PackedStringArray warnings = SkeletonModifier3D::get_configuration_warnings(); for (uint32_t i = 0; i < sp_settings.size(); i++) { if (sp_settings[i]->path_3d.is_empty()) { warnings.push_back(RTR("Detecting settings with no Path3D set! SplineIK3D must have a Path3D to work.")); break; } } return warnings; } // Setting. void SplineIK3D::set_path_3d(int p_index, const NodePath &p_path_3d) { ERR_FAIL_INDEX(p_index, (int)settings.size()); sp_settings[p_index]->path_3d = p_path_3d; notify_property_list_changed(); update_configuration_warnings(); } NodePath SplineIK3D::get_path_3d(int p_index) const { ERR_FAIL_INDEX_V(p_index, (int)settings.size(), NodePath()); return sp_settings[p_index]->path_3d; } void SplineIK3D::set_tilt_enabled(int p_index, bool p_enabled) { ERR_FAIL_INDEX(p_index, (int)settings.size()); sp_settings[p_index]->tilt_enabled = p_enabled; notify_property_list_changed(); } bool SplineIK3D::is_tilt_enabled(int p_index) const { ERR_FAIL_INDEX_V(p_index, (int)settings.size(), false); return sp_settings[p_index]->tilt_enabled; } void SplineIK3D::set_tilt_fade_in(int p_index, int p_size) { ERR_FAIL_INDEX(p_index, (int)settings.size()); sp_settings[p_index]->tilt_fade_in = p_size; } int SplineIK3D::get_tilt_fade_in(int p_index) const { ERR_FAIL_INDEX_V(p_index, (int)settings.size(), -1); return sp_settings[p_index]->tilt_fade_in; } void SplineIK3D::set_tilt_fade_out(int p_index, int p_size) { ERR_FAIL_INDEX(p_index, (int)settings.size()); sp_settings[p_index]->tilt_fade_out = p_size; } int SplineIK3D::get_tilt_fade_out(int p_index) const { ERR_FAIL_INDEX_V(p_index, (int)settings.size(), -1); return sp_settings[p_index]->tilt_fade_out; } // Individual joints. void SplineIK3D::_set_joint_count(int p_index, int p_count) { LocalVector &twists = sp_settings[p_index]->twists; twists.resize(p_count); LocalVector &accum = sp_settings[p_index]->chain_length_accum; accum.resize(p_count); } void SplineIK3D::_bind_methods() { // Setting. ClassDB::bind_method(D_METHOD("set_path_3d", "index", "path_3d"), &SplineIK3D::set_path_3d); ClassDB::bind_method(D_METHOD("get_path_3d", "index"), &SplineIK3D::get_path_3d); ClassDB::bind_method(D_METHOD("set_tilt_enabled", "index", "enabled"), &SplineIK3D::set_tilt_enabled); ClassDB::bind_method(D_METHOD("is_tilt_enabled", "index"), &SplineIK3D::is_tilt_enabled); ClassDB::bind_method(D_METHOD("set_tilt_fade_in", "index", "size"), &SplineIK3D::set_tilt_fade_in); ClassDB::bind_method(D_METHOD("get_tilt_fade_in", "index"), &SplineIK3D::get_tilt_fade_in); ClassDB::bind_method(D_METHOD("set_tilt_fade_out", "index", "size"), &SplineIK3D::set_tilt_fade_out); ClassDB::bind_method(D_METHOD("get_tilt_fade_out", "index"), &SplineIK3D::get_tilt_fade_out); ADD_ARRAY_COUNT("Settings", "setting_count", "set_setting_count", "get_setting_count", "settings/"); } void SplineIK3D::_init_joints(Skeleton3D *p_skeleton, int p_index) { SplineIK3DSetting *setting = sp_settings[p_index]; cached_space = p_skeleton->get_global_transform_interpolated(); if (!setting->simulation_dirty) { return; } for (uint32_t i = 0; i < setting->solver_info_list.size(); i++) { if (setting->solver_info_list[i]) { memdelete(setting->solver_info_list[i]); } } setting->solver_info_list.clear(); setting->solver_info_list.resize_initialized(setting->joints.size()); setting->chain.clear(); bool extend_end_bone = setting->extend_end_bone && setting->end_bone_length > 0; double accum = 0.0; for (uint32_t i = 0; i < setting->joints.size(); i++) { setting->chain.push_back(p_skeleton->get_bone_global_pose(setting->joints[i].bone).origin); bool last = i == setting->joints.size() - 1; if (last && extend_end_bone && setting->end_bone_length > 0) { Vector3 axis = get_bone_axis(setting->end_bone.bone, setting->end_bone_direction); if (axis.is_zero_approx()) { setting->chain_length_accum[i] = accum; continue; } setting->solver_info_list[i] = memnew(IKModifier3DSolverInfo); setting->solver_info_list[i]->forward_vector = axis.normalized(); setting->solver_info_list[i]->length = setting->end_bone_length; setting->chain.push_back(p_skeleton->get_bone_global_pose(setting->joints[i].bone).xform(axis * setting->end_bone_length)); } else if (!last) { Vector3 axis = p_skeleton->get_bone_rest(setting->joints[i + 1].bone).origin; if (axis.is_zero_approx()) { setting->chain_length_accum[i] = accum; continue; // Means always we need to check solver info, but `!solver_info` means that the bone is zero length, so IK should skip it in the all process. } setting->solver_info_list[i] = memnew(IKModifier3DSolverInfo); setting->solver_info_list[i]->forward_vector = axis.normalized(); setting->solver_info_list[i]->length = axis.length(); } if (setting->solver_info_list[i]) { accum += setting->solver_info_list[i]->length; } setting->chain_length_accum[i] = accum; } setting->init_current_joint_rotations(p_skeleton); setting->simulation_dirty = false; } void SplineIK3D::_make_simulation_dirty(int p_index) { SplineIK3DSetting *setting = sp_settings[p_index]; if (!setting) { return; } setting->simulation_dirty = true; } void SplineIK3D::_process_ik(Skeleton3D *p_skeleton, double p_delta) { for (uint32_t i = 0; i < settings.size(); i++) { _init_joints(p_skeleton, i); if (sp_settings[i]->joints.is_empty()) { continue; // Abort. } Path3D *path_3d = Object::cast_to(get_node_or_null(sp_settings[i]->path_3d)); if (!path_3d) { continue; // Abort. } Ref curve = path_3d->get_curve(); if (curve.is_null() || curve->get_point_count() == 0) { continue; // Abort. } sp_settings[i]->cache_current_joint_rotations(p_skeleton); // Iterate over first to detect parent (outside of the chain) bone pose changes. _process_joints(p_delta, p_skeleton, sp_settings[i], curve, cached_space.affine_inverse() * path_3d->get_global_transform_interpolated()); } } void SplineIK3D::_process_joints(double p_delta, Skeleton3D *p_skeleton, SplineIK3DSetting *p_setting, Ref p_curve, const Transform3D &p_curve_space) { if (p_setting->solver_info_list.is_empty()) { return; } uint32_t joint_count = p_setting->joints.size(); uint32_t joint_last = joint_count - 1; double path_length = p_curve->get_baked_length(); PackedVector3Array points = p_curve->get_baked_points(); Vector tilts = p_curve->get_baked_tilts(); Vector dists = p_curve->get_baked_dist_cache(); uint32_t point_count = points.size(); uint32_t point_last = point_count - 1; // Make straight segment from root joint to start point. Vector3 start_point = p_curve_space.xform(points[0]); Vector3 start_vector = start_point - p_skeleton->get_bone_global_pose(p_setting->joints[0].bone).origin; double start_dist = start_vector.length(); // Find first joint on the path. uint32_t chain_path_start = 0; while (chain_path_start < joint_count) { if (p_setting->chain_length_accum[chain_path_start] >= start_dist) { break; } chain_path_start++; } chain_path_start = (uint32_t)CLAMP((int)chain_path_start, 0, (int)joint_last); // For tilt fade-in, get bones length not on the path as denominator. double fade_in_denom = 0.0; int denom_start = p_setting->tilt_fade_in > 0 ? CLAMP(p_setting->tilt_fade_in - 1, (int)chain_path_start, (int)joint_count) : -1; int denom_start_to = denom_start - p_setting->tilt_fade_in; if (denom_start >= 0) { for (int i = denom_start; i > denom_start_to; i--) { if (i < 0) { break; } IKModifier3DSolverInfo *solver_info = p_setting->solver_info_list[i]; if (!solver_info || Math::is_zero_approx(solver_info->length)) { continue; } fade_in_denom += solver_info->length; } } // Prepare for fade-out. uint32_t ended = 0; Vector3 end_point = p_curve_space.xform(points[point_last]); Vector3 end_vector; double end_to_end_length = 0.0; double fade_out_denom = 0.0; uint32_t last_nearest = 0; uint32_t last_nearest_next = 0; double last_interpolate = 0.0; for (uint32_t i = 0; i < p_setting->solver_info_list.size(); i++) { IKModifier3DSolverInfo *solver_info = p_setting->solver_info_list[i]; if (!solver_info || Math::is_zero_approx(solver_info->length)) { continue; } uint32_t HEAD = i; uint32_t TAIL = i + 1; bool is_fitting_first = HEAD == chain_path_start; // Special case for out of path joints. if (point_count == 1 || HEAD <= chain_path_start) { // Set twist only for first fitting joint. if (!is_fitting_first) { p_setting->update_chain_coordinate(p_skeleton, TAIL, limit_length(p_setting->chain[HEAD], p_setting->chain[HEAD] + start_vector, solver_info->length)); } if (p_setting->tilt_enabled) { if (p_setting->tilt_fade_in < 0) { p_setting->twists[HEAD] = 0.0; } else if (p_setting->tilt_fade_in == 0) { p_setting->twists[HEAD] = tilts[0]; } else { // Decreases monotonically in a straight line, fetch the distance. double fade_in_dumping = CLAMP((double)(p_setting->chain[HEAD].distance_to(start_point) / fade_in_denom), 0.0, 1.0); p_setting->twists[HEAD] = Math::lerp((double)tilts[0], 0.0, fade_in_dumping); } } if (!is_fitting_first) { continue; } } else if (ended > 0) { p_setting->update_chain_coordinate(p_skeleton, TAIL, limit_length(p_setting->chain[HEAD], p_setting->chain[HEAD] + end_vector, solver_info->length)); if (p_setting->tilt_enabled) { if (p_setting->tilt_fade_out < 0) { p_setting->twists[HEAD] = 0.0; } else if (p_setting->tilt_fade_out == 0) { p_setting->twists[HEAD] = tilts[point_last]; } else { // Increases monotonically in a bended line, accumulate the distances. if (ended == 1) { end_to_end_length = p_setting->chain[TAIL].distance_to(end_point); } else { end_to_end_length += solver_info->length; } double fade_out_dumping = CLAMP(end_to_end_length / fade_out_denom, 0.0, 1.0); p_setting->twists[HEAD] = Math::lerp(ended == 1 ? Math::lerp((double)tilts[last_nearest], (double)tilts[last_nearest_next], last_interpolate) : (double)tilts[point_last], 0.0, fade_out_dumping); ended = 2; } } continue; } // General case. double lsq = solver_info->length * solver_info->length; Vector3 head_in_chain_space = p_curve_space.xform_inv(p_setting->chain[HEAD]); double interpolate = 0.0; uint32_t nearest = p_setting->find_nearest_point(head_in_chain_space, lsq, points, p_curve->is_closed(), last_nearest, &interpolate); if (nearest >= point_count) { if (HEAD == 0) { nearest = point_count - 2; interpolate = 1.0; } else { Vector3 chain_end = (p_setting->chain[HEAD] - p_setting->chain[HEAD - 1]).normalized(); Vector3 path_end = (p_curve_space.xform(points[point_last]) - p_setting->chain[HEAD]).normalized(); double rest_path_length = path_length - Math::lerp((double)dists[last_nearest], (double)dists[last_nearest_next], last_interpolate); interpolate = CLAMP(rest_path_length / solver_info->length, 0.0, 1.0); // End vector should be defined only one end bone to make neat interpolating. end_vector = chain_end.lerp(path_end, interpolate); int denom_end = p_setting->tilt_fade_out > 0 ? CLAMP((int)joint_last - p_setting->tilt_fade_out, 0, (int)last_nearest) : -1; int denom_end_to = denom_end + p_setting->tilt_fade_out; if (denom_end >= 0) { for (int e = denom_end; e < denom_end_to; e++) { if (e >= (int)joint_count) { break; } IKModifier3DSolverInfo *end_solver_info = p_setting->solver_info_list[e]; if (!end_solver_info || Math::is_zero_approx(end_solver_info->length)) { continue; } fade_out_denom += end_solver_info->length; } } ended = 1; i--; // Will be processed above special case. continue; } } uint32_t nearest_next = p_curve->is_closed() ? Math::posmod(nearest + 1, point_count) : CLAMP(nearest, (uint32_t)0, point_last); p_setting->update_chain_coordinate(p_skeleton, TAIL, limit_length(p_setting->chain[HEAD], p_curve_space.xform(points[nearest].lerp(points[nearest_next], interpolate)), solver_info->length)); if (!is_fitting_first) { p_setting->twists[HEAD] = Math::lerp((double)tilts[last_nearest], (double)tilts[last_nearest_next], last_interpolate); } last_nearest = nearest; last_nearest_next = nearest_next; last_interpolate = interpolate; } // Update virtual bone rest/poses. p_setting->cache_current_joint_rotations(p_skeleton, p_setting->tilt_enabled); // Pass p_setting->tilt_enabled to skip unneeded rotate process. // Apply the virtual bone rest/poses to the actual bones. for (uint32_t i = 0; i < p_setting->solver_info_list.size(); i++) { IKModifier3DSolverInfo *solver_info = p_setting->solver_info_list[i]; if (!solver_info || Math::is_zero_approx(solver_info->length)) { continue; } p_skeleton->set_bone_pose_rotation(p_setting->joints[i].bone, solver_info->current_lpose); } } SplineIK3D::~SplineIK3D() { clear_settings(); }