1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-08 12:40:44 +00:00

Rename MainLoop methods to match Node methods

This commit is contained in:
Marcel Admiraal
2020-12-22 09:50:29 +00:00
parent 6532596d97
commit d9e9eb8d04
27 changed files with 179 additions and 184 deletions

View File

@@ -30,17 +30,17 @@
#include "main_timer_sync.h"
void MainFrameTime::clamp_idle(float min_idle_step, float max_idle_step) {
if (idle_step < min_idle_step) {
idle_step = min_idle_step;
} else if (idle_step > max_idle_step) {
idle_step = max_idle_step;
void MainFrameTime::clamp_process_step(float min_process_step, float max_process_step) {
if (process_step < min_process_step) {
process_step = min_process_step;
} else if (process_step > max_process_step) {
process_step = max_process_step;
}
}
/////////////////////////////////
// returns the fraction of p_frame_slice required for the timer to overshoot
// returns the fraction of p_physics_step required for the timer to overshoot
// before advance_core considers changing the physics_steps return from
// the typical values as defined by typical_physics_steps
float MainTimerSync::get_physics_jitter_fix() {
@@ -72,15 +72,15 @@ int MainTimerSync::get_average_physics_steps(float &p_min, float &p_max) {
return CONTROL_STEPS;
}
// advance physics clock by p_idle_step, return appropriate number of steps to simulate
MainFrameTime MainTimerSync::advance_core(float p_frame_slice, int p_iterations_per_second, float p_idle_step) {
// advance physics clock by p_process_step, return appropriate number of steps to simulate
MainFrameTime MainTimerSync::advance_core(float p_physics_step, int p_physics_fps, float p_process_step) {
MainFrameTime ret;
ret.idle_step = p_idle_step;
ret.process_step = p_process_step;
// simple determination of number of physics iteration
time_accum += ret.idle_step;
ret.physics_steps = floor(time_accum * p_iterations_per_second);
time_accum += ret.process_step;
ret.physics_steps = floor(time_accum * p_physics_fps);
int min_typical_steps = typical_physics_steps[0];
int max_typical_steps = min_typical_steps + 1;
@@ -107,7 +107,7 @@ MainFrameTime MainTimerSync::advance_core(float p_frame_slice, int p_iterations_
// try to keep it consistent with previous iterations
if (ret.physics_steps < min_typical_steps) {
const int max_possible_steps = floor((time_accum)*p_iterations_per_second + get_physics_jitter_fix());
const int max_possible_steps = floor((time_accum)*p_physics_fps + get_physics_jitter_fix());
if (max_possible_steps < min_typical_steps) {
ret.physics_steps = max_possible_steps;
update_typical = true;
@@ -115,7 +115,7 @@ MainFrameTime MainTimerSync::advance_core(float p_frame_slice, int p_iterations_
ret.physics_steps = min_typical_steps;
}
} else if (ret.physics_steps > max_typical_steps) {
const int min_possible_steps = floor((time_accum)*p_iterations_per_second - get_physics_jitter_fix());
const int min_possible_steps = floor((time_accum)*p_physics_fps - get_physics_jitter_fix());
if (min_possible_steps > max_typical_steps) {
ret.physics_steps = min_possible_steps;
update_typical = true;
@@ -124,7 +124,7 @@ MainFrameTime MainTimerSync::advance_core(float p_frame_slice, int p_iterations_
}
}
time_accum -= ret.physics_steps * p_frame_slice;
time_accum -= ret.physics_steps * p_physics_step;
// keep track of accumulated step counts
for (int i = CONTROL_STEPS - 2; i >= 0; --i) {
@@ -146,52 +146,52 @@ MainFrameTime MainTimerSync::advance_core(float p_frame_slice, int p_iterations_
}
// calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero
MainFrameTime MainTimerSync::advance_checked(float p_frame_slice, int p_iterations_per_second, float p_idle_step) {
MainFrameTime MainTimerSync::advance_checked(float p_physics_step, int p_physics_fps, float p_process_step) {
if (fixed_fps != -1) {
p_idle_step = 1.0 / fixed_fps;
p_process_step = 1.0 / fixed_fps;
}
// compensate for last deficit
p_idle_step += time_deficit;
p_process_step += time_deficit;
MainFrameTime ret = advance_core(p_frame_slice, p_iterations_per_second, p_idle_step);
MainFrameTime ret = advance_core(p_physics_step, p_physics_fps, p_process_step);
// we will do some clamping on ret.idle_step and need to sync those changes to time_accum,
// we will do some clamping on ret.process_step and need to sync those changes to time_accum,
// that's easiest if we just remember their fixed difference now
const double idle_minus_accum = ret.idle_step - time_accum;
const double process_minus_accum = ret.process_step - time_accum;
// first, least important clamping: keep ret.idle_step consistent with typical_physics_steps.
// this smoothes out the idle steps and culls small but quick variations.
// first, least important clamping: keep ret.process_step consistent with typical_physics_steps.
// this smoothes out the process steps and culls small but quick variations.
{
float min_average_physics_steps, max_average_physics_steps;
int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps);
if (consistent_steps > 3) {
ret.clamp_idle(min_average_physics_steps * p_frame_slice, max_average_physics_steps * p_frame_slice);
ret.clamp_process_step(min_average_physics_steps * p_physics_step, max_average_physics_steps * p_physics_step);
}
}
// second clamping: keep abs(time_deficit) < jitter_fix * frame_slise
float max_clock_deviation = get_physics_jitter_fix() * p_frame_slice;
ret.clamp_idle(p_idle_step - max_clock_deviation, p_idle_step + max_clock_deviation);
float max_clock_deviation = get_physics_jitter_fix() * p_physics_step;
ret.clamp_process_step(p_process_step - max_clock_deviation, p_process_step + max_clock_deviation);
// last clamping: make sure time_accum is between 0 and p_frame_slice for consistency between physics and idle
ret.clamp_idle(idle_minus_accum, idle_minus_accum + p_frame_slice);
// last clamping: make sure time_accum is between 0 and p_physics_step for consistency between physics and process
ret.clamp_process_step(process_minus_accum, process_minus_accum + p_physics_step);
// restore time_accum
time_accum = ret.idle_step - idle_minus_accum;
time_accum = ret.process_step - process_minus_accum;
// track deficit
time_deficit = p_idle_step - ret.idle_step;
time_deficit = p_process_step - ret.process_step;
// p_frame_slice is 1.0 / iterations_per_sec
// p_physics_step is 1.0 / iterations_per_sec
// i.e. the time in seconds taken by a physics tick
ret.interpolation_fraction = time_accum / p_frame_slice;
ret.interpolation_fraction = time_accum / p_physics_step;
return ret;
}
// determine wall clock step since last iteration
float MainTimerSync::get_cpu_idle_step() {
float MainTimerSync::get_cpu_process_step() {
uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec;
last_cpu_ticks_usec = current_cpu_ticks_usec;
@@ -219,9 +219,9 @@ void MainTimerSync::set_fixed_fps(int p_fixed_fps) {
fixed_fps = p_fixed_fps;
}
// advance one frame, return timesteps to take
MainFrameTime MainTimerSync::advance(float p_frame_slice, int p_iterations_per_second) {
float cpu_idle_step = get_cpu_idle_step();
// advance one physics frame, return timesteps to take
MainFrameTime MainTimerSync::advance(float p_physics_step, int p_physics_fps) {
float cpu_process_step = get_cpu_process_step();
return advance_checked(p_frame_slice, p_iterations_per_second, cpu_idle_step);
return advance_checked(p_physics_step, p_physics_fps, cpu_process_step);
}