1
0
mirror of https://github.com/godotengine/godot.git synced 2025-12-02 16:48:55 +00:00

Faster queue free

Calling queue_free() for large numbers of siblings could previously be very slow, with the time taken rising exponentially with number of children. This looked partly due to ordered_remove from the child list and notifications.

This PR identifies objects that are nodes, and sorts the deletion queue so that children are deleted in reverse child order. This minimizes the costs of reordering.
This commit is contained in:
lawnjelly
2022-06-11 12:35:32 +01:00
parent d74ff8dd93
commit edc85d22fc
3 changed files with 67 additions and 5 deletions

View File

@@ -1217,20 +1217,77 @@ void SceneTree::get_nodes_in_group(const StringName &p_group, List<Node *> *p_li
void SceneTree::_flush_delete_queue() {
_THREAD_SAFE_METHOD_
while (delete_queue.size()) {
Object *obj = ObjectDB::get_instance(delete_queue.front()->get());
// Sorting the delete queue by child count (in respect to their parent)
// is an optimization because nodes benefit immensely from being deleted
// in reverse order to their child count. This is partly due to ordered_remove(), and partly
// due to notifications being sent to children that are moved, further in the child list.
struct ObjectIDComparator {
_FORCE_INLINE_ bool operator()(const DeleteQueueElement &p, const DeleteQueueElement &q) const {
return (p.child_list_id > q.child_list_id);
}
};
delete_queue.sort_custom<ObjectIDComparator>();
for (uint32_t e = 0; e < delete_queue.size(); e++) {
ObjectID id = delete_queue[e].id;
Object *obj = ObjectDB::get_instance(id);
if (obj) {
memdelete(obj);
}
delete_queue.pop_front();
}
delete_queue.clear();
}
void SceneTree::queue_delete(Object *p_object) {
_THREAD_SAFE_METHOD_
ERR_FAIL_NULL(p_object);
// Guard against the user queueing multiple times,
// which is unnecessary.
if (p_object->is_queued_for_deletion()) {
return;
}
p_object->_is_queued_for_deletion = true;
delete_queue.push_back(p_object->get_instance_id());
DeleteQueueElement e;
e.id = p_object->get_instance_id();
// Storing the list id within the parent allows us
// to sort the delete queue in reverse for more efficient
// deletion.
// Note that data.pos could alternatively be read during flush_delete_queue(),
// however reading it here avoids an extra lookup, and should be correct in most cases.
// And worst case if the child_list_id changes in the meantime, it will still work, it may just
// be slightly slower.
const Node *node = Object::cast_to<Node>(p_object);
if (node) {
e.child_list_id = node->data.pos;
// Have some grouping by parent object ID,
// so that children tend to be deleted together.
// This should be more cache friendly.
if (node->data.parent) {
ObjectID parent_id = node->data.parent->get_instance_id();
// Use a prime number to combine the group with the child id.
// Provided there are less than the prime number children in a node,
// there will be no collisions. Even if there are collisions, it is no problem.
uint32_t group = parent_id * 937;
// Rollover the group, we never want the group + the child id
// to overflow 31 bits
group &= ~(0b111 << 29);
e.child_list_id += (int32_t)group;
}
} else {
// For non-nodes, there is no point in sorting them.
e.child_list_id = -2;
}
delete_queue.push_back(e);
}
int SceneTree::get_node_count() const {