You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-11-15 13:51:40 +00:00
Bring that Whole New World to the Old Continent too
Applies the clang-format style to the 2.1 branch as done for master in
5dbf1809c6.
This commit is contained in:
@@ -30,66 +30,63 @@
|
||||
#include "math_funcs.h"
|
||||
#include "os/copymem.h"
|
||||
|
||||
#define cofac(row1,col1, row2, col2)\
|
||||
#define cofac(row1, col1, row2, col2) \
|
||||
(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
|
||||
|
||||
void Matrix3::from_z(const Vector3& p_z) {
|
||||
void Matrix3::from_z(const Vector3 &p_z) {
|
||||
|
||||
if (Math::abs(p_z.z) > Math_SQRT12 ) {
|
||||
if (Math::abs(p_z.z) > Math_SQRT12) {
|
||||
|
||||
// choose p in y-z plane
|
||||
real_t a = p_z[1]*p_z[1] + p_z[2]*p_z[2];
|
||||
real_t k = 1.0/Math::sqrt(a);
|
||||
elements[0]=Vector3(0,-p_z[2]*k,p_z[1]*k);
|
||||
elements[1]=Vector3(a*k,-p_z[0]*elements[0][2],p_z[0]*elements[0][1]);
|
||||
real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2];
|
||||
real_t k = 1.0 / Math::sqrt(a);
|
||||
elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k);
|
||||
elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]);
|
||||
} else {
|
||||
|
||||
// choose p in x-y plane
|
||||
real_t a = p_z.x*p_z.x + p_z.y*p_z.y;
|
||||
real_t k = 1.0/Math::sqrt(a);
|
||||
elements[0]=Vector3(-p_z.y*k,p_z.x*k,0);
|
||||
elements[1]=Vector3(-p_z.z*elements[0].y,p_z.z*elements[0].x,a*k);
|
||||
real_t a = p_z.x * p_z.x + p_z.y * p_z.y;
|
||||
real_t k = 1.0 / Math::sqrt(a);
|
||||
elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0);
|
||||
elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k);
|
||||
}
|
||||
elements[2]=p_z;
|
||||
elements[2] = p_z;
|
||||
}
|
||||
|
||||
void Matrix3::invert() {
|
||||
|
||||
|
||||
real_t co[3]={
|
||||
real_t co[3] = {
|
||||
cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
|
||||
};
|
||||
real_t det = elements[0][0] * co[0]+
|
||||
elements[0][1] * co[1]+
|
||||
elements[0][2] * co[2];
|
||||
real_t det = elements[0][0] * co[0] +
|
||||
elements[0][1] * co[1] +
|
||||
elements[0][2] * co[2];
|
||||
|
||||
ERR_FAIL_COND( det == 0 );
|
||||
real_t s = 1.0/det;
|
||||
|
||||
set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
|
||||
co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
|
||||
co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s );
|
||||
ERR_FAIL_COND(det == 0);
|
||||
real_t s = 1.0 / det;
|
||||
|
||||
set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
|
||||
co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
|
||||
co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
|
||||
}
|
||||
|
||||
void Matrix3::orthonormalize() {
|
||||
|
||||
// Gram-Schmidt Process
|
||||
|
||||
Vector3 x=get_axis(0);
|
||||
Vector3 y=get_axis(1);
|
||||
Vector3 z=get_axis(2);
|
||||
Vector3 x = get_axis(0);
|
||||
Vector3 y = get_axis(1);
|
||||
Vector3 z = get_axis(2);
|
||||
|
||||
x.normalize();
|
||||
y = (y-x*(x.dot(y)));
|
||||
y = (y - x * (x.dot(y)));
|
||||
y.normalize();
|
||||
z = (z-x*(x.dot(z))-y*(y.dot(z)));
|
||||
z = (z - x * (x.dot(z)) - y * (y.dot(z)));
|
||||
z.normalize();
|
||||
|
||||
set_axis(0,x);
|
||||
set_axis(1,y);
|
||||
set_axis(2,z);
|
||||
|
||||
set_axis(0, x);
|
||||
set_axis(1, y);
|
||||
set_axis(2, z);
|
||||
}
|
||||
|
||||
Matrix3 Matrix3::orthonormalized() const {
|
||||
@@ -99,42 +96,41 @@ Matrix3 Matrix3::orthonormalized() const {
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
Matrix3 Matrix3::inverse() const {
|
||||
|
||||
Matrix3 inv=*this;
|
||||
Matrix3 inv = *this;
|
||||
inv.invert();
|
||||
return inv;
|
||||
}
|
||||
|
||||
void Matrix3::transpose() {
|
||||
|
||||
SWAP(elements[0][1],elements[1][0]);
|
||||
SWAP(elements[0][2],elements[2][0]);
|
||||
SWAP(elements[1][2],elements[2][1]);
|
||||
SWAP(elements[0][1], elements[1][0]);
|
||||
SWAP(elements[0][2], elements[2][0]);
|
||||
SWAP(elements[1][2], elements[2][1]);
|
||||
}
|
||||
|
||||
Matrix3 Matrix3::transposed() const {
|
||||
|
||||
Matrix3 tr=*this;
|
||||
Matrix3 tr = *this;
|
||||
tr.transpose();
|
||||
return tr;
|
||||
}
|
||||
|
||||
void Matrix3::scale(const Vector3& p_scale) {
|
||||
void Matrix3::scale(const Vector3 &p_scale) {
|
||||
|
||||
elements[0][0]*=p_scale.x;
|
||||
elements[1][0]*=p_scale.x;
|
||||
elements[2][0]*=p_scale.x;
|
||||
elements[0][1]*=p_scale.y;
|
||||
elements[1][1]*=p_scale.y;
|
||||
elements[2][1]*=p_scale.y;
|
||||
elements[0][2]*=p_scale.z;
|
||||
elements[1][2]*=p_scale.z;
|
||||
elements[2][2]*=p_scale.z;
|
||||
elements[0][0] *= p_scale.x;
|
||||
elements[1][0] *= p_scale.x;
|
||||
elements[2][0] *= p_scale.x;
|
||||
elements[0][1] *= p_scale.y;
|
||||
elements[1][1] *= p_scale.y;
|
||||
elements[2][1] *= p_scale.y;
|
||||
elements[0][2] *= p_scale.z;
|
||||
elements[1][2] *= p_scale.z;
|
||||
elements[2][2] *= p_scale.z;
|
||||
}
|
||||
|
||||
Matrix3 Matrix3::scaled( const Vector3& p_scale ) const {
|
||||
Matrix3 Matrix3::scaled(const Vector3 &p_scale) const {
|
||||
|
||||
Matrix3 m = *this;
|
||||
m.scale(p_scale);
|
||||
@@ -144,28 +140,25 @@ Matrix3 Matrix3::scaled( const Vector3& p_scale ) const {
|
||||
Vector3 Matrix3::get_scale() const {
|
||||
|
||||
return Vector3(
|
||||
Vector3(elements[0][0],elements[1][0],elements[2][0]).length(),
|
||||
Vector3(elements[0][1],elements[1][1],elements[2][1]).length(),
|
||||
Vector3(elements[0][2],elements[1][2],elements[2][2]).length()
|
||||
);
|
||||
|
||||
Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
|
||||
Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
|
||||
Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
|
||||
}
|
||||
void Matrix3::rotate(const Vector3& p_axis, real_t p_phi) {
|
||||
void Matrix3::rotate(const Vector3 &p_axis, real_t p_phi) {
|
||||
|
||||
*this = *this * Matrix3(p_axis, p_phi);
|
||||
}
|
||||
|
||||
Matrix3 Matrix3::rotated(const Vector3& p_axis, real_t p_phi) const {
|
||||
Matrix3 Matrix3::rotated(const Vector3 &p_axis, real_t p_phi) const {
|
||||
|
||||
return *this * Matrix3(p_axis, p_phi);
|
||||
|
||||
}
|
||||
|
||||
Vector3 Matrix3::get_euler() const {
|
||||
|
||||
// rot = cy*cz -cy*sz sy
|
||||
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
|
||||
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
|
||||
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
|
||||
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
|
||||
|
||||
Matrix3 m = *this;
|
||||
m.orthonormalize();
|
||||
@@ -173,75 +166,72 @@ Vector3 Matrix3::get_euler() const {
|
||||
Vector3 euler;
|
||||
|
||||
euler.y = Math::asin(m[0][2]);
|
||||
if ( euler.y < Math_PI*0.5) {
|
||||
if ( euler.y > -Math_PI*0.5) {
|
||||
euler.x = Math::atan2(-m[1][2],m[2][2]);
|
||||
euler.z = Math::atan2(-m[0][1],m[0][0]);
|
||||
if (euler.y < Math_PI * 0.5) {
|
||||
if (euler.y > -Math_PI * 0.5) {
|
||||
euler.x = Math::atan2(-m[1][2], m[2][2]);
|
||||
euler.z = Math::atan2(-m[0][1], m[0][0]);
|
||||
|
||||
} else {
|
||||
real_t r = Math::atan2(m[1][0],m[1][1]);
|
||||
real_t r = Math::atan2(m[1][0], m[1][1]);
|
||||
euler.z = 0.0;
|
||||
euler.x = euler.z - r;
|
||||
|
||||
}
|
||||
} else {
|
||||
real_t r = Math::atan2(m[0][1],m[1][1]);
|
||||
real_t r = Math::atan2(m[0][1], m[1][1]);
|
||||
euler.z = 0;
|
||||
euler.x = r - euler.z;
|
||||
}
|
||||
|
||||
return euler;
|
||||
|
||||
|
||||
}
|
||||
|
||||
void Matrix3::set_euler(const Vector3& p_euler) {
|
||||
void Matrix3::set_euler(const Vector3 &p_euler) {
|
||||
|
||||
real_t c, s;
|
||||
|
||||
c = Math::cos(p_euler.x);
|
||||
s = Math::sin(p_euler.x);
|
||||
Matrix3 xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c);
|
||||
Matrix3 xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
|
||||
|
||||
c = Math::cos(p_euler.y);
|
||||
s = Math::sin(p_euler.y);
|
||||
Matrix3 ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c);
|
||||
Matrix3 ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
|
||||
|
||||
c = Math::cos(p_euler.z);
|
||||
s = Math::sin(p_euler.z);
|
||||
Matrix3 zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0);
|
||||
Matrix3 zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
|
||||
|
||||
//optimizer will optimize away all this anyway
|
||||
*this = xmat*(ymat*zmat);
|
||||
*this = xmat * (ymat * zmat);
|
||||
}
|
||||
|
||||
bool Matrix3::operator==(const Matrix3& p_matrix) const {
|
||||
bool Matrix3::operator==(const Matrix3 &p_matrix) const {
|
||||
|
||||
for (int i=0;i<3;i++) {
|
||||
for (int j=0;j<3;j++) {
|
||||
if (elements[i][j]!=p_matrix.elements[i][j])
|
||||
for (int i = 0; i < 3; i++) {
|
||||
for (int j = 0; j < 3; j++) {
|
||||
if (elements[i][j] != p_matrix.elements[i][j])
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
bool Matrix3::operator!=(const Matrix3& p_matrix) const {
|
||||
bool Matrix3::operator!=(const Matrix3 &p_matrix) const {
|
||||
|
||||
return (!(*this==p_matrix));
|
||||
return (!(*this == p_matrix));
|
||||
}
|
||||
|
||||
Matrix3::operator String() const {
|
||||
|
||||
String mtx;
|
||||
for (int i=0;i<3;i++) {
|
||||
for (int i = 0; i < 3; i++) {
|
||||
|
||||
for (int j=0;j<3;j++) {
|
||||
for (int j = 0; j < 3; j++) {
|
||||
|
||||
if (i!=0 || j!=0)
|
||||
mtx+=", ";
|
||||
if (i != 0 || j != 0)
|
||||
mtx += ", ";
|
||||
|
||||
mtx+=rtos( elements[i][j] );
|
||||
mtx += rtos(elements[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -250,27 +240,24 @@ Matrix3::operator String() const {
|
||||
|
||||
Matrix3::operator Quat() const {
|
||||
|
||||
Matrix3 m=*this;
|
||||
Matrix3 m = *this;
|
||||
m.orthonormalize();
|
||||
|
||||
real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2];
|
||||
real_t temp[4];
|
||||
|
||||
if (trace > 0.0)
|
||||
{
|
||||
if (trace > 0.0) {
|
||||
real_t s = Math::sqrt(trace + 1.0);
|
||||
temp[3]=(s * 0.5);
|
||||
temp[3] = (s * 0.5);
|
||||
s = 0.5 / s;
|
||||
|
||||
temp[0]=((m.elements[2][1] - m.elements[1][2]) * s);
|
||||
temp[1]=((m.elements[0][2] - m.elements[2][0]) * s);
|
||||
temp[2]=((m.elements[1][0] - m.elements[0][1]) * s);
|
||||
}
|
||||
else
|
||||
{
|
||||
temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s);
|
||||
temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s);
|
||||
temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s);
|
||||
} else {
|
||||
int i = m.elements[0][0] < m.elements[1][1] ?
|
||||
(m.elements[1][1] < m.elements[2][2] ? 2 : 1) :
|
||||
(m.elements[0][0] < m.elements[2][2] ? 2 : 0);
|
||||
(m.elements[1][1] < m.elements[2][2] ? 2 : 1) :
|
||||
(m.elements[0][0] < m.elements[2][2] ? 2 : 0);
|
||||
int j = (i + 1) % 3;
|
||||
int k = (i + 2) % 3;
|
||||
|
||||
@@ -283,11 +270,10 @@ Matrix3::operator Quat() const {
|
||||
temp[k] = (m.elements[k][i] + m.elements[i][k]) * s;
|
||||
}
|
||||
|
||||
return Quat(temp[0],temp[1],temp[2],temp[3]);
|
||||
|
||||
return Quat(temp[0], temp[1], temp[2], temp[3]);
|
||||
}
|
||||
|
||||
static const Matrix3 _ortho_bases[24]={
|
||||
static const Matrix3 _ortho_bases[24] = {
|
||||
Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1),
|
||||
Matrix3(0, -1, 0, 1, 0, 0, 0, 0, 1),
|
||||
Matrix3(-1, 0, 0, 0, -1, 0, 0, 0, 1),
|
||||
@@ -317,163 +303,146 @@ static const Matrix3 _ortho_bases[24]={
|
||||
int Matrix3::get_orthogonal_index() const {
|
||||
|
||||
//could be sped up if i come up with a way
|
||||
Matrix3 orth=*this;
|
||||
for(int i=0;i<3;i++) {
|
||||
for(int j=0;j<3;j++) {
|
||||
Matrix3 orth = *this;
|
||||
for (int i = 0; i < 3; i++) {
|
||||
for (int j = 0; j < 3; j++) {
|
||||
|
||||
float v = orth[i][j];
|
||||
if (v>0.5)
|
||||
v=1.0;
|
||||
else if (v<-0.5)
|
||||
v=-1.0;
|
||||
if (v > 0.5)
|
||||
v = 1.0;
|
||||
else if (v < -0.5)
|
||||
v = -1.0;
|
||||
else
|
||||
v=0;
|
||||
v = 0;
|
||||
|
||||
orth[i][j]=v;
|
||||
orth[i][j] = v;
|
||||
}
|
||||
}
|
||||
|
||||
for(int i=0;i<24;i++) {
|
||||
for (int i = 0; i < 24; i++) {
|
||||
|
||||
if (_ortho_bases[i]==orth)
|
||||
if (_ortho_bases[i] == orth)
|
||||
return i;
|
||||
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void Matrix3::set_orthogonal_index(int p_index){
|
||||
void Matrix3::set_orthogonal_index(int p_index) {
|
||||
|
||||
//there only exist 24 orthogonal bases in r3
|
||||
ERR_FAIL_INDEX(p_index,24);
|
||||
|
||||
|
||||
*this=_ortho_bases[p_index];
|
||||
ERR_FAIL_INDEX(p_index, 24);
|
||||
|
||||
*this = _ortho_bases[p_index];
|
||||
}
|
||||
|
||||
void Matrix3::get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||
|
||||
void Matrix3::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const {
|
||||
double angle, x, y, z; // variables for result
|
||||
double epsilon = 0.01; // margin to allow for rounding errors
|
||||
double epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
|
||||
|
||||
|
||||
double angle,x,y,z; // variables for result
|
||||
double epsilon = 0.01; // margin to allow for rounding errors
|
||||
double epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
|
||||
|
||||
if ( (Math::abs(elements[1][0]-elements[0][1])< epsilon)
|
||||
&& (Math::abs(elements[2][0]-elements[0][2])< epsilon)
|
||||
&& (Math::abs(elements[2][1]-elements[1][2])< epsilon)) {
|
||||
// singularity found
|
||||
// first check for identity matrix which must have +1 for all terms
|
||||
// in leading diagonaland zero in other terms
|
||||
if ((Math::abs(elements[1][0]+elements[0][1]) < epsilon2)
|
||||
&& (Math::abs(elements[2][0]+elements[0][2]) < epsilon2)
|
||||
&& (Math::abs(elements[2][1]+elements[1][2]) < epsilon2)
|
||||
&& (Math::abs(elements[0][0]+elements[1][1]+elements[2][2]-3) < epsilon2)) {
|
||||
if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) {
|
||||
// singularity found
|
||||
// first check for identity matrix which must have +1 for all terms
|
||||
// in leading diagonaland zero in other terms
|
||||
if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) {
|
||||
// this singularity is identity matrix so angle = 0
|
||||
r_axis=Vector3(0,1,0);
|
||||
r_angle=0;
|
||||
r_axis = Vector3(0, 1, 0);
|
||||
r_angle = 0;
|
||||
return;
|
||||
}
|
||||
// otherwise this singularity is angle = 180
|
||||
angle = Math_PI;
|
||||
double xx = (elements[0][0]+1)/2;
|
||||
double yy = (elements[1][1]+1)/2;
|
||||
double zz = (elements[2][2]+1)/2;
|
||||
double xy = (elements[1][0]+elements[0][1])/4;
|
||||
double xz = (elements[2][0]+elements[0][2])/4;
|
||||
double yz = (elements[2][1]+elements[1][2])/4;
|
||||
double xx = (elements[0][0] + 1) / 2;
|
||||
double yy = (elements[1][1] + 1) / 2;
|
||||
double zz = (elements[2][2] + 1) / 2;
|
||||
double xy = (elements[1][0] + elements[0][1]) / 4;
|
||||
double xz = (elements[2][0] + elements[0][2]) / 4;
|
||||
double yz = (elements[2][1] + elements[1][2]) / 4;
|
||||
if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
|
||||
if (xx< epsilon) {
|
||||
if (xx < epsilon) {
|
||||
x = 0;
|
||||
y = 0.7071;
|
||||
z = 0.7071;
|
||||
} else {
|
||||
x = Math::sqrt(xx);
|
||||
y = xy/x;
|
||||
z = xz/x;
|
||||
y = xy / x;
|
||||
z = xz / x;
|
||||
}
|
||||
} else if (yy > zz) { // elements[1][1] is the largest diagonal term
|
||||
if (yy< epsilon) {
|
||||
if (yy < epsilon) {
|
||||
x = 0.7071;
|
||||
y = 0;
|
||||
z = 0.7071;
|
||||
} else {
|
||||
y = Math::sqrt(yy);
|
||||
x = xy/y;
|
||||
z = yz/y;
|
||||
x = xy / y;
|
||||
z = yz / y;
|
||||
}
|
||||
} else { // elements[2][2] is the largest diagonal term so base result on this
|
||||
if (zz< epsilon) {
|
||||
if (zz < epsilon) {
|
||||
x = 0.7071;
|
||||
y = 0.7071;
|
||||
z = 0;
|
||||
} else {
|
||||
z = Math::sqrt(zz);
|
||||
x = xz/z;
|
||||
y = yz/z;
|
||||
x = xz / z;
|
||||
y = yz / z;
|
||||
}
|
||||
}
|
||||
r_axis=Vector3(x,y,z);
|
||||
r_angle=angle;
|
||||
r_axis = Vector3(x, y, z);
|
||||
r_angle = angle;
|
||||
return;
|
||||
}
|
||||
// as we have reached here there are no singularities so we can handle normally
|
||||
double s = Math::sqrt((elements[1][2] - elements[2][1])*(elements[1][2] - elements[2][1])
|
||||
+(elements[2][0] - elements[0][2])*(elements[2][0] - elements[0][2])
|
||||
+(elements[0][1] - elements[1][0])*(elements[0][1] - elements[1][0])); // used to normalise
|
||||
if (Math::abs(s) < 0.001) s=1;
|
||||
// prevent divide by zero, should not happen if matrix is orthogonal and should be
|
||||
// caught by singularity test above, but I've left it in just in case
|
||||
angle = Math::acos(( elements[0][0] + elements[1][1] + elements[2][2] - 1)/2);
|
||||
x = (elements[1][2] - elements[2][1])/s;
|
||||
y = (elements[2][0] - elements[0][2])/s;
|
||||
z = (elements[0][1] - elements[1][0])/s;
|
||||
double s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // used to normalise
|
||||
if (Math::abs(s) < 0.001) s = 1;
|
||||
// prevent divide by zero, should not happen if matrix is orthogonal and should be
|
||||
// caught by singularity test above, but I've left it in just in case
|
||||
angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2);
|
||||
x = (elements[1][2] - elements[2][1]) / s;
|
||||
y = (elements[2][0] - elements[0][2]) / s;
|
||||
z = (elements[0][1] - elements[1][0]) / s;
|
||||
|
||||
r_axis=Vector3(x,y,z);
|
||||
r_angle=angle;
|
||||
r_axis = Vector3(x, y, z);
|
||||
r_angle = angle;
|
||||
}
|
||||
|
||||
Matrix3::Matrix3(const Vector3& p_euler) {
|
||||
|
||||
set_euler( p_euler );
|
||||
Matrix3::Matrix3(const Vector3 &p_euler) {
|
||||
|
||||
set_euler(p_euler);
|
||||
}
|
||||
|
||||
Matrix3::Matrix3(const Quat& p_quat) {
|
||||
Matrix3::Matrix3(const Quat &p_quat) {
|
||||
|
||||
real_t d = p_quat.length_squared();
|
||||
real_t s = 2.0 / d;
|
||||
real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
|
||||
real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
|
||||
real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
|
||||
real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
|
||||
set( 1.0 - (yy + zz), xy - wz, xz + wy,
|
||||
xy + wz, 1.0 - (xx + zz), yz - wx,
|
||||
xz - wy, yz + wx, 1.0 - (xx + yy)) ;
|
||||
|
||||
real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
|
||||
real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
|
||||
real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
|
||||
real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
|
||||
set(1.0 - (yy + zz), xy - wz, xz + wy,
|
||||
xy + wz, 1.0 - (xx + zz), yz - wx,
|
||||
xz - wy, yz + wx, 1.0 - (xx + yy));
|
||||
}
|
||||
|
||||
Matrix3::Matrix3(const Vector3& p_axis, real_t p_phi) {
|
||||
Matrix3::Matrix3(const Vector3 &p_axis, real_t p_phi) {
|
||||
|
||||
Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z);
|
||||
Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
|
||||
|
||||
real_t cosine= Math::cos(p_phi);
|
||||
real_t sine= Math::sin(p_phi);
|
||||
real_t cosine = Math::cos(p_phi);
|
||||
real_t sine = Math::sin(p_phi);
|
||||
|
||||
elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x );
|
||||
elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine;
|
||||
elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine;
|
||||
elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x);
|
||||
elements[0][1] = p_axis.x * p_axis.y * (1.0 - cosine) + p_axis.z * sine;
|
||||
elements[0][2] = p_axis.z * p_axis.x * (1.0 - cosine) - p_axis.y * sine;
|
||||
|
||||
elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine;
|
||||
elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y );
|
||||
elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine;
|
||||
|
||||
elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine;
|
||||
elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine;
|
||||
elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z );
|
||||
elements[1][0] = p_axis.x * p_axis.y * (1.0 - cosine) - p_axis.z * sine;
|
||||
elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y);
|
||||
elements[1][2] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine;
|
||||
|
||||
elements[2][0] = p_axis.z * p_axis.x * (1.0 - cosine) + p_axis.y * sine;
|
||||
elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) - p_axis.x * sine;
|
||||
elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user