1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-15 13:51:40 +00:00

Add csg boolean operators using elalish/manifold.

Uses MeshGL64 for more floating point precision.

Co-Authored-By: 31 <31eee384@gmail.com>
Co-Authored-By: Claudio Z <120678869+cloudofoz@users.noreply.github.com>
This commit is contained in:
K. S. Ernest (iFire) Lee
2022-08-03 12:14:42 -07:00
parent d09d82d433
commit fda444bb01
45 changed files with 20005 additions and 1628 deletions

643
thirdparty/manifold/src/csg_tree.cpp vendored Normal file
View File

@@ -0,0 +1,643 @@
// Copyright 2022 The Manifold Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if (MANIFOLD_PAR == 1) && __has_include(<tbb/concurrent_priority_queue.h>)
#include <tbb/tbb.h>
#define TBB_PREVIEW_CONCURRENT_ORDERED_CONTAINERS 1
#include <tbb/concurrent_priority_queue.h>
#endif
#include <algorithm>
#include <variant>
#include "./boolean3.h"
#include "./csg_tree.h"
#include "./impl.h"
#include "./mesh_fixes.h"
#include "./parallel.h"
constexpr int kParallelThreshold = 4096;
namespace {
using namespace manifold;
struct Transform4x3 {
mat3x4 transform;
vec3 operator()(vec3 position) const {
return transform * vec4(position, 1.0);
}
};
struct UpdateHalfedge {
const int nextVert;
const int nextEdge;
const int nextFace;
Halfedge operator()(Halfedge edge) {
edge.startVert += nextVert;
edge.endVert += nextVert;
edge.pairedHalfedge += nextEdge;
return edge;
}
};
struct UpdateTriProp {
const int nextProp;
ivec3 operator()(ivec3 tri) {
tri += nextProp;
return tri;
}
};
struct UpdateMeshIDs {
const int offset;
TriRef operator()(TriRef ref) {
ref.meshID += offset;
return ref;
}
};
struct CheckOverlap {
VecView<const Box> boxes;
const size_t i;
bool operator()(size_t j) { return boxes[i].DoesOverlap(boxes[j]); }
};
using SharedImpl = std::variant<std::shared_ptr<const Manifold::Impl>,
std::shared_ptr<Manifold::Impl>>;
struct GetImplPtr {
const Manifold::Impl *operator()(const SharedImpl &p) {
if (std::holds_alternative<std::shared_ptr<const Manifold::Impl>>(p)) {
return std::get_if<std::shared_ptr<const Manifold::Impl>>(&p)->get();
} else {
return std::get_if<std::shared_ptr<Manifold::Impl>>(&p)->get();
}
};
};
struct MeshCompare {
bool operator()(const SharedImpl &a, const SharedImpl &b) {
return GetImplPtr()(a)->NumVert() < GetImplPtr()(b)->NumVert();
}
};
} // namespace
namespace manifold {
std::shared_ptr<CsgNode> CsgNode::Boolean(
const std::shared_ptr<CsgNode> &second, OpType op) {
if (auto opNode = std::dynamic_pointer_cast<CsgOpNode>(second)) {
// "this" is not a CsgOpNode (which overrides Boolean), but if "second" is
// and the operation is commutative, we let it built the tree.
if ((op == OpType::Add || op == OpType::Intersect)) {
return opNode->Boolean(shared_from_this(), op);
}
}
std::vector<std::shared_ptr<CsgNode>> children({shared_from_this(), second});
return std::make_shared<CsgOpNode>(children, op);
}
std::shared_ptr<CsgNode> CsgNode::Translate(const vec3 &t) const {
mat3x4 transform = la::identity;
transform[3] += t;
return Transform(transform);
}
std::shared_ptr<CsgNode> CsgNode::Scale(const vec3 &v) const {
mat3x4 transform;
for (int i : {0, 1, 2}) transform[i][i] = v[i];
return Transform(transform);
}
std::shared_ptr<CsgNode> CsgNode::Rotate(double xDegrees, double yDegrees,
double zDegrees) const {
mat3 rX({1.0, 0.0, 0.0}, //
{0.0, cosd(xDegrees), sind(xDegrees)}, //
{0.0, -sind(xDegrees), cosd(xDegrees)});
mat3 rY({cosd(yDegrees), 0.0, -sind(yDegrees)}, //
{0.0, 1.0, 0.0}, //
{sind(yDegrees), 0.0, cosd(yDegrees)});
mat3 rZ({cosd(zDegrees), sind(zDegrees), 0.0}, //
{-sind(zDegrees), cosd(zDegrees), 0.0}, //
{0.0, 0.0, 1.0});
mat3x4 transform(rZ * rY * rX, vec3());
return Transform(transform);
}
CsgLeafNode::CsgLeafNode() : pImpl_(std::make_shared<Manifold::Impl>()) {}
CsgLeafNode::CsgLeafNode(std::shared_ptr<const Manifold::Impl> pImpl_)
: pImpl_(pImpl_) {}
CsgLeafNode::CsgLeafNode(std::shared_ptr<const Manifold::Impl> pImpl_,
mat3x4 transform_)
: pImpl_(pImpl_), transform_(transform_) {}
std::shared_ptr<const Manifold::Impl> CsgLeafNode::GetImpl() const {
if (transform_ == mat3x4(la::identity)) return pImpl_;
pImpl_ =
std::make_shared<const Manifold::Impl>(pImpl_->Transform(transform_));
transform_ = la::identity;
return pImpl_;
}
mat3x4 CsgLeafNode::GetTransform() const { return transform_; }
std::shared_ptr<CsgLeafNode> CsgLeafNode::ToLeafNode() const {
return std::make_shared<CsgLeafNode>(*this);
}
std::shared_ptr<CsgNode> CsgLeafNode::Transform(const mat3x4 &m) const {
return std::make_shared<CsgLeafNode>(pImpl_, m * Mat4(transform_));
}
CsgNodeType CsgLeafNode::GetNodeType() const { return CsgNodeType::Leaf; }
/**
* Efficient union of a set of pairwise disjoint meshes.
*/
Manifold::Impl CsgLeafNode::Compose(
const std::vector<std::shared_ptr<CsgLeafNode>> &nodes) {
ZoneScoped;
double epsilon = -1;
double tolerance = -1;
int numVert = 0;
int numEdge = 0;
int numTri = 0;
int numPropVert = 0;
std::vector<int> vertIndices;
std::vector<int> edgeIndices;
std::vector<int> triIndices;
std::vector<int> propVertIndices;
int numPropOut = 0;
for (auto &node : nodes) {
if (node->pImpl_->status_ != Manifold::Error::NoError) {
Manifold::Impl impl;
impl.status_ = node->pImpl_->status_;
return impl;
}
double nodeOldScale = node->pImpl_->bBox_.Scale();
double nodeNewScale =
node->pImpl_->bBox_.Transform(node->transform_).Scale();
double nodeEpsilon = node->pImpl_->epsilon_;
nodeEpsilon *= std::max(1.0, nodeNewScale / nodeOldScale);
nodeEpsilon = std::max(nodeEpsilon, kPrecision * nodeNewScale);
if (!std::isfinite(nodeEpsilon)) nodeEpsilon = -1;
epsilon = std::max(epsilon, nodeEpsilon);
tolerance = std::max(tolerance, node->pImpl_->tolerance_);
vertIndices.push_back(numVert);
edgeIndices.push_back(numEdge * 2);
triIndices.push_back(numTri);
propVertIndices.push_back(numPropVert);
numVert += node->pImpl_->NumVert();
numEdge += node->pImpl_->NumEdge();
numTri += node->pImpl_->NumTri();
const int numProp = node->pImpl_->NumProp();
numPropOut = std::max(numPropOut, numProp);
numPropVert +=
numProp == 0 ? 1
: node->pImpl_->meshRelation_.properties.size() / numProp;
}
Manifold::Impl combined;
combined.epsilon_ = epsilon;
combined.tolerance_ = tolerance;
combined.vertPos_.resize(numVert);
combined.halfedge_.resize(2 * numEdge);
combined.faceNormal_.resize(numTri);
combined.halfedgeTangent_.resize(2 * numEdge);
combined.meshRelation_.triRef.resize(numTri);
if (numPropOut > 0) {
combined.meshRelation_.numProp = numPropOut;
combined.meshRelation_.properties.resize(numPropOut * numPropVert, 0);
combined.meshRelation_.triProperties.resize(numTri);
}
auto policy = autoPolicy(numTri);
// if we are already parallelizing for each node, do not perform multithreaded
// copying as it will slightly hurt performance
if (nodes.size() > 1 && policy == ExecutionPolicy::Par)
policy = ExecutionPolicy::Seq;
for_each_n(
nodes.size() > 1 ? ExecutionPolicy::Par : ExecutionPolicy::Seq,
countAt(0), nodes.size(),
[&nodes, &vertIndices, &edgeIndices, &triIndices, &propVertIndices,
numPropOut, &combined, policy](int i) {
auto &node = nodes[i];
copy(node->pImpl_->halfedgeTangent_.begin(),
node->pImpl_->halfedgeTangent_.end(),
combined.halfedgeTangent_.begin() + edgeIndices[i]);
transform(
node->pImpl_->halfedge_.begin(), node->pImpl_->halfedge_.end(),
combined.halfedge_.begin() + edgeIndices[i],
UpdateHalfedge({vertIndices[i], edgeIndices[i], triIndices[i]}));
if (numPropOut > 0) {
auto start =
combined.meshRelation_.triProperties.begin() + triIndices[i];
if (node->pImpl_->NumProp() > 0) {
auto &triProp = node->pImpl_->meshRelation_.triProperties;
transform(triProp.begin(), triProp.end(), start,
UpdateTriProp({propVertIndices[i]}));
const int numProp = node->pImpl_->NumProp();
auto &oldProp = node->pImpl_->meshRelation_.properties;
auto &newProp = combined.meshRelation_.properties;
for (int p = 0; p < numProp; ++p) {
auto oldRange =
StridedRange(oldProp.cbegin() + p, oldProp.cend(), numProp);
auto newRange = StridedRange(
newProp.begin() + numPropOut * propVertIndices[i] + p,
newProp.end(), numPropOut);
copy(oldRange.begin(), oldRange.end(), newRange.begin());
}
} else {
// point all triangles at single new property of zeros.
fill(start, start + node->pImpl_->NumTri(),
ivec3(propVertIndices[i]));
}
}
if (node->transform_ == mat3x4(la::identity)) {
copy(node->pImpl_->vertPos_.begin(), node->pImpl_->vertPos_.end(),
combined.vertPos_.begin() + vertIndices[i]);
copy(node->pImpl_->faceNormal_.begin(),
node->pImpl_->faceNormal_.end(),
combined.faceNormal_.begin() + triIndices[i]);
} else {
// no need to apply the transform to the node, just copy the vertices
// and face normals and apply transform on the fly
auto vertPosBegin = TransformIterator(
node->pImpl_->vertPos_.begin(), Transform4x3({node->transform_}));
mat3 normalTransform =
la::inverse(la::transpose(mat3(node->transform_)));
auto faceNormalBegin =
TransformIterator(node->pImpl_->faceNormal_.begin(),
TransformNormals({normalTransform}));
copy_n(vertPosBegin, node->pImpl_->vertPos_.size(),
combined.vertPos_.begin() + vertIndices[i]);
copy_n(faceNormalBegin, node->pImpl_->faceNormal_.size(),
combined.faceNormal_.begin() + triIndices[i]);
const bool invert = la::determinant(mat3(node->transform_)) < 0;
for_each_n(policy, countAt(0), node->pImpl_->halfedgeTangent_.size(),
TransformTangents{combined.halfedgeTangent_,
edgeIndices[i], mat3(node->transform_),
invert, node->pImpl_->halfedgeTangent_,
node->pImpl_->halfedge_});
if (invert)
for_each_n(policy, countAt(triIndices[i]), node->pImpl_->NumTri(),
FlipTris({combined.halfedge_}));
}
// Since the nodes may be copies containing the same meshIDs, it is
// important to add an offset so that each node instance gets
// unique meshIDs.
const int offset = i * Manifold::Impl::meshIDCounter_;
transform(node->pImpl_->meshRelation_.triRef.begin(),
node->pImpl_->meshRelation_.triRef.end(),
combined.meshRelation_.triRef.begin() + triIndices[i],
UpdateMeshIDs({offset}));
});
for (size_t i = 0; i < nodes.size(); i++) {
auto &node = nodes[i];
const int offset = i * Manifold::Impl::meshIDCounter_;
for (const auto &pair : node->pImpl_->meshRelation_.meshIDtransform) {
combined.meshRelation_.meshIDtransform[pair.first + offset] = pair.second;
}
}
// required to remove parts that are smaller than the tolerance
combined.SimplifyTopology();
combined.Finish();
combined.IncrementMeshIDs();
return combined;
}
CsgOpNode::CsgOpNode() {}
CsgOpNode::CsgOpNode(const std::vector<std::shared_ptr<CsgNode>> &children,
OpType op)
: impl_(Impl{}) {
auto impl = impl_.GetGuard();
impl->children_ = children;
SetOp(op);
}
CsgOpNode::CsgOpNode(std::vector<std::shared_ptr<CsgNode>> &&children,
OpType op)
: impl_(Impl{}) {
auto impl = impl_.GetGuard();
impl->children_ = children;
SetOp(op);
}
std::shared_ptr<CsgNode> CsgOpNode::Boolean(
const std::shared_ptr<CsgNode> &second, OpType op) {
std::vector<std::shared_ptr<CsgNode>> children;
auto isReused = [](const auto &node) { return node->impl_.UseCount() > 1; };
auto copyChildren = [&](const auto &list, const mat3x4 &transform) {
for (const auto &child : list) {
children.push_back(child->Transform(transform));
}
};
auto self = std::dynamic_pointer_cast<CsgOpNode>(shared_from_this());
if (IsOp(op) && !isReused(self)) {
auto impl = impl_.GetGuard();
copyChildren(impl->children_, transform_);
} else {
children.push_back(self);
}
auto secondOp = std::dynamic_pointer_cast<CsgOpNode>(second);
auto canInlineSecondOp = [&]() {
switch (op) {
case OpType::Add:
case OpType::Intersect:
return secondOp->IsOp(op);
case OpType::Subtract:
return secondOp->IsOp(OpType::Add);
default:
return false;
}
};
if (secondOp && canInlineSecondOp() && !isReused(secondOp)) {
auto secondImpl = secondOp->impl_.GetGuard();
copyChildren(secondImpl->children_, secondOp->transform_);
} else {
children.push_back(second);
}
return std::make_shared<CsgOpNode>(children, op);
}
std::shared_ptr<CsgNode> CsgOpNode::Transform(const mat3x4 &m) const {
auto node = std::make_shared<CsgOpNode>();
node->impl_ = impl_;
node->transform_ = m * Mat4(transform_);
node->op_ = op_;
return node;
}
std::shared_ptr<CsgLeafNode> CsgOpNode::ToLeafNode() const {
if (cache_ != nullptr) return cache_;
// turn the children into leaf nodes
GetChildren();
auto impl = impl_.GetGuard();
auto &children_ = impl->children_;
if (children_.size() > 1) {
switch (op_) {
case CsgNodeType::Union:
BatchUnion();
break;
case CsgNodeType::Intersection: {
std::vector<std::shared_ptr<const Manifold::Impl>> impls;
for (auto &child : children_) {
impls.push_back(
std::dynamic_pointer_cast<CsgLeafNode>(child)->GetImpl());
}
children_.clear();
children_.push_back(std::make_shared<CsgLeafNode>(
BatchBoolean(OpType::Intersect, impls)));
break;
};
case CsgNodeType::Difference: {
// take the lhs out and treat the remaining nodes as the rhs, perform
// union optimization for them
auto lhs = std::dynamic_pointer_cast<CsgLeafNode>(children_.front());
children_.erase(children_.begin());
BatchUnion();
auto rhs = std::dynamic_pointer_cast<CsgLeafNode>(children_.front());
children_.clear();
Boolean3 boolean(*lhs->GetImpl(), *rhs->GetImpl(), OpType::Subtract);
children_.push_back(
std::make_shared<CsgLeafNode>(std::make_shared<Manifold::Impl>(
boolean.Result(OpType::Subtract))));
};
case CsgNodeType::Leaf:
// unreachable
break;
}
} else if (children_.size() == 0) {
return nullptr;
}
// children_ must contain only one CsgLeafNode now, and its Transform will
// give CsgLeafNode as well
cache_ = std::dynamic_pointer_cast<CsgLeafNode>(
children_.front()->Transform(transform_));
return cache_;
}
/**
* Efficient boolean operation on a set of nodes utilizing commutativity of the
* operation. Only supports union and intersection.
*/
std::shared_ptr<Manifold::Impl> CsgOpNode::BatchBoolean(
OpType operation,
std::vector<std::shared_ptr<const Manifold::Impl>> &results) {
ZoneScoped;
auto getImplPtr = GetImplPtr();
DEBUG_ASSERT(operation != OpType::Subtract, logicErr,
"BatchBoolean doesn't support Difference.");
// common cases
if (results.size() == 0) return std::make_shared<Manifold::Impl>();
if (results.size() == 1)
return std::make_shared<Manifold::Impl>(*results.front());
if (results.size() == 2) {
Boolean3 boolean(*results[0], *results[1], operation);
return std::make_shared<Manifold::Impl>(boolean.Result(operation));
}
#if (MANIFOLD_PAR == 1) && __has_include(<tbb/tbb.h>)
tbb::task_group group;
tbb::concurrent_priority_queue<SharedImpl, MeshCompare> queue(results.size());
for (auto result : results) {
queue.emplace(result);
}
results.clear();
std::function<void()> process = [&]() {
while (queue.size() > 1) {
SharedImpl a, b;
if (!queue.try_pop(a)) continue;
if (!queue.try_pop(b)) {
queue.push(a);
continue;
}
group.run([&, a, b]() {
Boolean3 boolean(*getImplPtr(a), *getImplPtr(b), operation);
queue.emplace(
std::make_shared<Manifold::Impl>(boolean.Result(operation)));
return group.run(process);
});
}
};
group.run_and_wait(process);
SharedImpl r;
queue.try_pop(r);
return *std::get_if<std::shared_ptr<Manifold::Impl>>(&r);
#endif
// apply boolean operations starting from smaller meshes
// the assumption is that boolean operations on smaller meshes is faster,
// due to less data being copied and processed
auto cmpFn = MeshCompare();
std::make_heap(results.begin(), results.end(), cmpFn);
while (results.size() > 1) {
std::pop_heap(results.begin(), results.end(), cmpFn);
auto a = std::move(results.back());
results.pop_back();
std::pop_heap(results.begin(), results.end(), cmpFn);
auto b = std::move(results.back());
results.pop_back();
// boolean operation
Boolean3 boolean(*a, *b, operation);
auto result = std::make_shared<Manifold::Impl>(boolean.Result(operation));
if (results.size() == 0) {
return result;
}
results.push_back(result);
std::push_heap(results.begin(), results.end(), cmpFn);
}
return std::make_shared<Manifold::Impl>(*results.front());
}
/**
* Efficient union operation on a set of nodes by doing Compose as much as
* possible.
* Note: Due to some unknown issues with `Compose`, we are now doing
* `BatchBoolean` instead of using `Compose` for non-intersecting manifolds.
*/
void CsgOpNode::BatchUnion() const {
ZoneScoped;
// INVARIANT: children_ is a vector of leaf nodes
// this kMaxUnionSize is a heuristic to avoid the pairwise disjoint check
// with O(n^2) complexity to take too long.
// If the number of children exceeded this limit, we will operate on chunks
// with size kMaxUnionSize.
constexpr size_t kMaxUnionSize = 1000;
auto impl = impl_.GetGuard();
auto &children_ = impl->children_;
while (children_.size() > 1) {
const size_t start = (children_.size() > kMaxUnionSize)
? (children_.size() - kMaxUnionSize)
: 0;
Vec<Box> boxes;
boxes.reserve(children_.size() - start);
for (size_t i = start; i < children_.size(); i++) {
boxes.push_back(std::dynamic_pointer_cast<CsgLeafNode>(children_[i])
->GetImpl()
->bBox_);
}
// partition the children into a set of disjoint sets
// each set contains a set of children that are pairwise disjoint
std::vector<Vec<size_t>> disjointSets;
for (size_t i = 0; i < boxes.size(); i++) {
auto lambda = [&boxes, i](const Vec<size_t> &set) {
return std::find_if(set.begin(), set.end(), CheckOverlap({boxes, i})) ==
set.end();
};
auto it = std::find_if(disjointSets.begin(), disjointSets.end(), lambda);
if (it == disjointSets.end()) {
disjointSets.push_back(std::vector<size_t>{i});
} else {
it->push_back(i);
}
}
// compose each set of disjoint children
std::vector<std::shared_ptr<const Manifold::Impl>> impls;
for (auto &set : disjointSets) {
if (set.size() == 1) {
impls.push_back(
std::dynamic_pointer_cast<CsgLeafNode>(children_[start + set[0]])
->GetImpl());
} else {
std::vector<std::shared_ptr<CsgLeafNode>> tmp;
for (size_t j : set) {
tmp.push_back(
std::dynamic_pointer_cast<CsgLeafNode>(children_[start + j]));
}
impls.push_back(
std::make_shared<const Manifold::Impl>(CsgLeafNode::Compose(tmp)));
}
}
children_.erase(children_.begin() + start, children_.end());
children_.push_back(
std::make_shared<CsgLeafNode>(BatchBoolean(OpType::Add, impls)));
// move it to the front as we process from the back, and the newly added
// child should be quite complicated
std::swap(children_.front(), children_.back());
}
}
/**
* Flatten the children to a list of leaf nodes and return them.
* If forceToLeafNodes is true, the list will be guaranteed to be a list of leaf
* nodes (i.e. no ops). Otherwise, the list may contain ops. Note that this
* function will not apply the transform to children, as they may be shared with
* other nodes.
*/
std::vector<std::shared_ptr<CsgNode>> &CsgOpNode::GetChildren(
bool forceToLeafNodes) const {
auto impl = impl_.GetGuard();
if (forceToLeafNodes && !impl->forcedToLeafNodes_) {
impl->forcedToLeafNodes_ = true;
for_each(ExecutionPolicy::Par, impl->children_.begin(),
impl->children_.end(), [](auto &child) {
if (child->GetNodeType() != CsgNodeType::Leaf) {
child = child->ToLeafNode();
}
});
}
return impl->children_;
}
void CsgOpNode::SetOp(OpType op) {
switch (op) {
case OpType::Add:
op_ = CsgNodeType::Union;
break;
case OpType::Subtract:
op_ = CsgNodeType::Difference;
break;
case OpType::Intersect:
op_ = CsgNodeType::Intersection;
break;
}
}
bool CsgOpNode::IsOp(OpType op) {
switch (op) {
case OpType::Add:
return op_ == CsgNodeType::Union;
case OpType::Subtract:
return op_ == CsgNodeType::Difference;
case OpType::Intersect:
return op_ == CsgNodeType::Intersection;
default:
return false;
}
}
mat3x4 CsgOpNode::GetTransform() const { return transform_; }
} // namespace manifold