1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-15 13:51:40 +00:00

Bring that Whole New World to the Old Continent too

Applies the clang-format style to the 2.1 branch as done for master in
5dbf1809c6.
This commit is contained in:
Rémi Verschelde
2017-03-19 00:36:26 +01:00
parent 1d418afe86
commit f8db8a3faa
1308 changed files with 147754 additions and 174357 deletions

View File

@@ -28,91 +28,91 @@
/*************************************************************************/
#include "math_2d.h"
real_t Vector2::angle() const {
return Math::atan2(x,y);
return Math::atan2(x, y);
}
float Vector2::length() const {
return Math::sqrt( x*x + y*y );
return Math::sqrt(x * x + y * y);
}
float Vector2::length_squared() const {
return x*x + y*y;
return x * x + y * y;
}
void Vector2::normalize() {
float l = x*x + y*y;
if (l!=0) {
float l = x * x + y * y;
if (l != 0) {
l=Math::sqrt(l);
x/=l;
y/=l;
l = Math::sqrt(l);
x /= l;
y /= l;
}
}
Vector2 Vector2::normalized() const {
Vector2 v=*this;
Vector2 v = *this;
v.normalize();
return v;
}
float Vector2::distance_to(const Vector2& p_vector2) const {
float Vector2::distance_to(const Vector2 &p_vector2) const {
return Math::sqrt( (x-p_vector2.x)*(x-p_vector2.x) + (y-p_vector2.y)*(y-p_vector2.y));
return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
}
float Vector2::distance_squared_to(const Vector2& p_vector2) const {
float Vector2::distance_squared_to(const Vector2 &p_vector2) const {
return (x-p_vector2.x)*(x-p_vector2.x) + (y-p_vector2.y)*(y-p_vector2.y);
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
}
float Vector2::angle_to(const Vector2& p_vector2) const {
float Vector2::angle_to(const Vector2 &p_vector2) const {
return Math::atan2( tangent().dot(p_vector2), dot(p_vector2) );
return Math::atan2(tangent().dot(p_vector2), dot(p_vector2));
}
float Vector2::angle_to_point(const Vector2& p_vector2) const {
float Vector2::angle_to_point(const Vector2 &p_vector2) const {
return Math::atan2( x-p_vector2.x, y - p_vector2.y );
return Math::atan2(x - p_vector2.x, y - p_vector2.y);
}
float Vector2::dot(const Vector2& p_other) const {
float Vector2::dot(const Vector2 &p_other) const {
return x*p_other.x + y*p_other.y;
return x * p_other.x + y * p_other.y;
}
float Vector2::cross(const Vector2& p_other) const {
float Vector2::cross(const Vector2 &p_other) const {
return x*p_other.y - y*p_other.x;
return x * p_other.y - y * p_other.x;
}
Vector2 Vector2::cross(real_t p_other) const {
return Vector2(p_other*y,-p_other*x);
return Vector2(p_other * y, -p_other * x);
}
Vector2 Vector2::operator+(const Vector2 &p_v) const {
Vector2 Vector2::operator+(const Vector2& p_v) const {
return Vector2(x+p_v.x,y+p_v.y);
return Vector2(x + p_v.x, y + p_v.y);
}
void Vector2::operator+=(const Vector2& p_v) {
void Vector2::operator+=(const Vector2 &p_v) {
x+=p_v.x; y+=p_v.y;
x += p_v.x;
y += p_v.y;
}
Vector2 Vector2::operator-(const Vector2& p_v) const {
Vector2 Vector2::operator-(const Vector2 &p_v) const {
return Vector2(x-p_v.x,y-p_v.y);
return Vector2(x - p_v.x, y - p_v.y);
}
void Vector2::operator-=(const Vector2& p_v) {
void Vector2::operator-=(const Vector2 &p_v) {
x-=p_v.x; y-=p_v.y;
x -= p_v.x;
y -= p_v.y;
}
Vector2 Vector2::operator*(const Vector2 &p_v1) const {
@@ -126,7 +126,8 @@ Vector2 Vector2::operator*(const float &rvalue) const {
};
void Vector2::operator*=(const float &rvalue) {
x *= rvalue; y *= rvalue;
x *= rvalue;
y *= rvalue;
};
Vector2 Vector2::operator/(const Vector2 &p_v1) const {
@@ -141,64 +142,64 @@ Vector2 Vector2::operator/(const float &rvalue) const {
void Vector2::operator/=(const float &rvalue) {
x /= rvalue; y /= rvalue;
x /= rvalue;
y /= rvalue;
};
Vector2 Vector2::operator-() const {
return Vector2(-x,-y);
return Vector2(-x, -y);
}
bool Vector2::operator==(const Vector2& p_vec2) const {
bool Vector2::operator==(const Vector2 &p_vec2) const {
return x==p_vec2.x && y==p_vec2.y;
return x == p_vec2.x && y == p_vec2.y;
}
bool Vector2::operator!=(const Vector2& p_vec2) const {
bool Vector2::operator!=(const Vector2 &p_vec2) const {
return x!=p_vec2.x || y!=p_vec2.y;
return x != p_vec2.x || y != p_vec2.y;
}
Vector2 Vector2::floor() const {
return Vector2( Math::floor(x), Math::floor(y) );
return Vector2(Math::floor(x), Math::floor(y));
}
Vector2 Vector2::rotated(float p_by) const {
Vector2 v;
v.set_rotation(angle()+p_by);
v*=length();
v.set_rotation(angle() + p_by);
v *= length();
return v;
}
Vector2 Vector2::project(const Vector2& p_vec) const {
Vector2 Vector2::project(const Vector2 &p_vec) const {
Vector2 v1=p_vec;
Vector2 v2=*this;
return v2 * ( v1.dot(v2) / v2.dot(v2));
Vector2 v1 = p_vec;
Vector2 v2 = *this;
return v2 * (v1.dot(v2) / v2.dot(v2));
}
Vector2 Vector2::snapped(const Vector2& p_by) const {
Vector2 Vector2::snapped(const Vector2 &p_by) const {
return Vector2(
Math::stepify(x,p_by.x),
Math::stepify(y,p_by.y)
);
Math::stepify(x, p_by.x),
Math::stepify(y, p_by.y));
}
Vector2 Vector2::clamped(real_t p_len) const {
real_t l = length();
Vector2 v = *this;
if (l>0 && p_len<l) {
if (l > 0 && p_len < l) {
v/=l;
v*=p_len;
v /= l;
v *= p_len;
}
return v;
}
Vector2 Vector2::cubic_interpolate_soft(const Vector2& p_b,const Vector2& p_pre_a, const Vector2& p_post_b,float p_t) const {
Vector2 Vector2::cubic_interpolate_soft(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, float p_t) const {
#if 0
k[0] = ((*this) (vi[0] + 1, vi[1], vi[2])) - ((*this) (vi[0],
vi[1],vi[2])); //fk = a0
@@ -225,27 +226,25 @@ Vector2 Vector2::cubic_interpolate_soft(const Vector2& p_b,const Vector2& p_pre_
return Vector2();
}
Vector2 Vector2::cubic_interpolate(const Vector2& p_b,const Vector2& p_pre_a, const Vector2& p_post_b,float p_t) const {
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, float p_t) const {
Vector2 p0=p_pre_a;
Vector2 p1=*this;
Vector2 p2=p_b;
Vector2 p3=p_post_b;
Vector2 p0 = p_pre_a;
Vector2 p1 = *this;
Vector2 p2 = p_b;
Vector2 p3 = p_post_b;
float t = p_t;
float t2 = t * t;
float t3 = t2 * t;
Vector2 out;
out = 0.5f * ( ( p1 * 2.0f) +
( -p0 + p2 ) * t +
( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
out = 0.5f * ((p1 * 2.0f) +
(-p0 + p2) * t +
(2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 +
(-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
return out;
/*
/*
float mu = p_t;
float mu2 = mu*mu;
@@ -273,57 +272,54 @@ Vector2 Vector2::cubic_interpolate(const Vector2& p_b,const Vector2& p_pre_a, co
(a * p_a.y) + (b *p_b.y) + (c * p_pre_a.y) + (d * p_post_b.y)
);
*/
}
Vector2 Vector2::slide(const Vector2& p_vec) const {
Vector2 Vector2::slide(const Vector2 &p_vec) const {
return p_vec - *this * this->dot(p_vec);
}
Vector2 Vector2::reflect(const Vector2& p_vec) const {
Vector2 Vector2::reflect(const Vector2 &p_vec) const {
return p_vec - *this * this->dot(p_vec) * 2.0;
}
bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const {
bool Rect2::intersects_segment(const Point2& p_from, const Point2& p_to, Point2* r_pos,Point2* r_normal) const {
real_t min = 0, max = 1;
int axis = 0;
float sign = 0;
real_t min=0,max=1;
int axis=0;
float sign=0;
for(int i=0;i<2;i++) {
real_t seg_from=p_from[i];
real_t seg_to=p_to[i];
real_t box_begin=pos[i];
real_t box_end=box_begin+size[i];
real_t cmin,cmax;
for (int i = 0; i < 2; i++) {
real_t seg_from = p_from[i];
real_t seg_to = p_to[i];
real_t box_begin = pos[i];
real_t box_end = box_begin + size[i];
real_t cmin, cmax;
float csign;
if (seg_from < seg_to) {
if (seg_from > box_end || seg_to < box_begin)
return false;
real_t length=seg_to-seg_from;
cmin = (seg_from < box_begin)?((box_begin - seg_from)/length):0;
cmax = (seg_to > box_end)?((box_end - seg_from)/length):1;
csign=-1.0;
real_t length = seg_to - seg_from;
cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;
csign = -1.0;
} else {
if (seg_to > box_end || seg_from < box_begin)
return false;
real_t length=seg_to-seg_from;
cmin = (seg_from > box_end)?(box_end - seg_from)/length:0;
cmax = (seg_to < box_begin)?(box_begin - seg_from)/length:1;
csign=1.0;
real_t length = seg_to - seg_from;
cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
csign = 1.0;
}
if (cmin > min) {
min = cmin;
axis=i;
sign=csign;
axis = i;
sign = csign;
}
if (cmax < max)
max = cmax;
@@ -331,38 +327,39 @@ bool Rect2::intersects_segment(const Point2& p_from, const Point2& p_to, Point2*
return false;
}
Vector2 rel=p_to-p_from;
Vector2 rel = p_to - p_from;
if (r_normal) {
Vector2 normal;
normal[axis]=sign;
*r_normal=normal;
normal[axis] = sign;
*r_normal = normal;
}
if (r_pos)
*r_pos=p_from+rel*min;
*r_pos = p_from + rel * min;
return true;
}
/* Point2i */
Point2i Point2i::operator+(const Point2i& p_v) const {
Point2i Point2i::operator+(const Point2i &p_v) const {
return Point2i(x+p_v.x,y+p_v.y);
return Point2i(x + p_v.x, y + p_v.y);
}
void Point2i::operator+=(const Point2i& p_v) {
void Point2i::operator+=(const Point2i &p_v) {
x+=p_v.x; y+=p_v.y;
x += p_v.x;
y += p_v.y;
}
Point2i Point2i::operator-(const Point2i& p_v) const {
Point2i Point2i::operator-(const Point2i &p_v) const {
return Point2i(x-p_v.x,y-p_v.y);
return Point2i(x - p_v.x, y - p_v.y);
}
void Point2i::operator-=(const Point2i& p_v) {
void Point2i::operator-=(const Point2i &p_v) {
x-=p_v.x; y-=p_v.y;
x -= p_v.x;
y -= p_v.y;
}
Point2i Point2i::operator*(const Point2i &p_v1) const {
@@ -376,7 +373,8 @@ Point2i Point2i::operator*(const int &rvalue) const {
};
void Point2i::operator*=(const int &rvalue) {
x *= rvalue; y *= rvalue;
x *= rvalue;
y *= rvalue;
};
Point2i Point2i::operator/(const Point2i &p_v1) const {
@@ -391,222 +389,212 @@ Point2i Point2i::operator/(const int &rvalue) const {
void Point2i::operator/=(const int &rvalue) {
x /= rvalue; y /= rvalue;
x /= rvalue;
y /= rvalue;
};
Point2i Point2i::operator-() const {
return Point2i(-x,-y);
return Point2i(-x, -y);
}
bool Point2i::operator==(const Point2i& p_vec2) const {
bool Point2i::operator==(const Point2i &p_vec2) const {
return x==p_vec2.x && y==p_vec2.y;
return x == p_vec2.x && y == p_vec2.y;
}
bool Point2i::operator!=(const Point2i& p_vec2) const {
bool Point2i::operator!=(const Point2i &p_vec2) const {
return x!=p_vec2.x || y!=p_vec2.y;
return x != p_vec2.x || y != p_vec2.y;
}
void Matrix32::invert() {
SWAP(elements[0][1],elements[1][0]);
SWAP(elements[0][1], elements[1][0]);
elements[2] = basis_xform(-elements[2]);
}
Matrix32 Matrix32::inverse() const {
Matrix32 inv=*this;
Matrix32 inv = *this;
inv.invert();
return inv;
}
void Matrix32::affine_invert() {
float det = basis_determinant();
ERR_FAIL_COND(det==0);
ERR_FAIL_COND(det == 0);
float idet = 1.0 / det;
SWAP( elements[0][0],elements[1][1] );
elements[0]*=Vector2(idet,-idet);
elements[1]*=Vector2(-idet,idet);
SWAP(elements[0][0], elements[1][1]);
elements[0] *= Vector2(idet, -idet);
elements[1] *= Vector2(-idet, idet);
elements[2] = basis_xform(-elements[2]);
}
Matrix32 Matrix32::affine_inverse() const {
Matrix32 inv=*this;
Matrix32 inv = *this;
inv.affine_invert();
return inv;
}
void Matrix32::rotate(real_t p_phi) {
Matrix32 rot(p_phi,Vector2());
Matrix32 rot(p_phi, Vector2());
*this *= rot;
}
real_t Matrix32::get_rotation() const {
return Math::atan2(elements[1].x,elements[1].y);
return Math::atan2(elements[1].x, elements[1].y);
}
void Matrix32::set_rotation(real_t p_rot) {
real_t cr = Math::cos(p_rot);
real_t sr = Math::sin(p_rot);
elements[0][0]=cr;
elements[1][1]=cr;
elements[0][1]=-sr;
elements[1][0]=sr;
elements[0][0] = cr;
elements[1][1] = cr;
elements[0][1] = -sr;
elements[1][0] = sr;
}
Matrix32::Matrix32(real_t p_rot, const Vector2& p_pos) {
Matrix32::Matrix32(real_t p_rot, const Vector2 &p_pos) {
real_t cr = Math::cos(p_rot);
real_t sr = Math::sin(p_rot);
elements[0][0]=cr;
elements[1][1]=cr;
elements[0][1]=-sr;
elements[1][0]=sr;
elements[2]=p_pos;
elements[0][0] = cr;
elements[1][1] = cr;
elements[0][1] = -sr;
elements[1][0] = sr;
elements[2] = p_pos;
}
Size2 Matrix32::get_scale() const {
return Size2( elements[0].length(), elements[1].length() );
return Size2(elements[0].length(), elements[1].length());
}
void Matrix32::scale(const Size2& p_scale) {
void Matrix32::scale(const Size2 &p_scale) {
elements[0]*=p_scale;
elements[1]*=p_scale;
elements[2]*=p_scale;
elements[0] *= p_scale;
elements[1] *= p_scale;
elements[2] *= p_scale;
}
void Matrix32::scale_basis(const Size2& p_scale) {
elements[0]*=p_scale;
elements[1]*=p_scale;
void Matrix32::scale_basis(const Size2 &p_scale) {
elements[0] *= p_scale;
elements[1] *= p_scale;
}
void Matrix32::translate( real_t p_tx, real_t p_ty) {
void Matrix32::translate(real_t p_tx, real_t p_ty) {
translate(Vector2(p_tx,p_ty));
translate(Vector2(p_tx, p_ty));
}
void Matrix32::translate( const Vector2& p_translation ) {
void Matrix32::translate(const Vector2 &p_translation) {
elements[2]+=basis_xform(p_translation);
elements[2] += basis_xform(p_translation);
}
void Matrix32::orthonormalize() {
// Gram-Schmidt Process
Vector2 x=elements[0];
Vector2 y=elements[1];
Vector2 x = elements[0];
Vector2 y = elements[1];
x.normalize();
y = (y-x*(x.dot(y)));
y = (y - x * (x.dot(y)));
y.normalize();
elements[0]=x;
elements[1]=y;
elements[0] = x;
elements[1] = y;
}
Matrix32 Matrix32::orthonormalized() const {
Matrix32 on=*this;
Matrix32 on = *this;
on.orthonormalize();
return on;
}
bool Matrix32::operator==(const Matrix32& p_transform) const {
bool Matrix32::operator==(const Matrix32 &p_transform) const {
for(int i=0;i<3;i++) {
if (elements[i]!=p_transform.elements[i])
for (int i = 0; i < 3; i++) {
if (elements[i] != p_transform.elements[i])
return false;
}
return true;
}
bool Matrix32::operator!=(const Matrix32& p_transform) const {
bool Matrix32::operator!=(const Matrix32 &p_transform) const {
for(int i=0;i<3;i++) {
if (elements[i]!=p_transform.elements[i])
for (int i = 0; i < 3; i++) {
if (elements[i] != p_transform.elements[i])
return true;
}
return false;
}
void Matrix32::operator*=(const Matrix32& p_transform) {
void Matrix32::operator*=(const Matrix32 &p_transform) {
elements[2] = xform(p_transform.elements[2]);
float x0,x1,y0,y1;
float x0, x1, y0, y1;
x0 = tdotx(p_transform.elements[0]);
x1 = tdoty(p_transform.elements[0]);
y0 = tdotx(p_transform.elements[1]);
y1 = tdoty(p_transform.elements[1]);
elements[0][0]=x0;
elements[0][1]=x1;
elements[1][0]=y0;
elements[1][1]=y1;
elements[0][0] = x0;
elements[0][1] = x1;
elements[1][0] = y0;
elements[1][1] = y1;
}
Matrix32 Matrix32::operator*(const Matrix32& p_transform) const {
Matrix32 Matrix32::operator*(const Matrix32 &p_transform) const {
Matrix32 t = *this;
t*=p_transform;
t *= p_transform;
return t;
}
Matrix32 Matrix32::scaled(const Size2& p_scale) const {
Matrix32 Matrix32::scaled(const Size2 &p_scale) const {
Matrix32 copy=*this;
Matrix32 copy = *this;
copy.scale(p_scale);
return copy;
}
Matrix32 Matrix32::basis_scaled(const Size2& p_scale) const {
Matrix32 Matrix32::basis_scaled(const Size2 &p_scale) const {
Matrix32 copy=*this;
Matrix32 copy = *this;
copy.scale_basis(p_scale);
return copy;
}
Matrix32 Matrix32::untranslated() const {
Matrix32 copy=*this;
copy.elements[2]=Vector2();
Matrix32 copy = *this;
copy.elements[2] = Vector2();
return copy;
}
Matrix32 Matrix32::translated(const Vector2& p_offset) const {
Matrix32 Matrix32::translated(const Vector2 &p_offset) const {
Matrix32 copy=*this;
Matrix32 copy = *this;
copy.translate(p_offset);
return copy;
}
Matrix32 Matrix32::rotated(float p_phi) const {
Matrix32 copy=*this;
Matrix32 copy = *this;
copy.rotate(p_phi);
return copy;
}
float Matrix32::basis_determinant() const {
@@ -614,7 +602,7 @@ float Matrix32::basis_determinant() const {
return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
}
Matrix32 Matrix32::interpolate_with(const Matrix32& p_transform, float p_c) const {
Matrix32 Matrix32::interpolate_with(const Matrix32 &p_transform, float p_c) const {
//extract parameters
Vector2 p1 = get_origin();
@@ -639,9 +627,9 @@ Matrix32 Matrix32::interpolate_with(const Matrix32& p_transform, float p_c) cons
if (dot > 0.9995) {
v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
} else {
real_t angle = p_c*Math::acos(dot);
Vector2 v3 = (v2 - v1*dot).normalized();
v = v1*Math::cos(angle) + v3*Math::sin(angle);
real_t angle = p_c * Math::acos(dot);
Vector2 v3 = (v2 - v1 * dot).normalized();
v = v1 * Math::cos(angle) + v3 * Math::sin(angle);
}
//construct matrix
@@ -652,5 +640,5 @@ Matrix32 Matrix32::interpolate_with(const Matrix32& p_transform, float p_c) cons
Matrix32::operator String() const {
return String(String()+elements[0]+", "+elements[1]+", "+elements[2]);
return String(String() + elements[0] + ", " + elements[1] + ", " + elements[2]);
}