You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-11-15 13:51:40 +00:00
Merge pull request #17353 from zmanuel/timer_hysteresis_multiframe_pr1
Use hysteresis for smoother physics update frequency
This commit is contained in:
253
main/main.cpp
253
main/main.cpp
@@ -955,6 +955,7 @@ Error Main::setup(const char *execpath, int argc, char *argv[], bool p_second_ph
|
||||
}
|
||||
|
||||
Engine::get_singleton()->set_iterations_per_second(GLOBAL_DEF("physics/common/physics_fps", 60));
|
||||
Engine::get_singleton()->set_physics_jitter_fix(GLOBAL_DEF("physics/common/physics_jitter_fix", 0.5));
|
||||
Engine::get_singleton()->set_target_fps(GLOBAL_DEF("debug/settings/fps/force_fps", 0));
|
||||
|
||||
GLOBAL_DEF("debug/settings/stdout/print_fps", false);
|
||||
@@ -1228,6 +1229,229 @@ Error Main::setup2(Thread::ID p_main_tid_override) {
|
||||
return OK;
|
||||
}
|
||||
|
||||
// everything the main loop needs to know about frame timings
|
||||
struct _FrameTime {
|
||||
float animation_step; // time to advance animations for (argument to process())
|
||||
int physics_steps; // number of times to iterate the physics engine
|
||||
|
||||
void clamp_animation(float min_animation_step, float max_animation_step) {
|
||||
if (animation_step < min_animation_step) {
|
||||
animation_step = min_animation_step;
|
||||
} else if (animation_step > max_animation_step) {
|
||||
animation_step = max_animation_step;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class _TimerSync {
|
||||
// wall clock time measured on the main thread
|
||||
uint64_t last_cpu_ticks_usec;
|
||||
uint64_t current_cpu_ticks_usec;
|
||||
|
||||
// logical game time since last physics timestep
|
||||
float time_accum;
|
||||
|
||||
// current difference between wall clock time and reported sum of animation_steps
|
||||
float time_deficit;
|
||||
|
||||
// number of frames back for keeping accumulated physics steps roughly constant.
|
||||
// value of 12 chosen because that is what is required to make 144 Hz monitors
|
||||
// behave well with 60 Hz physics updates. The only worse commonly available refresh
|
||||
// would be 85, requiring CONTROL_STEPS = 17.
|
||||
static const int CONTROL_STEPS = 12;
|
||||
|
||||
// sum of physics steps done over the last (i+1) frames
|
||||
int accumulated_physics_steps[CONTROL_STEPS];
|
||||
|
||||
// typical value for accumulated_physics_steps[i] is either this or this plus one
|
||||
int typical_physics_steps[CONTROL_STEPS];
|
||||
|
||||
protected:
|
||||
// returns the fraction of p_frame_slice required for the timer to overshoot
|
||||
// before advance_core considers changing the physics_steps return from
|
||||
// the typical values as defined by typical_physics_steps
|
||||
float get_physics_jitter_fix() {
|
||||
return Engine::get_singleton()->get_physics_jitter_fix();
|
||||
}
|
||||
|
||||
// gets our best bet for the average number of physics steps per render frame
|
||||
// return value: number of frames back this data is consistent
|
||||
int get_average_physics_steps(float &p_min, float &p_max) {
|
||||
p_min = typical_physics_steps[0];
|
||||
p_max = p_min + 1;
|
||||
|
||||
for (int i = 1; i < CONTROL_STEPS; ++i) {
|
||||
const float typical_lower = typical_physics_steps[i];
|
||||
const float current_min = typical_lower / (i + 1);
|
||||
if (current_min > p_max)
|
||||
return i; // bail out of further restrictions would void the interval
|
||||
else if (current_min > p_min)
|
||||
p_min = current_min;
|
||||
const float current_max = (typical_lower + 1) / (i + 1);
|
||||
if (current_max < p_min)
|
||||
return i;
|
||||
else if (current_max < p_max)
|
||||
p_max = current_max;
|
||||
}
|
||||
|
||||
return CONTROL_STEPS;
|
||||
}
|
||||
|
||||
// advance physics clock by p_animation_step, return appropriate number of steps to simulate
|
||||
_FrameTime advance_core(float p_frame_slice, int p_iterations_per_second, float p_animation_step) {
|
||||
_FrameTime ret;
|
||||
|
||||
ret.animation_step = p_animation_step;
|
||||
|
||||
// simple determination of number of physics iteration
|
||||
time_accum += ret.animation_step;
|
||||
ret.physics_steps = floor(time_accum * p_iterations_per_second);
|
||||
|
||||
int min_typical_steps = typical_physics_steps[0];
|
||||
int max_typical_steps = min_typical_steps + 1;
|
||||
|
||||
// given the past recorded steps and typcial steps to match, calculate bounds for this
|
||||
// step to be typical
|
||||
bool update_typical = false;
|
||||
|
||||
for (int i = 0; i < CONTROL_STEPS - 1; ++i) {
|
||||
int steps_left_to_match_typical = typical_physics_steps[i + 1] - accumulated_physics_steps[i];
|
||||
if (steps_left_to_match_typical > max_typical_steps ||
|
||||
steps_left_to_match_typical + 1 < min_typical_steps) {
|
||||
update_typical = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (steps_left_to_match_typical > min_typical_steps)
|
||||
min_typical_steps = steps_left_to_match_typical;
|
||||
if (steps_left_to_match_typical + 1 < max_typical_steps)
|
||||
max_typical_steps = steps_left_to_match_typical + 1;
|
||||
}
|
||||
|
||||
// try to keep it consistent with previous iterations
|
||||
if (ret.physics_steps < min_typical_steps) {
|
||||
const int max_possible_steps = floor((time_accum)*p_iterations_per_second + get_physics_jitter_fix());
|
||||
if (max_possible_steps < min_typical_steps) {
|
||||
ret.physics_steps = max_possible_steps;
|
||||
update_typical = true;
|
||||
} else {
|
||||
ret.physics_steps = min_typical_steps;
|
||||
}
|
||||
} else if (ret.physics_steps > max_typical_steps) {
|
||||
const int min_possible_steps = floor((time_accum)*p_iterations_per_second - get_physics_jitter_fix());
|
||||
if (min_possible_steps > max_typical_steps) {
|
||||
ret.physics_steps = min_possible_steps;
|
||||
update_typical = true;
|
||||
} else {
|
||||
ret.physics_steps = max_typical_steps;
|
||||
}
|
||||
}
|
||||
|
||||
time_accum -= ret.physics_steps * p_frame_slice;
|
||||
|
||||
// keep track of accumulated step counts
|
||||
for (int i = CONTROL_STEPS - 2; i >= 0; --i) {
|
||||
accumulated_physics_steps[i + 1] = accumulated_physics_steps[i] + ret.physics_steps;
|
||||
}
|
||||
accumulated_physics_steps[0] = ret.physics_steps;
|
||||
|
||||
if (update_typical) {
|
||||
for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
|
||||
if (typical_physics_steps[i] > accumulated_physics_steps[i]) {
|
||||
typical_physics_steps[i] = accumulated_physics_steps[i];
|
||||
} else if (typical_physics_steps[i] < accumulated_physics_steps[i] - 1) {
|
||||
typical_physics_steps[i] = accumulated_physics_steps[i] - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
// calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero
|
||||
_FrameTime advance_checked(float p_frame_slice, int p_iterations_per_second, float p_animation_step) {
|
||||
if (fixed_fps != -1)
|
||||
p_animation_step = 1.0 / fixed_fps;
|
||||
|
||||
// compensate for last deficit
|
||||
p_animation_step += time_deficit;
|
||||
|
||||
_FrameTime ret = advance_core(p_frame_slice, p_iterations_per_second, p_animation_step);
|
||||
|
||||
// we will do some clamping on ret.animation_step and need to sync those changes to time_accum,
|
||||
// that's easiest if we just remember their fixed difference now
|
||||
const double animation_minus_accum = ret.animation_step - time_accum;
|
||||
|
||||
// first, least important clamping: keep ret.animation_step consistent with typical_physics_steps.
|
||||
// this smoothes out the animation steps and culls small but quick variations.
|
||||
{
|
||||
float min_average_physics_steps, max_average_physics_steps;
|
||||
int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps);
|
||||
if (consistent_steps > 3) {
|
||||
ret.clamp_animation(min_average_physics_steps * p_frame_slice, max_average_physics_steps * p_frame_slice);
|
||||
}
|
||||
}
|
||||
|
||||
// second clamping: keep abs(time_deficit) < jitter_fix * frame_slise
|
||||
float max_clock_deviation = get_physics_jitter_fix() * p_frame_slice;
|
||||
ret.clamp_animation(p_animation_step - max_clock_deviation, p_animation_step + max_clock_deviation);
|
||||
|
||||
// last clamping: make sure time_accum is between 0 and p_frame_slice for consistency between physics and animation
|
||||
ret.clamp_animation(animation_minus_accum, animation_minus_accum + p_frame_slice);
|
||||
|
||||
// restore time_accum
|
||||
time_accum = ret.animation_step - animation_minus_accum;
|
||||
|
||||
// track deficit
|
||||
time_deficit = p_animation_step - ret.animation_step;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
// determine wall clock step since last iteration
|
||||
float get_cpu_animation_step() {
|
||||
uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec;
|
||||
last_cpu_ticks_usec = current_cpu_ticks_usec;
|
||||
|
||||
return cpu_ticks_elapsed / 1000000.0;
|
||||
}
|
||||
|
||||
public:
|
||||
explicit _TimerSync() :
|
||||
last_cpu_ticks_usec(0),
|
||||
current_cpu_ticks_usec(0),
|
||||
time_accum(0),
|
||||
time_deficit(0) {
|
||||
for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
|
||||
typical_physics_steps[i] = i;
|
||||
accumulated_physics_steps[i] = i;
|
||||
}
|
||||
}
|
||||
|
||||
// start the clock
|
||||
void init(uint64_t p_cpu_ticks_usec) {
|
||||
current_cpu_ticks_usec = last_cpu_ticks_usec = p_cpu_ticks_usec;
|
||||
}
|
||||
|
||||
// set measured wall clock time
|
||||
void set_cpu_ticks_usec(uint64_t p_cpu_ticks_usec) {
|
||||
current_cpu_ticks_usec = p_cpu_ticks_usec;
|
||||
}
|
||||
|
||||
// advance one frame, return timesteps to take
|
||||
_FrameTime advance(float p_frame_slice, int p_iterations_per_second) {
|
||||
float cpu_animation_step = get_cpu_animation_step();
|
||||
|
||||
return advance_checked(p_frame_slice, p_iterations_per_second, cpu_animation_step);
|
||||
}
|
||||
|
||||
void before_start_render() {
|
||||
VisualServer::get_singleton()->sync();
|
||||
}
|
||||
};
|
||||
|
||||
static _TimerSync _timer_sync;
|
||||
|
||||
bool Main::start() {
|
||||
|
||||
ERR_FAIL_COND_V(!_start_success, false);
|
||||
@@ -1242,6 +1466,8 @@ bool Main::start() {
|
||||
String _export_preset;
|
||||
bool export_debug = false;
|
||||
|
||||
_timer_sync.init(OS::get_singleton()->get_ticks_usec());
|
||||
|
||||
List<String> args = OS::get_singleton()->get_cmdline_args();
|
||||
for (int i = 0; i < args.size(); i++) {
|
||||
//parameters that do not have an argument to the right
|
||||
@@ -1707,7 +1933,6 @@ bool Main::start() {
|
||||
|
||||
uint64_t Main::last_ticks = 0;
|
||||
uint64_t Main::target_ticks = 0;
|
||||
float Main::time_accum = 0;
|
||||
uint32_t Main::frames = 0;
|
||||
uint32_t Main::frame = 0;
|
||||
bool Main::force_redraw_requested = false;
|
||||
@@ -1720,14 +1945,15 @@ bool Main::iteration() {
|
||||
|
||||
uint64_t ticks = OS::get_singleton()->get_ticks_usec();
|
||||
Engine::get_singleton()->_frame_ticks = ticks;
|
||||
_timer_sync.set_cpu_ticks_usec(ticks);
|
||||
|
||||
uint64_t ticks_elapsed = ticks - last_ticks;
|
||||
|
||||
double step = (double)ticks_elapsed / 1000000.0;
|
||||
if (fixed_fps != -1)
|
||||
step = 1.0 / fixed_fps;
|
||||
int physics_fps = Engine::get_singleton()->get_iterations_per_second();
|
||||
float frame_slice = 1.0 / physics_fps;
|
||||
|
||||
float frame_slice = 1.0 / Engine::get_singleton()->get_iterations_per_second();
|
||||
_FrameTime advance = _timer_sync.advance(frame_slice, physics_fps);
|
||||
double step = advance.animation_step;
|
||||
|
||||
Engine::get_singleton()->_frame_step = step;
|
||||
|
||||
@@ -1743,20 +1969,19 @@ bool Main::iteration() {
|
||||
|
||||
last_ticks = ticks;
|
||||
|
||||
if (fixed_fps == -1 && step > frame_slice * 8)
|
||||
step = frame_slice * 8;
|
||||
|
||||
time_accum += step;
|
||||
static const int max_physics_steps = 8;
|
||||
if (fixed_fps == -1 && advance.physics_steps > max_physics_steps) {
|
||||
step -= (advance.physics_steps - max_physics_steps) * frame_slice;
|
||||
advance.physics_steps = max_physics_steps;
|
||||
}
|
||||
|
||||
float time_scale = Engine::get_singleton()->get_time_scale();
|
||||
|
||||
bool exit = false;
|
||||
|
||||
int iters = 0;
|
||||
|
||||
Engine::get_singleton()->_in_physics = true;
|
||||
|
||||
while (time_accum > frame_slice) {
|
||||
for (int iters = 0; iters < advance.physics_steps; ++iters) {
|
||||
|
||||
uint64_t physics_begin = OS::get_singleton()->get_ticks_usec();
|
||||
|
||||
@@ -1778,12 +2003,10 @@ bool Main::iteration() {
|
||||
Physics2DServer::get_singleton()->end_sync();
|
||||
Physics2DServer::get_singleton()->step(frame_slice * time_scale);
|
||||
|
||||
time_accum -= frame_slice;
|
||||
message_queue->flush();
|
||||
|
||||
physics_process_ticks = MAX(physics_process_ticks, OS::get_singleton()->get_ticks_usec() - physics_begin); // keep the largest one for reference
|
||||
physics_process_max = MAX(OS::get_singleton()->get_ticks_usec() - physics_begin, physics_process_max);
|
||||
iters++;
|
||||
Engine::get_singleton()->_physics_frames++;
|
||||
}
|
||||
|
||||
@@ -1794,7 +2017,7 @@ bool Main::iteration() {
|
||||
OS::get_singleton()->get_main_loop()->idle(step * time_scale);
|
||||
message_queue->flush();
|
||||
|
||||
VisualServer::get_singleton()->sync(); //sync if still drawing from previous frames.
|
||||
_timer_sync.before_start_render(); //sync if still drawing from previous frames.
|
||||
|
||||
if (OS::get_singleton()->can_draw() && !disable_render_loop) {
|
||||
|
||||
|
||||
Reference in New Issue
Block a user