1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-18 14:21:41 +00:00

Test, refactor and fix a bug in Basis.get_axis_angle

This commit is contained in:
fabriceci
2022-07-25 11:01:26 +02:00
parent d9e974cdb0
commit 9f1a57d48b
2 changed files with 80 additions and 26 deletions

View File

@@ -754,29 +754,28 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND(!is_rotation());
#endif
*/
real_t angle, x, y, z; // variables for result
real_t angle_epsilon = 0.1; // margin to distinguish between 0 and 180 degrees
*/
if ((Math::abs(rows[1][0] - rows[0][1]) < CMP_EPSILON) && (Math::abs(rows[2][0] - rows[0][2]) < CMP_EPSILON) && (Math::abs(rows[2][1] - rows[1][2]) < CMP_EPSILON)) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ((Math::abs(rows[1][0] + rows[0][1]) < angle_epsilon) && (Math::abs(rows[2][0] + rows[0][2]) < angle_epsilon) && (Math::abs(rows[2][1] + rows[1][2]) < angle_epsilon) && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < angle_epsilon)) {
// this singularity is identity matrix so angle = 0
// https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
real_t x, y, z; // Variables for result.
if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) {
// Singularity found.
// First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms.
if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) {
// This singularity is identity matrix so angle = 0.
r_axis = Vector3(0, 1, 0);
r_angle = 0;
return;
}
// otherwise this singularity is angle = 180
angle = Math_PI;
// Otherwise this singularity is angle = 180.
real_t xx = (rows[0][0] + 1) / 2;
real_t yy = (rows[1][1] + 1) / 2;
real_t zz = (rows[2][2] + 1) / 2;
real_t xy = (rows[1][0] + rows[0][1]) / 4;
real_t xz = (rows[2][0] + rows[0][2]) / 4;
real_t yz = (rows[2][1] + rows[1][2]) / 4;
if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term
real_t xy = (rows[0][1] + rows[1][0]) / 4;
real_t xz = (rows[0][2] + rows[2][0]) / 4;
real_t yz = (rows[1][2] + rows[2][1]) / 4;
if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term.
if (xx < CMP_EPSILON) {
x = 0;
y = Math_SQRT12;
@@ -786,7 +785,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
y = xy / x;
z = xz / x;
}
} else if (yy > zz) { // rows[1][1] is the largest diagonal term
} else if (yy > zz) { // rows[1][1] is the largest diagonal term.
if (yy < CMP_EPSILON) {
x = Math_SQRT12;
y = 0;
@@ -796,7 +795,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
x = xy / y;
z = yz / y;
}
} else { // rows[2][2] is the largest diagonal term so base result on this
} else { // rows[2][2] is the largest diagonal term so base result on this.
if (zz < CMP_EPSILON) {
x = Math_SQRT12;
y = Math_SQRT12;
@@ -808,22 +807,24 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
}
}
r_axis = Vector3(x, y, z);
r_angle = angle;
r_angle = Math_PI;
return;
}
// as we have reached here there are no singularities so we can handle normally
real_t s = Math::sqrt((rows[1][2] - rows[2][1]) * (rows[1][2] - rows[2][1]) + (rows[2][0] - rows[0][2]) * (rows[2][0] - rows[0][2]) + (rows[0][1] - rows[1][0]) * (rows[0][1] - rows[1][0])); // s=|axis||sin(angle)|, used to normalise
// As we have reached here there are no singularities so we can handle normally.
double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalise.
angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2);
if (angle < 0) {
s = -s;
if (Math::abs(s) < CMP_EPSILON) {
// Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above.
s = 1;
}
x = (rows[2][1] - rows[1][2]) / s;
y = (rows[0][2] - rows[2][0]) / s;
z = (rows[1][0] - rows[0][1]) / s;
r_axis = Vector3(x, y, z);
r_angle = angle;
// CLAMP to avoid NaN if the value passed to acos is not in [0,1].
r_angle = Math::acos(CLAMP((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2, (real_t)0.0, (real_t)1.0));
}
void Basis::set_quaternion(const Quaternion &p_quaternion) {