You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-11-15 13:51:40 +00:00
Bring that Whole New World to the Old Continent too
Applies the clang-format style to the 2.1 branch as done for master in
5dbf1809c6.
This commit is contained in:
@@ -28,133 +28,139 @@
|
||||
/*************************************************************************/
|
||||
#include "triangulate.h"
|
||||
|
||||
float Triangulate::get_area(const Vector<Vector2> &contour)
|
||||
{
|
||||
float Triangulate::get_area(const Vector<Vector2> &contour) {
|
||||
|
||||
int n = contour.size();
|
||||
const Vector2 *c=&contour[0];
|
||||
int n = contour.size();
|
||||
const Vector2 *c = &contour[0];
|
||||
|
||||
float A=0.0f;
|
||||
float A = 0.0f;
|
||||
|
||||
for(int p=n-1,q=0; q<n; p=q++)
|
||||
{
|
||||
A+= c[p].cross(c[q]);
|
||||
}
|
||||
return A*0.5f;
|
||||
for (int p = n - 1, q = 0; q < n; p = q++) {
|
||||
A += c[p].cross(c[q]);
|
||||
}
|
||||
return A * 0.5f;
|
||||
}
|
||||
|
||||
/*
|
||||
/*
|
||||
is_inside_triangle decides if a point P is Inside of the triangle
|
||||
defined by A, B, C.
|
||||
*/
|
||||
|
||||
bool Triangulate::is_inside_triangle(float Ax, float Ay,
|
||||
float Bx, float By,
|
||||
float Cx, float Cy,
|
||||
float Px, float Py)
|
||||
float Bx, float By,
|
||||
float Cx, float Cy,
|
||||
float Px, float Py)
|
||||
|
||||
{
|
||||
float ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
|
||||
float cCROSSap, bCROSScp, aCROSSbp;
|
||||
float ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
|
||||
float cCROSSap, bCROSScp, aCROSSbp;
|
||||
|
||||
ax = Cx - Bx; ay = Cy - By;
|
||||
bx = Ax - Cx; by = Ay - Cy;
|
||||
cx = Bx - Ax; cy = By - Ay;
|
||||
apx= Px - Ax; apy= Py - Ay;
|
||||
bpx= Px - Bx; bpy= Py - By;
|
||||
cpx= Px - Cx; cpy= Py - Cy;
|
||||
ax = Cx - Bx;
|
||||
ay = Cy - By;
|
||||
bx = Ax - Cx;
|
||||
by = Ay - Cy;
|
||||
cx = Bx - Ax;
|
||||
cy = By - Ay;
|
||||
apx = Px - Ax;
|
||||
apy = Py - Ay;
|
||||
bpx = Px - Bx;
|
||||
bpy = Py - By;
|
||||
cpx = Px - Cx;
|
||||
cpy = Py - Cy;
|
||||
|
||||
aCROSSbp = ax*bpy - ay*bpx;
|
||||
cCROSSap = cx*apy - cy*apx;
|
||||
bCROSScp = bx*cpy - by*cpx;
|
||||
aCROSSbp = ax * bpy - ay * bpx;
|
||||
cCROSSap = cx * apy - cy * apx;
|
||||
bCROSScp = bx * cpy - by * cpx;
|
||||
|
||||
return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
|
||||
return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
|
||||
};
|
||||
|
||||
bool Triangulate::snip(const Vector<Vector2> &p_contour,int u,int v,int w,int n,const Vector<int>& V)
|
||||
{
|
||||
int p;
|
||||
float Ax, Ay, Bx, By, Cx, Cy, Px, Py;
|
||||
const Vector2 *contour=&p_contour[0];
|
||||
bool Triangulate::snip(const Vector<Vector2> &p_contour, int u, int v, int w, int n, const Vector<int> &V) {
|
||||
int p;
|
||||
float Ax, Ay, Bx, By, Cx, Cy, Px, Py;
|
||||
const Vector2 *contour = &p_contour[0];
|
||||
|
||||
Ax = contour[V[u]].x;
|
||||
Ay = contour[V[u]].y;
|
||||
Ax = contour[V[u]].x;
|
||||
Ay = contour[V[u]].y;
|
||||
|
||||
Bx = contour[V[v]].x;
|
||||
By = contour[V[v]].y;
|
||||
Bx = contour[V[v]].x;
|
||||
By = contour[V[v]].y;
|
||||
|
||||
Cx = contour[V[w]].x;
|
||||
Cy = contour[V[w]].y;
|
||||
Cx = contour[V[w]].x;
|
||||
Cy = contour[V[w]].y;
|
||||
|
||||
if ( CMP_EPSILON > (((Bx-Ax)*(Cy-Ay)) - ((By-Ay)*(Cx-Ax))) ) return false;
|
||||
if (CMP_EPSILON > (((Bx - Ax) * (Cy - Ay)) - ((By - Ay) * (Cx - Ax)))) return false;
|
||||
|
||||
for (p=0;p<n;p++)
|
||||
{
|
||||
if( (p == u) || (p == v) || (p == w) ) continue;
|
||||
Px = contour[V[p]].x;
|
||||
Py = contour[V[p]].y;
|
||||
if (is_inside_triangle(Ax,Ay,Bx,By,Cx,Cy,Px,Py)) return false;
|
||||
}
|
||||
for (p = 0; p < n; p++) {
|
||||
if ((p == u) || (p == v) || (p == w)) continue;
|
||||
Px = contour[V[p]].x;
|
||||
Py = contour[V[p]].y;
|
||||
if (is_inside_triangle(Ax, Ay, Bx, By, Cx, Cy, Px, Py)) return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Triangulate::triangulate(const Vector<Vector2> &contour,Vector<int> &result)
|
||||
{
|
||||
/* allocate and initialize list of Vertices in polygon */
|
||||
bool Triangulate::triangulate(const Vector<Vector2> &contour, Vector<int> &result) {
|
||||
/* allocate and initialize list of Vertices in polygon */
|
||||
|
||||
int n = contour.size();
|
||||
if ( n < 3 ) return false;
|
||||
int n = contour.size();
|
||||
if (n < 3) return false;
|
||||
|
||||
Vector<int> V;
|
||||
V.resize(n);
|
||||
|
||||
Vector<int> V;
|
||||
V.resize(n);
|
||||
/* we want a counter-clockwise polygon in V */
|
||||
|
||||
/* we want a counter-clockwise polygon in V */
|
||||
if (0.0f < get_area(contour))
|
||||
for (int v = 0; v < n; v++)
|
||||
V[v] = v;
|
||||
else
|
||||
for (int v = 0; v < n; v++)
|
||||
V[v] = (n - 1) - v;
|
||||
|
||||
if ( 0.0f < get_area(contour) )
|
||||
for (int v=0; v<n; v++) V[v] = v;
|
||||
else
|
||||
for(int v=0; v<n; v++) V[v] = (n-1)-v;
|
||||
int nv = n;
|
||||
|
||||
int nv = n;
|
||||
/* remove nv-2 Vertices, creating 1 triangle every time */
|
||||
int count = 2 * nv; /* error detection */
|
||||
|
||||
/* remove nv-2 Vertices, creating 1 triangle every time */
|
||||
int count = 2*nv; /* error detection */
|
||||
for (int v = nv - 1; nv > 2;) {
|
||||
/* if we loop, it is probably a non-simple polygon */
|
||||
if (0 >= (count--)) {
|
||||
//** Triangulate: ERROR - probable bad polygon!
|
||||
return false;
|
||||
}
|
||||
|
||||
for(int v=nv-1; nv>2; )
|
||||
{
|
||||
/* if we loop, it is probably a non-simple polygon */
|
||||
if (0 >= (count--))
|
||||
{
|
||||
//** Triangulate: ERROR - probable bad polygon!
|
||||
return false;
|
||||
}
|
||||
/* three consecutive vertices in current polygon, <u,v,w> */
|
||||
int u = v;
|
||||
if (nv <= u) u = 0; /* previous */
|
||||
v = u + 1;
|
||||
if (nv <= v) v = 0; /* new v */
|
||||
int w = v + 1;
|
||||
if (nv <= w) w = 0; /* next */
|
||||
|
||||
/* three consecutive vertices in current polygon, <u,v,w> */
|
||||
int u = v ; if (nv <= u) u = 0; /* previous */
|
||||
v = u+1; if (nv <= v) v = 0; /* new v */
|
||||
int w = v+1; if (nv <= w) w = 0; /* next */
|
||||
if (snip(contour, u, v, w, nv, V)) {
|
||||
int a, b, c, s, t;
|
||||
|
||||
if ( snip(contour,u,v,w,nv,V) )
|
||||
{
|
||||
int a,b,c,s,t;
|
||||
/* true names of the vertices */
|
||||
a = V[u];
|
||||
b = V[v];
|
||||
c = V[w];
|
||||
|
||||
/* true names of the vertices */
|
||||
a = V[u]; b = V[v]; c = V[w];
|
||||
/* output Triangle */
|
||||
result.push_back(a);
|
||||
result.push_back(b);
|
||||
result.push_back(c);
|
||||
|
||||
/* output Triangle */
|
||||
result.push_back( a );
|
||||
result.push_back( b );
|
||||
result.push_back( c );
|
||||
/* remove v from remaining polygon */
|
||||
for (s = v, t = v + 1; t < nv; s++, t++)
|
||||
V[s] = V[t];
|
||||
nv--;
|
||||
|
||||
/* remove v from remaining polygon */
|
||||
for(s=v,t=v+1;t<nv;s++,t++) V[s] = V[t]; nv--;
|
||||
/* resest error detection counter */
|
||||
count = 2 * nv;
|
||||
}
|
||||
}
|
||||
|
||||
/* resest error detection counter */
|
||||
count = 2*nv;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
return true;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user