You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-11-06 12:20:30 +00:00
update meshoptimizer to 0.16
This commit is contained in:
688
thirdparty/meshoptimizer/clusterizer.cpp
vendored
688
thirdparty/meshoptimizer/clusterizer.cpp
vendored
@@ -2,6 +2,7 @@
|
||||
#include "meshoptimizer.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
|
||||
@@ -12,6 +13,68 @@
|
||||
namespace meshopt
|
||||
{
|
||||
|
||||
// This must be <= 255 since index 0xff is used internally to indice a vertex that doesn't belong to a meshlet
|
||||
const size_t kMeshletMaxVertices = 255;
|
||||
|
||||
// A reasonable limit is around 2*max_vertices or less
|
||||
const size_t kMeshletMaxTriangles = 512;
|
||||
|
||||
struct TriangleAdjacency2
|
||||
{
|
||||
unsigned int* counts;
|
||||
unsigned int* offsets;
|
||||
unsigned int* data;
|
||||
};
|
||||
|
||||
static void buildTriangleAdjacency(TriangleAdjacency2& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
|
||||
{
|
||||
size_t face_count = index_count / 3;
|
||||
|
||||
// allocate arrays
|
||||
adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
|
||||
adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
|
||||
adjacency.data = allocator.allocate<unsigned int>(index_count);
|
||||
|
||||
// fill triangle counts
|
||||
memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
|
||||
|
||||
for (size_t i = 0; i < index_count; ++i)
|
||||
{
|
||||
assert(indices[i] < vertex_count);
|
||||
|
||||
adjacency.counts[indices[i]]++;
|
||||
}
|
||||
|
||||
// fill offset table
|
||||
unsigned int offset = 0;
|
||||
|
||||
for (size_t i = 0; i < vertex_count; ++i)
|
||||
{
|
||||
adjacency.offsets[i] = offset;
|
||||
offset += adjacency.counts[i];
|
||||
}
|
||||
|
||||
assert(offset == index_count);
|
||||
|
||||
// fill triangle data
|
||||
for (size_t i = 0; i < face_count; ++i)
|
||||
{
|
||||
unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
|
||||
|
||||
adjacency.data[adjacency.offsets[a]++] = unsigned(i);
|
||||
adjacency.data[adjacency.offsets[b]++] = unsigned(i);
|
||||
adjacency.data[adjacency.offsets[c]++] = unsigned(i);
|
||||
}
|
||||
|
||||
// fix offsets that have been disturbed by the previous pass
|
||||
for (size_t i = 0; i < vertex_count; ++i)
|
||||
{
|
||||
assert(adjacency.offsets[i] >= adjacency.counts[i]);
|
||||
|
||||
adjacency.offsets[i] -= adjacency.counts[i];
|
||||
}
|
||||
}
|
||||
|
||||
static void computeBoundingSphere(float result[4], const float points[][3], size_t count)
|
||||
{
|
||||
assert(count > 0);
|
||||
@@ -82,13 +145,310 @@ static void computeBoundingSphere(float result[4], const float points[][3], size
|
||||
result[3] = radius;
|
||||
}
|
||||
|
||||
struct Cone
|
||||
{
|
||||
float px, py, pz;
|
||||
float nx, ny, nz;
|
||||
};
|
||||
|
||||
static float getMeshletScore(float distance2, float spread, float cone_weight, float expected_radius)
|
||||
{
|
||||
float cone = 1.f - spread * cone_weight;
|
||||
float cone_clamped = cone < 1e-3f ? 1e-3f : cone;
|
||||
|
||||
return (1 + sqrtf(distance2) / expected_radius * (1 - cone_weight)) * cone_clamped;
|
||||
}
|
||||
|
||||
static Cone getMeshletCone(const Cone& acc, unsigned int triangle_count)
|
||||
{
|
||||
Cone result = acc;
|
||||
|
||||
float center_scale = triangle_count == 0 ? 0.f : 1.f / float(triangle_count);
|
||||
|
||||
result.px *= center_scale;
|
||||
result.py *= center_scale;
|
||||
result.pz *= center_scale;
|
||||
|
||||
float axis_length = result.nx * result.nx + result.ny * result.ny + result.nz * result.nz;
|
||||
float axis_scale = axis_length == 0.f ? 0.f : 1.f / sqrtf(axis_length);
|
||||
|
||||
result.nx *= axis_scale;
|
||||
result.ny *= axis_scale;
|
||||
result.nz *= axis_scale;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static float computeTriangleCones(Cone* triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
|
||||
{
|
||||
(void)vertex_count;
|
||||
|
||||
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
|
||||
size_t face_count = index_count / 3;
|
||||
|
||||
float mesh_area = 0;
|
||||
|
||||
for (size_t i = 0; i < face_count; ++i)
|
||||
{
|
||||
unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
const float* p0 = vertex_positions + vertex_stride_float * a;
|
||||
const float* p1 = vertex_positions + vertex_stride_float * b;
|
||||
const float* p2 = vertex_positions + vertex_stride_float * c;
|
||||
|
||||
float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
|
||||
float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};
|
||||
|
||||
float normalx = p10[1] * p20[2] - p10[2] * p20[1];
|
||||
float normaly = p10[2] * p20[0] - p10[0] * p20[2];
|
||||
float normalz = p10[0] * p20[1] - p10[1] * p20[0];
|
||||
|
||||
float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);
|
||||
float invarea = (area == 0.f) ? 0.f : 1.f / area;
|
||||
|
||||
triangles[i].px = (p0[0] + p1[0] + p2[0]) / 3.f;
|
||||
triangles[i].py = (p0[1] + p1[1] + p2[1]) / 3.f;
|
||||
triangles[i].pz = (p0[2] + p1[2] + p2[2]) / 3.f;
|
||||
|
||||
triangles[i].nx = normalx * invarea;
|
||||
triangles[i].ny = normaly * invarea;
|
||||
triangles[i].nz = normalz * invarea;
|
||||
|
||||
mesh_area += area;
|
||||
}
|
||||
|
||||
return mesh_area;
|
||||
}
|
||||
|
||||
static void finishMeshlet(meshopt_Meshlet& meshlet, unsigned char* meshlet_triangles)
|
||||
{
|
||||
size_t offset = meshlet.triangle_offset + meshlet.triangle_count * 3;
|
||||
|
||||
// fill 4b padding with 0
|
||||
while (offset & 3)
|
||||
meshlet_triangles[offset++] = 0;
|
||||
}
|
||||
|
||||
static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int b, unsigned int c, unsigned char* used, meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t meshlet_offset, size_t max_vertices, size_t max_triangles)
|
||||
{
|
||||
unsigned char& av = used[a];
|
||||
unsigned char& bv = used[b];
|
||||
unsigned char& cv = used[c];
|
||||
|
||||
bool result = false;
|
||||
|
||||
unsigned int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);
|
||||
|
||||
if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles)
|
||||
{
|
||||
meshlets[meshlet_offset] = meshlet;
|
||||
|
||||
for (size_t j = 0; j < meshlet.vertex_count; ++j)
|
||||
used[meshlet_vertices[meshlet.vertex_offset + j]] = 0xff;
|
||||
|
||||
finishMeshlet(meshlet, meshlet_triangles);
|
||||
|
||||
meshlet.vertex_offset += meshlet.vertex_count;
|
||||
meshlet.triangle_offset += (meshlet.triangle_count * 3 + 3) & ~3; // 4b padding
|
||||
meshlet.vertex_count = 0;
|
||||
meshlet.triangle_count = 0;
|
||||
|
||||
result = true;
|
||||
}
|
||||
|
||||
if (av == 0xff)
|
||||
{
|
||||
av = (unsigned char)meshlet.vertex_count;
|
||||
meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = a;
|
||||
}
|
||||
|
||||
if (bv == 0xff)
|
||||
{
|
||||
bv = (unsigned char)meshlet.vertex_count;
|
||||
meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = b;
|
||||
}
|
||||
|
||||
if (cv == 0xff)
|
||||
{
|
||||
cv = (unsigned char)meshlet.vertex_count;
|
||||
meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = c;
|
||||
}
|
||||
|
||||
meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 0] = av;
|
||||
meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 1] = bv;
|
||||
meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 2] = cv;
|
||||
meshlet.triangle_count++;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct KDNode
|
||||
{
|
||||
union
|
||||
{
|
||||
float split;
|
||||
unsigned int index;
|
||||
};
|
||||
|
||||
// leaves: axis = 3, children = number of extra points after this one (0 if 'index' is the only point)
|
||||
// branches: axis != 3, left subtree = skip 1, right subtree = skip 1+children
|
||||
unsigned int axis : 2;
|
||||
unsigned int children : 30;
|
||||
};
|
||||
|
||||
static size_t kdtreePartition(unsigned int* indices, size_t count, const float* points, size_t stride, unsigned int axis, float pivot)
|
||||
{
|
||||
size_t m = 0;
|
||||
|
||||
// invariant: elements in range [0, m) are < pivot, elements in range [m, i) are >= pivot
|
||||
for (size_t i = 0; i < count; ++i)
|
||||
{
|
||||
float v = points[indices[i] * stride + axis];
|
||||
|
||||
// swap(m, i) unconditionally
|
||||
unsigned int t = indices[m];
|
||||
indices[m] = indices[i];
|
||||
indices[i] = t;
|
||||
|
||||
// when v >= pivot, we swap i with m without advancing it, preserving invariants
|
||||
m += v < pivot;
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
static size_t kdtreeBuildLeaf(size_t offset, KDNode* nodes, size_t node_count, unsigned int* indices, size_t count)
|
||||
{
|
||||
assert(offset + count <= node_count);
|
||||
(void)node_count;
|
||||
|
||||
KDNode& result = nodes[offset];
|
||||
|
||||
result.index = indices[0];
|
||||
result.axis = 3;
|
||||
result.children = unsigned(count - 1);
|
||||
|
||||
// all remaining points are stored in nodes immediately following the leaf
|
||||
for (size_t i = 1; i < count; ++i)
|
||||
{
|
||||
KDNode& tail = nodes[offset + i];
|
||||
|
||||
tail.index = indices[i];
|
||||
tail.axis = 3;
|
||||
tail.children = ~0u >> 2; // bogus value to prevent misuse
|
||||
}
|
||||
|
||||
return offset + count;
|
||||
}
|
||||
|
||||
static size_t kdtreeBuild(size_t offset, KDNode* nodes, size_t node_count, const float* points, size_t stride, unsigned int* indices, size_t count, size_t leaf_size)
|
||||
{
|
||||
assert(count > 0);
|
||||
assert(offset < node_count);
|
||||
|
||||
if (count <= leaf_size)
|
||||
return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
|
||||
|
||||
float mean[3] = {};
|
||||
float vars[3] = {};
|
||||
float runc = 1, runs = 1;
|
||||
|
||||
// gather statistics on the points in the subtree using Welford's algorithm
|
||||
for (size_t i = 0; i < count; ++i, runc += 1.f, runs = 1.f / runc)
|
||||
{
|
||||
const float* point = points + indices[i] * stride;
|
||||
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
float delta = point[k] - mean[k];
|
||||
mean[k] += delta * runs;
|
||||
vars[k] += delta * (point[k] - mean[k]);
|
||||
}
|
||||
}
|
||||
|
||||
// split axis is one where the variance is largest
|
||||
unsigned int axis = vars[0] >= vars[1] && vars[0] >= vars[2] ? 0 : vars[1] >= vars[2] ? 1
|
||||
: 2;
|
||||
|
||||
float split = mean[axis];
|
||||
size_t middle = kdtreePartition(indices, count, points, stride, axis, split);
|
||||
|
||||
// when the partition is degenerate simply consolidate the points into a single node
|
||||
if (middle <= leaf_size / 2 || middle >= count - leaf_size / 2)
|
||||
return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
|
||||
|
||||
KDNode& result = nodes[offset];
|
||||
|
||||
result.split = split;
|
||||
result.axis = axis;
|
||||
|
||||
// left subtree is right after our node
|
||||
size_t next_offset = kdtreeBuild(offset + 1, nodes, node_count, points, stride, indices, middle, leaf_size);
|
||||
|
||||
// distance to the right subtree is represented explicitly
|
||||
result.children = unsigned(next_offset - offset - 1);
|
||||
|
||||
return kdtreeBuild(next_offset, nodes, node_count, points, stride, indices + middle, count - middle, leaf_size);
|
||||
}
|
||||
|
||||
static void kdtreeNearest(KDNode* nodes, unsigned int root, const float* points, size_t stride, const unsigned char* emitted_flags, const float* position, unsigned int& result, float& limit)
|
||||
{
|
||||
const KDNode& node = nodes[root];
|
||||
|
||||
if (node.axis == 3)
|
||||
{
|
||||
// leaf
|
||||
for (unsigned int i = 0; i <= node.children; ++i)
|
||||
{
|
||||
unsigned int index = nodes[root + i].index;
|
||||
|
||||
if (emitted_flags[index])
|
||||
continue;
|
||||
|
||||
const float* point = points + index * stride;
|
||||
|
||||
float distance2 =
|
||||
(point[0] - position[0]) * (point[0] - position[0]) +
|
||||
(point[1] - position[1]) * (point[1] - position[1]) +
|
||||
(point[2] - position[2]) * (point[2] - position[2]);
|
||||
float distance = sqrtf(distance2);
|
||||
|
||||
if (distance < limit)
|
||||
{
|
||||
result = index;
|
||||
limit = distance;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// branch; we order recursion to process the node that search position is in first
|
||||
float delta = position[node.axis] - node.split;
|
||||
unsigned int first = (delta <= 0) ? 0 : node.children;
|
||||
unsigned int second = first ^ node.children;
|
||||
|
||||
kdtreeNearest(nodes, root + 1 + first, points, stride, emitted_flags, position, result, limit);
|
||||
|
||||
// only process the other node if it can have a match based on closest distance so far
|
||||
if (fabsf(delta) <= limit)
|
||||
kdtreeNearest(nodes, root + 1 + second, points, stride, emitted_flags, position, result, limit);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace meshopt
|
||||
|
||||
size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles)
|
||||
{
|
||||
using namespace meshopt;
|
||||
|
||||
assert(index_count % 3 == 0);
|
||||
assert(max_vertices >= 3);
|
||||
assert(max_triangles >= 1);
|
||||
assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
|
||||
assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
|
||||
assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
|
||||
|
||||
(void)kMeshletMaxVertices;
|
||||
(void)kMeshletMaxTriangles;
|
||||
|
||||
// meshlet construction is limited by max vertices and max triangles per meshlet
|
||||
// the worst case is that the input is an unindexed stream since this equally stresses both limits
|
||||
@@ -100,80 +460,7 @@ size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_
|
||||
return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles;
|
||||
}
|
||||
|
||||
size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
|
||||
{
|
||||
assert(index_count % 3 == 0);
|
||||
assert(max_vertices >= 3);
|
||||
assert(max_triangles >= 1);
|
||||
|
||||
meshopt_Allocator allocator;
|
||||
|
||||
meshopt_Meshlet meshlet;
|
||||
memset(&meshlet, 0, sizeof(meshlet));
|
||||
|
||||
assert(max_vertices <= sizeof(meshlet.vertices) / sizeof(meshlet.vertices[0]));
|
||||
assert(max_triangles <= sizeof(meshlet.indices) / 3);
|
||||
|
||||
// index of the vertex in the meshlet, 0xff if the vertex isn't used
|
||||
unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
|
||||
memset(used, -1, vertex_count);
|
||||
|
||||
size_t offset = 0;
|
||||
|
||||
for (size_t i = 0; i < index_count; i += 3)
|
||||
{
|
||||
unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
unsigned char& av = used[a];
|
||||
unsigned char& bv = used[b];
|
||||
unsigned char& cv = used[c];
|
||||
|
||||
unsigned int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);
|
||||
|
||||
if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles)
|
||||
{
|
||||
destination[offset++] = meshlet;
|
||||
|
||||
for (size_t j = 0; j < meshlet.vertex_count; ++j)
|
||||
used[meshlet.vertices[j]] = 0xff;
|
||||
|
||||
memset(&meshlet, 0, sizeof(meshlet));
|
||||
}
|
||||
|
||||
if (av == 0xff)
|
||||
{
|
||||
av = meshlet.vertex_count;
|
||||
meshlet.vertices[meshlet.vertex_count++] = a;
|
||||
}
|
||||
|
||||
if (bv == 0xff)
|
||||
{
|
||||
bv = meshlet.vertex_count;
|
||||
meshlet.vertices[meshlet.vertex_count++] = b;
|
||||
}
|
||||
|
||||
if (cv == 0xff)
|
||||
{
|
||||
cv = meshlet.vertex_count;
|
||||
meshlet.vertices[meshlet.vertex_count++] = c;
|
||||
}
|
||||
|
||||
meshlet.indices[meshlet.triangle_count][0] = av;
|
||||
meshlet.indices[meshlet.triangle_count][1] = bv;
|
||||
meshlet.indices[meshlet.triangle_count][2] = cv;
|
||||
meshlet.triangle_count++;
|
||||
}
|
||||
|
||||
if (meshlet.triangle_count)
|
||||
destination[offset++] = meshlet;
|
||||
|
||||
assert(offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
|
||||
|
||||
return offset;
|
||||
}
|
||||
|
||||
meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
|
||||
size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
|
||||
{
|
||||
using namespace meshopt;
|
||||
|
||||
@@ -181,15 +468,236 @@ meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t
|
||||
assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
|
||||
assert(vertex_positions_stride % sizeof(float) == 0);
|
||||
|
||||
assert(index_count / 3 <= 256);
|
||||
assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
|
||||
assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
|
||||
assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
|
||||
|
||||
meshopt_Allocator allocator;
|
||||
|
||||
TriangleAdjacency2 adjacency = {};
|
||||
buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator);
|
||||
|
||||
unsigned int* live_triangles = allocator.allocate<unsigned int>(vertex_count);
|
||||
memcpy(live_triangles, adjacency.counts, vertex_count * sizeof(unsigned int));
|
||||
|
||||
size_t face_count = index_count / 3;
|
||||
|
||||
unsigned char* emitted_flags = allocator.allocate<unsigned char>(face_count);
|
||||
memset(emitted_flags, 0, face_count);
|
||||
|
||||
// for each triangle, precompute centroid & normal to use for scoring
|
||||
Cone* triangles = allocator.allocate<Cone>(face_count);
|
||||
float mesh_area = computeTriangleCones(triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride);
|
||||
|
||||
// assuming each meshlet is a square patch, expected radius is sqrt(expected area)
|
||||
float triangle_area_avg = face_count == 0 ? 0.f : mesh_area / float(face_count) * 0.5f;
|
||||
float meshlet_expected_radius = sqrtf(triangle_area_avg * max_triangles) * 0.5f;
|
||||
|
||||
// build a kd-tree for nearest neighbor lookup
|
||||
unsigned int* kdindices = allocator.allocate<unsigned int>(face_count);
|
||||
for (size_t i = 0; i < face_count; ++i)
|
||||
kdindices[i] = unsigned(i);
|
||||
|
||||
KDNode* nodes = allocator.allocate<KDNode>(face_count * 2);
|
||||
kdtreeBuild(0, nodes, face_count * 2, &triangles[0].px, sizeof(Cone) / sizeof(float), kdindices, face_count, /* leaf_size= */ 8);
|
||||
|
||||
// index of the vertex in the meshlet, 0xff if the vertex isn't used
|
||||
unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
|
||||
memset(used, -1, vertex_count);
|
||||
|
||||
meshopt_Meshlet meshlet = {};
|
||||
size_t meshlet_offset = 0;
|
||||
|
||||
Cone meshlet_cone_acc = {};
|
||||
|
||||
for (;;)
|
||||
{
|
||||
unsigned int best_triangle = ~0u;
|
||||
unsigned int best_extra = 5;
|
||||
float best_score = FLT_MAX;
|
||||
|
||||
Cone meshlet_cone = getMeshletCone(meshlet_cone_acc, meshlet.triangle_count);
|
||||
|
||||
for (size_t i = 0; i < meshlet.vertex_count; ++i)
|
||||
{
|
||||
unsigned int index = meshlet_vertices[meshlet.vertex_offset + i];
|
||||
|
||||
unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
|
||||
size_t neighbours_size = adjacency.counts[index];
|
||||
|
||||
for (size_t j = 0; j < neighbours_size; ++j)
|
||||
{
|
||||
unsigned int triangle = neighbours[j];
|
||||
assert(!emitted_flags[triangle]);
|
||||
|
||||
unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
unsigned int extra = (used[a] == 0xff) + (used[b] == 0xff) + (used[c] == 0xff);
|
||||
|
||||
// triangles that don't add new vertices to meshlets are max. priority
|
||||
if (extra != 0)
|
||||
{
|
||||
// artificially increase the priority of dangling triangles as they're expensive to add to new meshlets
|
||||
if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1)
|
||||
extra = 0;
|
||||
|
||||
extra++;
|
||||
}
|
||||
|
||||
// since topology-based priority is always more important than the score, we can skip scoring in some cases
|
||||
if (extra > best_extra)
|
||||
continue;
|
||||
|
||||
const Cone& tri_cone = triangles[triangle];
|
||||
|
||||
float distance2 =
|
||||
(tri_cone.px - meshlet_cone.px) * (tri_cone.px - meshlet_cone.px) +
|
||||
(tri_cone.py - meshlet_cone.py) * (tri_cone.py - meshlet_cone.py) +
|
||||
(tri_cone.pz - meshlet_cone.pz) * (tri_cone.pz - meshlet_cone.pz);
|
||||
|
||||
float spread = tri_cone.nx * meshlet_cone.nx + tri_cone.ny * meshlet_cone.ny + tri_cone.nz * meshlet_cone.nz;
|
||||
|
||||
float score = getMeshletScore(distance2, spread, cone_weight, meshlet_expected_radius);
|
||||
|
||||
// note that topology-based priority is always more important than the score
|
||||
// this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost
|
||||
if (extra < best_extra || score < best_score)
|
||||
{
|
||||
best_triangle = triangle;
|
||||
best_extra = extra;
|
||||
best_score = score;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (best_triangle == ~0u)
|
||||
{
|
||||
float position[3] = {meshlet_cone.px, meshlet_cone.py, meshlet_cone.pz};
|
||||
unsigned int index = ~0u;
|
||||
float limit = FLT_MAX;
|
||||
|
||||
kdtreeNearest(nodes, 0, &triangles[0].px, sizeof(Cone) / sizeof(float), emitted_flags, position, index, limit);
|
||||
|
||||
best_triangle = index;
|
||||
}
|
||||
|
||||
if (best_triangle == ~0u)
|
||||
break;
|
||||
|
||||
unsigned int a = indices[best_triangle * 3 + 0], b = indices[best_triangle * 3 + 1], c = indices[best_triangle * 3 + 2];
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
// add meshlet to the output; when the current meshlet is full we reset the accumulated bounds
|
||||
if (appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles))
|
||||
{
|
||||
meshlet_offset++;
|
||||
memset(&meshlet_cone_acc, 0, sizeof(meshlet_cone_acc));
|
||||
}
|
||||
|
||||
live_triangles[a]--;
|
||||
live_triangles[b]--;
|
||||
live_triangles[c]--;
|
||||
|
||||
// remove emitted triangle from adjacency data
|
||||
// this makes sure that we spend less time traversing these lists on subsequent iterations
|
||||
for (size_t k = 0; k < 3; ++k)
|
||||
{
|
||||
unsigned int index = indices[best_triangle * 3 + k];
|
||||
|
||||
unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
|
||||
size_t neighbours_size = adjacency.counts[index];
|
||||
|
||||
for (size_t i = 0; i < neighbours_size; ++i)
|
||||
{
|
||||
unsigned int tri = neighbours[i];
|
||||
|
||||
if (tri == best_triangle)
|
||||
{
|
||||
neighbours[i] = neighbours[neighbours_size - 1];
|
||||
adjacency.counts[index]--;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// update aggregated meshlet cone data for scoring subsequent triangles
|
||||
meshlet_cone_acc.px += triangles[best_triangle].px;
|
||||
meshlet_cone_acc.py += triangles[best_triangle].py;
|
||||
meshlet_cone_acc.pz += triangles[best_triangle].pz;
|
||||
meshlet_cone_acc.nx += triangles[best_triangle].nx;
|
||||
meshlet_cone_acc.ny += triangles[best_triangle].ny;
|
||||
meshlet_cone_acc.nz += triangles[best_triangle].nz;
|
||||
|
||||
emitted_flags[best_triangle] = 1;
|
||||
}
|
||||
|
||||
if (meshlet.triangle_count)
|
||||
{
|
||||
finishMeshlet(meshlet, meshlet_triangles);
|
||||
|
||||
meshlets[meshlet_offset++] = meshlet;
|
||||
}
|
||||
|
||||
assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
|
||||
return meshlet_offset;
|
||||
}
|
||||
|
||||
size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
|
||||
{
|
||||
using namespace meshopt;
|
||||
|
||||
assert(index_count % 3 == 0);
|
||||
|
||||
assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
|
||||
assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
|
||||
assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
|
||||
|
||||
meshopt_Allocator allocator;
|
||||
|
||||
// index of the vertex in the meshlet, 0xff if the vertex isn't used
|
||||
unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
|
||||
memset(used, -1, vertex_count);
|
||||
|
||||
meshopt_Meshlet meshlet = {};
|
||||
size_t meshlet_offset = 0;
|
||||
|
||||
for (size_t i = 0; i < index_count; i += 3)
|
||||
{
|
||||
unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
// appends triangle to the meshlet and writes previous meshlet to the output if full
|
||||
meshlet_offset += appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles);
|
||||
}
|
||||
|
||||
if (meshlet.triangle_count)
|
||||
{
|
||||
finishMeshlet(meshlet, meshlet_triangles);
|
||||
|
||||
meshlets[meshlet_offset++] = meshlet;
|
||||
}
|
||||
|
||||
assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
|
||||
return meshlet_offset;
|
||||
}
|
||||
|
||||
meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
|
||||
{
|
||||
using namespace meshopt;
|
||||
|
||||
assert(index_count % 3 == 0);
|
||||
assert(index_count / 3 <= kMeshletMaxTriangles);
|
||||
assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
|
||||
assert(vertex_positions_stride % sizeof(float) == 0);
|
||||
|
||||
(void)vertex_count;
|
||||
|
||||
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
|
||||
|
||||
// compute triangle normals and gather triangle corners
|
||||
float normals[256][3];
|
||||
float corners[256][3][3];
|
||||
float normals[kMeshletMaxTriangles][3];
|
||||
float corners[kMeshletMaxTriangles][3][3];
|
||||
size_t triangles = 0;
|
||||
|
||||
for (size_t i = 0; i < index_count; i += 3)
|
||||
@@ -327,25 +835,23 @@ meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t
|
||||
return bounds;
|
||||
}
|
||||
|
||||
meshopt_Bounds meshopt_computeMeshletBounds(const meshopt_Meshlet* meshlet, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
|
||||
meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
|
||||
{
|
||||
using namespace meshopt;
|
||||
|
||||
assert(triangle_count <= kMeshletMaxTriangles);
|
||||
assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
|
||||
assert(vertex_positions_stride % sizeof(float) == 0);
|
||||
|
||||
unsigned int indices[sizeof(meshlet->indices) / sizeof(meshlet->indices[0][0])];
|
||||
unsigned int indices[kMeshletMaxTriangles * 3];
|
||||
|
||||
for (size_t i = 0; i < meshlet->triangle_count; ++i)
|
||||
for (size_t i = 0; i < triangle_count * 3; ++i)
|
||||
{
|
||||
unsigned int a = meshlet->vertices[meshlet->indices[i][0]];
|
||||
unsigned int b = meshlet->vertices[meshlet->indices[i][1]];
|
||||
unsigned int c = meshlet->vertices[meshlet->indices[i][2]];
|
||||
unsigned int index = meshlet_vertices[meshlet_triangles[i]];
|
||||
assert(index < vertex_count);
|
||||
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
indices[i * 3 + 0] = a;
|
||||
indices[i * 3 + 1] = b;
|
||||
indices[i * 3 + 2] = c;
|
||||
indices[i] = index;
|
||||
}
|
||||
|
||||
return meshopt_computeClusterBounds(indices, meshlet->triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride);
|
||||
return meshopt_computeClusterBounds(indices, triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user