You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-11-18 14:21:41 +00:00
Test, refactor and fix a bug in Basis.get_axis_angle
This commit is contained in:
@@ -754,29 +754,28 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND(!is_rotation());
|
||||
#endif
|
||||
*/
|
||||
real_t angle, x, y, z; // variables for result
|
||||
real_t angle_epsilon = 0.1; // margin to distinguish between 0 and 180 degrees
|
||||
*/
|
||||
|
||||
if ((Math::abs(rows[1][0] - rows[0][1]) < CMP_EPSILON) && (Math::abs(rows[2][0] - rows[0][2]) < CMP_EPSILON) && (Math::abs(rows[2][1] - rows[1][2]) < CMP_EPSILON)) {
|
||||
// singularity found
|
||||
// first check for identity matrix which must have +1 for all terms
|
||||
// in leading diagonal and zero in other terms
|
||||
if ((Math::abs(rows[1][0] + rows[0][1]) < angle_epsilon) && (Math::abs(rows[2][0] + rows[0][2]) < angle_epsilon) && (Math::abs(rows[2][1] + rows[1][2]) < angle_epsilon) && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < angle_epsilon)) {
|
||||
// this singularity is identity matrix so angle = 0
|
||||
// https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
|
||||
real_t x, y, z; // Variables for result.
|
||||
if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) {
|
||||
// Singularity found.
|
||||
// First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms.
|
||||
if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) {
|
||||
// This singularity is identity matrix so angle = 0.
|
||||
r_axis = Vector3(0, 1, 0);
|
||||
r_angle = 0;
|
||||
return;
|
||||
}
|
||||
// otherwise this singularity is angle = 180
|
||||
angle = Math_PI;
|
||||
// Otherwise this singularity is angle = 180.
|
||||
real_t xx = (rows[0][0] + 1) / 2;
|
||||
real_t yy = (rows[1][1] + 1) / 2;
|
||||
real_t zz = (rows[2][2] + 1) / 2;
|
||||
real_t xy = (rows[1][0] + rows[0][1]) / 4;
|
||||
real_t xz = (rows[2][0] + rows[0][2]) / 4;
|
||||
real_t yz = (rows[2][1] + rows[1][2]) / 4;
|
||||
if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term
|
||||
real_t xy = (rows[0][1] + rows[1][0]) / 4;
|
||||
real_t xz = (rows[0][2] + rows[2][0]) / 4;
|
||||
real_t yz = (rows[1][2] + rows[2][1]) / 4;
|
||||
|
||||
if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term.
|
||||
if (xx < CMP_EPSILON) {
|
||||
x = 0;
|
||||
y = Math_SQRT12;
|
||||
@@ -786,7 +785,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||
y = xy / x;
|
||||
z = xz / x;
|
||||
}
|
||||
} else if (yy > zz) { // rows[1][1] is the largest diagonal term
|
||||
} else if (yy > zz) { // rows[1][1] is the largest diagonal term.
|
||||
if (yy < CMP_EPSILON) {
|
||||
x = Math_SQRT12;
|
||||
y = 0;
|
||||
@@ -796,7 +795,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||
x = xy / y;
|
||||
z = yz / y;
|
||||
}
|
||||
} else { // rows[2][2] is the largest diagonal term so base result on this
|
||||
} else { // rows[2][2] is the largest diagonal term so base result on this.
|
||||
if (zz < CMP_EPSILON) {
|
||||
x = Math_SQRT12;
|
||||
y = Math_SQRT12;
|
||||
@@ -808,22 +807,24 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||
}
|
||||
}
|
||||
r_axis = Vector3(x, y, z);
|
||||
r_angle = angle;
|
||||
r_angle = Math_PI;
|
||||
return;
|
||||
}
|
||||
// as we have reached here there are no singularities so we can handle normally
|
||||
real_t s = Math::sqrt((rows[1][2] - rows[2][1]) * (rows[1][2] - rows[2][1]) + (rows[2][0] - rows[0][2]) * (rows[2][0] - rows[0][2]) + (rows[0][1] - rows[1][0]) * (rows[0][1] - rows[1][0])); // s=|axis||sin(angle)|, used to normalise
|
||||
// As we have reached here there are no singularities so we can handle normally.
|
||||
double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalise.
|
||||
|
||||
angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2);
|
||||
if (angle < 0) {
|
||||
s = -s;
|
||||
if (Math::abs(s) < CMP_EPSILON) {
|
||||
// Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above.
|
||||
s = 1;
|
||||
}
|
||||
|
||||
x = (rows[2][1] - rows[1][2]) / s;
|
||||
y = (rows[0][2] - rows[2][0]) / s;
|
||||
z = (rows[1][0] - rows[0][1]) / s;
|
||||
|
||||
r_axis = Vector3(x, y, z);
|
||||
r_angle = angle;
|
||||
// CLAMP to avoid NaN if the value passed to acos is not in [0,1].
|
||||
r_angle = Math::acos(CLAMP((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2, (real_t)0.0, (real_t)1.0));
|
||||
}
|
||||
|
||||
void Basis::set_quaternion(const Quaternion &p_quaternion) {
|
||||
|
||||
Reference in New Issue
Block a user