1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-16 14:00:40 +00:00

Update libwebp to 0.6.0

This commit is contained in:
volzhs
2017-02-17 23:49:40 +09:00
parent d5c2a6b76b
commit f7ef78c998
139 changed files with 10209 additions and 3709 deletions

View File

@@ -139,6 +139,357 @@ static void ConvertBGRAToRGB(const uint32_t* src,
#endif // !WORK_AROUND_GCC
//------------------------------------------------------------------------------
// Predictor Transform
#define LOAD_U32_AS_U8(IN) vreinterpret_u8_u32(vdup_n_u32((IN)))
#define LOAD_U32P_AS_U8(IN) vreinterpret_u8_u32(vld1_u32((IN)))
#define LOADQ_U32_AS_U8(IN) vreinterpretq_u8_u32(vdupq_n_u32((IN)))
#define LOADQ_U32P_AS_U8(IN) vreinterpretq_u8_u32(vld1q_u32((IN)))
#define GET_U8_AS_U32(IN) vget_lane_u32(vreinterpret_u32_u8((IN)), 0);
#define GETQ_U8_AS_U32(IN) vgetq_lane_u32(vreinterpretq_u32_u8((IN)), 0);
#define STOREQ_U8_AS_U32P(OUT, IN) vst1q_u32((OUT), vreinterpretq_u32_u8((IN)));
#define ROTATE32_LEFT(L) vextq_u8((L), (L), 12) // D|C|B|A -> C|B|A|D
static WEBP_INLINE uint8x8_t Average2_u8_NEON(uint32_t a0, uint32_t a1) {
const uint8x8_t A0 = LOAD_U32_AS_U8(a0);
const uint8x8_t A1 = LOAD_U32_AS_U8(a1);
return vhadd_u8(A0, A1);
}
static WEBP_INLINE uint32_t ClampedAddSubtractHalf_NEON(uint32_t c0,
uint32_t c1,
uint32_t c2) {
const uint8x8_t avg = Average2_u8_NEON(c0, c1);
// Remove one to c2 when bigger than avg.
const uint8x8_t C2 = LOAD_U32_AS_U8(c2);
const uint8x8_t cmp = vcgt_u8(C2, avg);
const uint8x8_t C2_1 = vadd_u8(C2, cmp);
// Compute half of the difference between avg and c2.
const int8x8_t diff_avg = vreinterpret_s8_u8(vhsub_u8(avg, C2_1));
// Compute the sum with avg and saturate.
const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(avg));
const uint8x8_t res = vqmovun_s16(vaddw_s8(avg_16, diff_avg));
const uint32_t output = GET_U8_AS_U32(res);
return output;
}
static WEBP_INLINE uint32_t Average2_NEON(uint32_t a0, uint32_t a1) {
const uint8x8_t avg_u8x8 = Average2_u8_NEON(a0, a1);
const uint32_t avg = GET_U8_AS_U32(avg_u8x8);
return avg;
}
static WEBP_INLINE uint32_t Average3_NEON(uint32_t a0, uint32_t a1,
uint32_t a2) {
const uint8x8_t avg0 = Average2_u8_NEON(a0, a2);
const uint8x8_t A1 = LOAD_U32_AS_U8(a1);
const uint32_t avg = GET_U8_AS_U32(vhadd_u8(avg0, A1));
return avg;
}
static uint32_t Predictor5_NEON(uint32_t left, const uint32_t* const top) {
return Average3_NEON(left, top[0], top[1]);
}
static uint32_t Predictor6_NEON(uint32_t left, const uint32_t* const top) {
return Average2_NEON(left, top[-1]);
}
static uint32_t Predictor7_NEON(uint32_t left, const uint32_t* const top) {
return Average2_NEON(left, top[0]);
}
static uint32_t Predictor13_NEON(uint32_t left, const uint32_t* const top) {
return ClampedAddSubtractHalf_NEON(left, top[0], top[-1]);
}
// Batch versions of those functions.
// Predictor0: ARGB_BLACK.
static void PredictorAdd0_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
const uint8x16_t black = vreinterpretq_u8_u32(vdupq_n_u32(ARGB_BLACK));
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t res = vaddq_u8(src, black);
STOREQ_U8_AS_U32P(&out[i], res);
}
VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i);
}
// Predictor1: left.
static void PredictorAdd1_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
const uint8x16_t zero = LOADQ_U32_AS_U8(0);
for (i = 0; i + 4 <= num_pixels; i += 4) {
// a | b | c | d
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
// 0 | a | b | c
const uint8x16_t shift0 = vextq_u8(zero, src, 12);
// a | a + b | b + c | c + d
const uint8x16_t sum0 = vaddq_u8(src, shift0);
// 0 | 0 | a | a + b
const uint8x16_t shift1 = vextq_u8(zero, sum0, 8);
// a | a + b | a + b + c | a + b + c + d
const uint8x16_t sum1 = vaddq_u8(sum0, shift1);
const uint8x16_t prev = LOADQ_U32_AS_U8(out[i - 1]);
const uint8x16_t res = vaddq_u8(sum1, prev);
STOREQ_U8_AS_U32P(&out[i], res);
}
VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
}
// Macro that adds 32-bit integers from IN using mod 256 arithmetic
// per 8 bit channel.
#define GENERATE_PREDICTOR_1(X, IN) \
static void PredictorAdd##X##_NEON(const uint32_t* in, \
const uint32_t* upper, int num_pixels, \
uint32_t* out) { \
int i; \
for (i = 0; i + 4 <= num_pixels; i += 4) { \
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \
const uint8x16_t other = LOADQ_U32P_AS_U8(&(IN)); \
const uint8x16_t res = vaddq_u8(src, other); \
STOREQ_U8_AS_U32P(&out[i], res); \
} \
VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
}
// Predictor2: Top.
GENERATE_PREDICTOR_1(2, upper[i])
// Predictor3: Top-right.
GENERATE_PREDICTOR_1(3, upper[i + 1])
// Predictor4: Top-left.
GENERATE_PREDICTOR_1(4, upper[i - 1])
#undef GENERATE_PREDICTOR_1
// Predictor5: average(average(left, TR), T)
#define DO_PRED5(LANE) do { \
const uint8x16_t avgLTR = vhaddq_u8(L, TR); \
const uint8x16_t avg = vhaddq_u8(avgLTR, T); \
const uint8x16_t res = vaddq_u8(avg, src); \
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
L = ROTATE32_LEFT(res); \
} while (0)
static void PredictorAdd5_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i + 0]);
const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]);
DO_PRED5(0);
DO_PRED5(1);
DO_PRED5(2);
DO_PRED5(3);
}
VP8LPredictorsAdd_C[5](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED5
#define DO_PRED67(LANE) do { \
const uint8x16_t avg = vhaddq_u8(L, top); \
const uint8x16_t res = vaddq_u8(avg, src); \
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
L = ROTATE32_LEFT(res); \
} while (0)
// Predictor6: average(left, TL)
static void PredictorAdd6_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i - 1]);
DO_PRED67(0);
DO_PRED67(1);
DO_PRED67(2);
DO_PRED67(3);
}
VP8LPredictorsAdd_C[6](in + i, upper + i, num_pixels - i, out + i);
}
// Predictor7: average(left, T)
static void PredictorAdd7_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i]);
DO_PRED67(0);
DO_PRED67(1);
DO_PRED67(2);
DO_PRED67(3);
}
VP8LPredictorsAdd_C[7](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED67
#define GENERATE_PREDICTOR_2(X, IN) \
static void PredictorAdd##X##_NEON(const uint32_t* in, \
const uint32_t* upper, int num_pixels, \
uint32_t* out) { \
int i; \
for (i = 0; i + 4 <= num_pixels; i += 4) { \
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \
const uint8x16_t Tother = LOADQ_U32P_AS_U8(&(IN)); \
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); \
const uint8x16_t avg = vhaddq_u8(T, Tother); \
const uint8x16_t res = vaddq_u8(avg, src); \
STOREQ_U8_AS_U32P(&out[i], res); \
} \
VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
}
// Predictor8: average TL T.
GENERATE_PREDICTOR_2(8, upper[i - 1])
// Predictor9: average T TR.
GENERATE_PREDICTOR_2(9, upper[i + 1])
#undef GENERATE_PREDICTOR_2
// Predictor10: average of (average of (L,TL), average of (T, TR)).
#define DO_PRED10(LANE) do { \
const uint8x16_t avgLTL = vhaddq_u8(L, TL); \
const uint8x16_t avg = vhaddq_u8(avgTTR, avgLTL); \
const uint8x16_t res = vaddq_u8(avg, src); \
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
L = ROTATE32_LEFT(res); \
} while (0)
static void PredictorAdd10_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]);
const uint8x16_t avgTTR = vhaddq_u8(T, TR);
DO_PRED10(0);
DO_PRED10(1);
DO_PRED10(2);
DO_PRED10(3);
}
VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED10
// Predictor11: select.
#define DO_PRED11(LANE) do { \
const uint8x16_t sumLin = vaddq_u8(L, src); /* in + L */ \
const uint8x16_t pLTL = vabdq_u8(L, TL); /* |L - TL| */ \
const uint16x8_t sum_LTL = vpaddlq_u8(pLTL); \
const uint32x4_t pa = vpaddlq_u16(sum_LTL); \
const uint32x4_t mask = vcleq_u32(pa, pb); \
const uint8x16_t res = vbslq_u8(vreinterpretq_u8_u32(mask), sumTin, sumLin); \
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
L = ROTATE32_LEFT(res); \
} while (0)
static void PredictorAdd11_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
const uint8x16_t pTTL = vabdq_u8(T, TL); // |T - TL|
const uint16x8_t sum_TTL = vpaddlq_u8(pTTL);
const uint32x4_t pb = vpaddlq_u16(sum_TTL);
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t sumTin = vaddq_u8(T, src); // in + T
DO_PRED11(0);
DO_PRED11(1);
DO_PRED11(2);
DO_PRED11(3);
}
VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED11
// Predictor12: ClampedAddSubtractFull.
#define DO_PRED12(DIFF, LANE) do { \
const uint8x8_t pred = \
vqmovun_s16(vaddq_s16(vreinterpretq_s16_u16(L), (DIFF))); \
const uint8x8_t res = \
vadd_u8(pred, (LANE <= 1) ? vget_low_u8(src) : vget_high_u8(src)); \
const uint16x8_t res16 = vmovl_u8(res); \
vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \
/* rotate in the left predictor for next iteration */ \
L = vextq_u16(res16, res16, 4); \
} while (0)
static void PredictorAdd12_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint16x8_t L = vmovl_u8(LOAD_U32_AS_U8(out[-1]));
for (i = 0; i + 4 <= num_pixels; i += 4) {
// load four pixels of source
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
// precompute the difference T - TL once for all, stored as s16
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
const int16x8_t diff_lo =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), vget_low_u8(TL)));
const int16x8_t diff_hi =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), vget_high_u8(TL)));
// loop over the four reconstructed pixels
DO_PRED12(diff_lo, 0);
DO_PRED12(diff_lo, 1);
DO_PRED12(diff_hi, 2);
DO_PRED12(diff_hi, 3);
}
VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED12
// Predictor13: ClampedAddSubtractHalf
#define DO_PRED13(LANE, LOW_OR_HI) do { \
const uint8x16_t avg = vhaddq_u8(L, T); \
const uint8x16_t cmp = vcgtq_u8(TL, avg); \
const uint8x16_t TL_1 = vaddq_u8(TL, cmp); \
/* Compute half of the difference between avg and TL'. */ \
const int8x8_t diff_avg = \
vreinterpret_s8_u8(LOW_OR_HI(vhsubq_u8(avg, TL_1))); \
/* Compute the sum with avg and saturate. */ \
const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(LOW_OR_HI(avg))); \
const uint8x8_t delta = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); \
const uint8x8_t res = vadd_u8(LOW_OR_HI(src), delta); \
const uint8x16_t res2 = vcombine_u8(res, res); \
vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \
L = ROTATE32_LEFT(res2); \
} while (0)
static void PredictorAdd13_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
DO_PRED13(0, vget_low_u8);
DO_PRED13(1, vget_low_u8);
DO_PRED13(2, vget_high_u8);
DO_PRED13(3, vget_high_u8);
}
VP8LPredictorsAdd_C[13](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED13
#undef LOAD_U32_AS_U8
#undef LOAD_U32P_AS_U8
#undef LOADQ_U32_AS_U8
#undef LOADQ_U32P_AS_U8
#undef GET_U8_AS_U32
#undef GETQ_U8_AS_U32
#undef STOREQ_U8_AS_U32P
#undef ROTATE32_LEFT
//------------------------------------------------------------------------------
// Subtract-Green Transform
@@ -171,28 +522,30 @@ static WEBP_INLINE uint8x16_t DoGreenShuffle(const uint8x16_t argb,
}
#endif // USE_VTBLQ
static void AddGreenToBlueAndRed(uint32_t* argb_data, int num_pixels) {
const uint32_t* const end = argb_data + (num_pixels & ~3);
static void AddGreenToBlueAndRed(const uint32_t* src, int num_pixels,
uint32_t* dst) {
const uint32_t* const end = src + (num_pixels & ~3);
#ifdef USE_VTBLQ
const uint8x16_t shuffle = vld1q_u8(kGreenShuffle);
#else
const uint8x8_t shuffle = vld1_u8(kGreenShuffle);
#endif
for (; argb_data < end; argb_data += 4) {
const uint8x16_t argb = vld1q_u8((uint8_t*)argb_data);
for (; src < end; src += 4, dst += 4) {
const uint8x16_t argb = vld1q_u8((const uint8_t*)src);
const uint8x16_t greens = DoGreenShuffle(argb, shuffle);
vst1q_u8((uint8_t*)argb_data, vaddq_u8(argb, greens));
vst1q_u8((uint8_t*)dst, vaddq_u8(argb, greens));
}
// fallthrough and finish off with plain-C
VP8LAddGreenToBlueAndRed_C(argb_data, num_pixels & 3);
VP8LAddGreenToBlueAndRed_C(src, num_pixels & 3, dst);
}
//------------------------------------------------------------------------------
// Color Transform
static void TransformColorInverse(const VP8LMultipliers* const m,
uint32_t* argb_data, int num_pixels) {
// sign-extended multiplying constants, pre-shifted by 6.
const uint32_t* const src, int num_pixels,
uint32_t* dst) {
// sign-extended multiplying constants, pre-shifted by 6.
#define CST(X) (((int16_t)(m->X << 8)) >> 6)
const int16_t rb[8] = {
CST(green_to_blue_), CST(green_to_red_),
@@ -219,7 +572,7 @@ static void TransformColorInverse(const VP8LMultipliers* const m,
const uint32x4_t mask_ag = vdupq_n_u32(0xff00ff00u);
int i;
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t in = vld1q_u8((uint8_t*)(argb_data + i));
const uint8x16_t in = vld1q_u8((const uint8_t*)(src + i));
const uint32x4_t a0g0 = vandq_u32(vreinterpretq_u32_u8(in), mask_ag);
// 0 g 0 g
const uint8x16_t greens = DoGreenShuffle(in, shuffle);
@@ -240,10 +593,10 @@ static void TransformColorInverse(const VP8LMultipliers* const m,
// 0 r' 0 b''
const uint16x8_t G = vshrq_n_u16(vreinterpretq_u16_s8(F), 8);
const uint32x4_t out = vorrq_u32(vreinterpretq_u32_u16(G), a0g0);
vst1q_u32(argb_data + i, out);
vst1q_u32(dst + i, out);
}
// Fall-back to C-version for left-overs.
VP8LTransformColorInverse_C(m, argb_data + i, num_pixels - i);
VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
}
#undef USE_VTBLQ
@@ -254,6 +607,26 @@ static void TransformColorInverse(const VP8LMultipliers* const m,
extern void VP8LDspInitNEON(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitNEON(void) {
VP8LPredictors[5] = Predictor5_NEON;
VP8LPredictors[6] = Predictor6_NEON;
VP8LPredictors[7] = Predictor7_NEON;
VP8LPredictors[13] = Predictor13_NEON;
VP8LPredictorsAdd[0] = PredictorAdd0_NEON;
VP8LPredictorsAdd[1] = PredictorAdd1_NEON;
VP8LPredictorsAdd[2] = PredictorAdd2_NEON;
VP8LPredictorsAdd[3] = PredictorAdd3_NEON;
VP8LPredictorsAdd[4] = PredictorAdd4_NEON;
VP8LPredictorsAdd[5] = PredictorAdd5_NEON;
VP8LPredictorsAdd[6] = PredictorAdd6_NEON;
VP8LPredictorsAdd[7] = PredictorAdd7_NEON;
VP8LPredictorsAdd[8] = PredictorAdd8_NEON;
VP8LPredictorsAdd[9] = PredictorAdd9_NEON;
VP8LPredictorsAdd[10] = PredictorAdd10_NEON;
VP8LPredictorsAdd[11] = PredictorAdd11_NEON;
VP8LPredictorsAdd[12] = PredictorAdd12_NEON;
VP8LPredictorsAdd[13] = PredictorAdd13_NEON;
VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA;
VP8LConvertBGRAToBGR = ConvertBGRAToBGR;
VP8LConvertBGRAToRGB = ConvertBGRAToRGB;