You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-12-02 16:48:55 +00:00
Add interpolate_via_rest static func to Animation class
This commit is contained in:
@@ -30,6 +30,8 @@
|
||||
|
||||
#include "look_at_modifier_3d.h"
|
||||
|
||||
#include "scene/resources/animation.h"
|
||||
|
||||
void LookAtModifier3D::_validate_property(PropertyInfo &p_property) const {
|
||||
if (Engine::get_singleton()->is_editor_hint() && (p_property.name == "bone_name" || p_property.name == "origin_bone_name")) {
|
||||
Skeleton3D *skeleton = get_skeleton();
|
||||
@@ -595,7 +597,7 @@ void LookAtModifier3D::_process_modification(double p_delta) {
|
||||
// Interpolate through the rest same as AnimationTree blending for preventing to penetrate the bone into the body.
|
||||
Quaternion rest = skeleton->get_bone_rest(bone).basis.get_rotation_quaternion();
|
||||
float weight = Tween::run_equation(transition_type, ease_type, 1 - remaining, 0.0, 1.0, 1.0);
|
||||
destination = rest * Quaternion().slerp(rest.inverse() * from_q, 1 - weight) * Quaternion().slerp(rest.inverse() * destination, weight);
|
||||
destination = Animation::interpolate_via_rest(Animation::interpolate_via_rest(rest, from_q, 1 - weight, rest), destination, weight, rest);
|
||||
} else {
|
||||
destination = from_q.slerp(destination, Tween::run_equation(transition_type, ease_type, 1 - remaining, 0.0, 1.0, 1.0));
|
||||
}
|
||||
|
||||
@@ -1425,7 +1425,7 @@ void AnimationMixer::_blend_process(double p_delta, bool p_update_only) {
|
||||
rot[0] = post_process_key_value(a, i, rot[0], t->object_id, t->bone_idx);
|
||||
a->try_rotation_track_interpolate(i, end, &rot[1]);
|
||||
rot[1] = post_process_key_value(a, i, rot[1], t->object_id, t->bone_idx);
|
||||
root_motion_cache.rot = (root_motion_cache.rot * Quaternion().slerp(rot[0].inverse() * rot[1], blend)).normalized();
|
||||
root_motion_cache.rot = Animation::interpolate_via_rest(root_motion_cache.rot, rot[1], blend, rot[0]);
|
||||
prev_time = start;
|
||||
}
|
||||
} else {
|
||||
@@ -1437,7 +1437,7 @@ void AnimationMixer::_blend_process(double p_delta, bool p_update_only) {
|
||||
rot[0] = post_process_key_value(a, i, rot[0], t->object_id, t->bone_idx);
|
||||
a->try_rotation_track_interpolate(i, start, &rot[1]);
|
||||
rot[1] = post_process_key_value(a, i, rot[1], t->object_id, t->bone_idx);
|
||||
root_motion_cache.rot = (root_motion_cache.rot * Quaternion().slerp(rot[0].inverse() * rot[1], blend)).normalized();
|
||||
root_motion_cache.rot = Animation::interpolate_via_rest(root_motion_cache.rot, rot[1], blend, rot[0]);
|
||||
prev_time = end;
|
||||
}
|
||||
}
|
||||
@@ -1448,7 +1448,7 @@ void AnimationMixer::_blend_process(double p_delta, bool p_update_only) {
|
||||
rot[0] = post_process_key_value(a, i, rot[0], t->object_id, t->bone_idx);
|
||||
a->try_rotation_track_interpolate(i, time, &rot[1]);
|
||||
rot[1] = post_process_key_value(a, i, rot[1], t->object_id, t->bone_idx);
|
||||
root_motion_cache.rot = (root_motion_cache.rot * Quaternion().slerp(rot[0].inverse() * rot[1], blend)).normalized();
|
||||
root_motion_cache.rot = Animation::interpolate_via_rest(root_motion_cache.rot, rot[1], blend, rot[0]);
|
||||
prev_time = !backward ? start : end;
|
||||
}
|
||||
{
|
||||
@@ -1458,7 +1458,7 @@ void AnimationMixer::_blend_process(double p_delta, bool p_update_only) {
|
||||
continue;
|
||||
}
|
||||
rot = post_process_key_value(a, i, rot, t->object_id, t->bone_idx);
|
||||
t->rot = (t->rot * Quaternion().slerp(t->init_rot.inverse() * rot, blend)).normalized();
|
||||
t->rot = Animation::interpolate_via_rest(t->rot, rot, blend, t->init_rot);
|
||||
}
|
||||
#endif // _3D_DISABLED
|
||||
} break;
|
||||
@@ -1604,21 +1604,8 @@ void AnimationMixer::_blend_process(double p_delta, bool p_update_only) {
|
||||
// Special case for angle interpolation.
|
||||
if (t->is_using_angle) {
|
||||
// For blending consistency, it prevents rotation of more than 180 degrees from init_value.
|
||||
// This is the same as for Quaternion blends.
|
||||
float rot_a = t->value;
|
||||
float rot_b = value;
|
||||
float rot_init = t->init_value;
|
||||
rot_a = Math::fposmod(rot_a, (float)Math::TAU);
|
||||
rot_b = Math::fposmod(rot_b, (float)Math::TAU);
|
||||
rot_init = Math::fposmod(rot_init, (float)Math::TAU);
|
||||
if (rot_init < Math::PI) {
|
||||
rot_a = rot_a > rot_init + Math::PI ? rot_a - Math::TAU : rot_a;
|
||||
rot_b = rot_b > rot_init + Math::PI ? rot_b - Math::TAU : rot_b;
|
||||
} else {
|
||||
rot_a = rot_a < rot_init - Math::PI ? rot_a + Math::TAU : rot_a;
|
||||
rot_b = rot_b < rot_init - Math::PI ? rot_b + Math::TAU : rot_b;
|
||||
}
|
||||
t->value = Math::fposmod(rot_a + (rot_b - rot_init) * (float)blend, (float)Math::TAU);
|
||||
// This is the same with Quaternion blending.
|
||||
t->value = Animation::interpolate_via_rest((double)t->value, (double)value, blend, (double)t->init_value);
|
||||
} else {
|
||||
value = Animation::cast_to_blendwise(value);
|
||||
if (t->init_value.is_array()) {
|
||||
|
||||
@@ -5674,6 +5674,30 @@ bool Animation::_fetch_compressed_by_index(uint32_t p_compressed_track, int p_in
|
||||
return false;
|
||||
}
|
||||
|
||||
// Helper functions for Rotation.
|
||||
double Animation::interpolate_via_rest(double p_from, double p_to, double p_weight, double p_rest) {
|
||||
double rot_a = Math::fposmod(p_from, Math::TAU);
|
||||
double rot_b = Math::fposmod(p_to, Math::TAU);
|
||||
double rot_rest = Math::fposmod(p_rest, Math::TAU);
|
||||
if (rot_rest < Math::PI) {
|
||||
rot_a = rot_a > rot_rest + Math::PI ? rot_a - Math::TAU : rot_a;
|
||||
rot_b = rot_b > rot_rest + Math::PI ? rot_b - Math::TAU : rot_b;
|
||||
} else {
|
||||
rot_a = rot_a < rot_rest - Math::PI ? rot_a + Math::TAU : rot_a;
|
||||
rot_b = rot_b < rot_rest - Math::PI ? rot_b + Math::TAU : rot_b;
|
||||
}
|
||||
return Math::fposmod(rot_a + (rot_b - rot_rest) * p_weight, Math::TAU);
|
||||
}
|
||||
|
||||
Quaternion Animation::interpolate_via_rest(const Quaternion &p_from, const Quaternion &p_to, real_t p_weight, const Quaternion &p_rest) {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!p_from.is_normalized(), Quaternion(), "The start quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_rest.is_normalized(), Quaternion(), "The rest quaternion must be normalized.");
|
||||
#endif
|
||||
return (p_from * Quaternion().slerp(p_rest.inverse() * p_to, p_weight)).normalized();
|
||||
}
|
||||
|
||||
// Helper math functions for Variant.
|
||||
bool Animation::is_variant_interpolatable(const Variant p_value) {
|
||||
Variant::Type type = p_value.get_type();
|
||||
|
||||
@@ -540,6 +540,10 @@ public:
|
||||
void optimize(real_t p_allowed_velocity_err = 0.01, real_t p_allowed_angular_err = 0.01, int p_precision = 3);
|
||||
void compress(uint32_t p_page_size = 8192, uint32_t p_fps = 120, float p_split_tolerance = 4.0); // 4.0 seems to be the split tolerance sweet spot from many tests.
|
||||
|
||||
// Helper functions for Rotation.
|
||||
static double interpolate_via_rest(double p_from, double p_to, double p_weight, double p_rest = 0.0); // Deterministic slerp to prevent to cross the inverted rest axis.
|
||||
static Quaternion interpolate_via_rest(const Quaternion &p_from, const Quaternion &p_to, real_t p_weight, const Quaternion &p_rest = Quaternion()); // Deterministic slerp to prevent to cross the inverted rest axis.
|
||||
|
||||
// Helper functions for Variant.
|
||||
static bool is_variant_interpolatable(const Variant p_value);
|
||||
static bool validate_type_match(const Variant &p_from, Variant &r_to);
|
||||
|
||||
Reference in New Issue
Block a user