1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-04 12:00:25 +00:00

Merge pull request #110077 from clayjohn/mobile-glow

Overhaul and optimize Glow in the mobile renderer
This commit is contained in:
Thaddeus Crews
2025-10-31 09:23:32 -05:00
22 changed files with 1524 additions and 519 deletions

View File

@@ -53,8 +53,9 @@ CopyEffects::CopyEffects(bool p_prefer_raster_effects) {
Vector<String> blur_modes;
blur_modes.push_back("\n#define MODE_MIPMAP\n"); // BLUR_MIPMAP
blur_modes.push_back("\n#define MODE_GAUSSIAN_BLUR\n"); // BLUR_MODE_GAUSSIAN_BLUR
blur_modes.push_back("\n#define MODE_GAUSSIAN_GLOW\n"); // BLUR_MODE_GAUSSIAN_GLOW
blur_modes.push_back("\n#define MODE_GAUSSIAN_GLOW\n#define GLOW_USE_AUTO_EXPOSURE\n"); // BLUR_MODE_GAUSSIAN_GLOW_AUTO_EXPOSURE
blur_modes.push_back("\n#define MODE_GLOW_GATHER\n"); // BLUR_MODE_GAUSSIAN_GLOW_GATHER
blur_modes.push_back("\n#define MODE_GLOW_DOWNSAMPLE\n"); // BLUR_MODE_GAUSSIAN_GLOW_DOWNSAMPLE
blur_modes.push_back("\n#define MODE_GLOW_UPSAMPLE\n"); // BLUR_MODE_GAUSSIAN_GLOW_UPSAMPLE
blur_modes.push_back("\n#define MODE_COPY\n"); // BLUR_MODE_COPY
blur_modes.push_back("\n#define MODE_SET_COLOR\n"); // BLUR_MODE_SET_COLOR
@@ -66,6 +67,15 @@ CopyEffects::CopyEffects(bool p_prefer_raster_effects) {
blur_raster.pipelines[i].setup(blur_raster.shader.version_get_shader(blur_raster.shader_version, i), RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_disabled(), 0);
}
RD::SamplerState sampler_state;
sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR;
sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_BORDER;
sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_BORDER;
sampler_state.border_color = RD::SAMPLER_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
blur_raster.glow_sampler = RD::get_singleton()->sampler_create(sampler_state);
} else {
// not used in clustered
for (int i = 0; i < BLUR_MODE_MAX; i++) {
@@ -319,6 +329,7 @@ CopyEffects::~CopyEffects() {
if (prefer_raster_effects) {
blur_raster.shader.version_free(blur_raster.shader_version);
RD::get_singleton()->free_rid(blur_raster.glow_sampler);
cubemap_downsampler.raster_shader.version_free(cubemap_downsampler.shader_version);
filter.raster_shader.version_free(filter.shader_version);
roughness.raster_shader.version_free(roughness.shader_version);
@@ -733,8 +744,8 @@ void CopyEffects::gaussian_blur_raster(RID p_source_rd_texture, RID p_dest_textu
BlurRasterMode blur_mode = BLUR_MODE_GAUSSIAN_BLUR;
blur_raster.push_constant.pixel_size[0] = 1.0 / float(p_size.x);
blur_raster.push_constant.pixel_size[1] = 1.0 / float(p_size.y);
blur_raster.push_constant.dest_pixel_size[0] = 1.0 / float(p_size.x);
blur_raster.push_constant.dest_pixel_size[1] = 1.0 / float(p_size.y);
// setup our uniforms
RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
@@ -805,7 +816,7 @@ void CopyEffects::gaussian_glow(RID p_source_rd_texture, RID p_back_texture, con
RD::get_singleton()->compute_list_end();
}
void CopyEffects::gaussian_glow_raster(RID p_source_rd_texture, RID p_half_texture, RID p_dest_texture, float p_luminance_multiplier, const Size2i &p_size, float p_strength, bool p_first_pass, float p_luminance_cap, float p_exposure, float p_bloom, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, RID p_auto_exposure, float p_auto_exposure_scale) {
void CopyEffects::gaussian_glow_downsample_raster(RID p_source_rd_texture, RID p_dest_texture, float p_luminance_multiplier, const Size2i &p_size, float p_strength, bool p_first_pass, float p_luminance_cap, float p_exposure, float p_bloom, float p_hdr_bleed_threshold, float p_hdr_bleed_scale) {
ERR_FAIL_COND_MSG(!prefer_raster_effects, "Can't use the raster version of the gaussian glow with the clustered renderer.");
UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton();
@@ -813,16 +824,14 @@ void CopyEffects::gaussian_glow_raster(RID p_source_rd_texture, RID p_half_textu
MaterialStorage *material_storage = MaterialStorage::get_singleton();
ERR_FAIL_NULL(material_storage);
RID half_framebuffer = FramebufferCacheRD::get_singleton()->get_cache(p_half_texture);
RID dest_framebuffer = FramebufferCacheRD::get_singleton()->get_cache(p_dest_texture);
memset(&blur_raster.push_constant, 0, sizeof(BlurRasterPushConstant));
BlurRasterMode blur_mode = p_first_pass && p_auto_exposure.is_valid() ? BLUR_MODE_GAUSSIAN_GLOW_AUTO_EXPOSURE : BLUR_MODE_GAUSSIAN_GLOW;
uint32_t base_flags = 0;
BlurRasterMode blur_mode = p_first_pass ? BLUR_MODE_GAUSSIAN_GLOW_GATHER : BLUR_MODE_GAUSSIAN_GLOW_DOWNSAMPLE;
blur_raster.push_constant.pixel_size[0] = 1.0 / float(p_size.x);
blur_raster.push_constant.pixel_size[1] = 1.0 / float(p_size.y);
blur_raster.push_constant.source_pixel_size[0] = 1.0 / float(p_size.x);
blur_raster.push_constant.source_pixel_size[1] = 1.0 / float(p_size.y);
blur_raster.push_constant.glow_strength = p_strength;
blur_raster.push_constant.glow_bloom = p_bloom;
@@ -832,45 +841,62 @@ void CopyEffects::gaussian_glow_raster(RID p_source_rd_texture, RID p_half_textu
blur_raster.push_constant.glow_white = 0; //actually unused
blur_raster.push_constant.glow_luminance_cap = p_luminance_cap;
blur_raster.push_constant.glow_auto_exposure_scale = p_auto_exposure_scale; //unused also
blur_raster.push_constant.luminance_multiplier = p_luminance_multiplier;
// setup our uniforms
RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
RD::Uniform u_source_rd_texture(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector<RID>({ default_sampler, p_source_rd_texture }));
RD::Uniform u_half_texture(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector<RID>({ default_sampler, p_half_texture }));
RD::Uniform u_source_rd_texture(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector<RID>({ blur_raster.glow_sampler, p_source_rd_texture }));
RID shader = blur_raster.shader.version_get_shader(blur_raster.shader_version, blur_mode);
ERR_FAIL_COND(shader.is_null());
//HORIZONTAL
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(half_framebuffer);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, blur_raster.pipelines[blur_mode].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(half_framebuffer)));
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(dest_framebuffer);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, blur_raster.pipelines[blur_mode].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(dest_framebuffer)));
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set_cache->get_cache(shader, 0, u_source_rd_texture), 0);
if (p_auto_exposure.is_valid() && p_first_pass) {
RD::Uniform u_auto_exposure(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector<RID>({ default_sampler, p_auto_exposure }));
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set_cache->get_cache(shader, 1, u_auto_exposure), 1);
}
blur_raster.push_constant.flags = base_flags | BLUR_FLAG_HORIZONTAL | (p_first_pass ? BLUR_FLAG_GLOW_FIRST_PASS : 0);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &blur_raster.push_constant, sizeof(BlurRasterPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, false, 1u, 3u);
RD::get_singleton()->draw_list_end();
}
blur_mode = BLUR_MODE_GAUSSIAN_GLOW;
void CopyEffects::gaussian_glow_upsample_raster(RID p_source_rd_texture, RID p_dest_texture, RID p_blend_texture, float p_luminance_multiplier, const Size2i &p_source_size, const Size2i &p_dest_size, float p_level, float p_base_strength, bool p_use_debanding) {
ERR_FAIL_COND_MSG(!prefer_raster_effects, "Can't use the raster version of the gaussian glow with the clustered renderer.");
shader = blur_raster.shader.version_get_shader(blur_raster.shader_version, blur_mode);
UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton();
ERR_FAIL_NULL(uniform_set_cache);
MaterialStorage *material_storage = MaterialStorage::get_singleton();
ERR_FAIL_NULL(material_storage);
RID dest_framebuffer = FramebufferCacheRD::get_singleton()->get_cache(p_dest_texture);
memset(&blur_raster.push_constant, 0, sizeof(BlurRasterPushConstant));
BlurRasterMode blur_mode = BLUR_MODE_GAUSSIAN_GLOW_UPSAMPLE;
blur_raster.push_constant.source_pixel_size[0] = 1.0 / float(p_source_size.x);
blur_raster.push_constant.source_pixel_size[1] = 1.0 / float(p_source_size.y);
blur_raster.push_constant.dest_pixel_size[0] = 1.0 / float(p_dest_size.x);
blur_raster.push_constant.dest_pixel_size[1] = 1.0 / float(p_dest_size.y);
blur_raster.push_constant.luminance_multiplier = p_luminance_multiplier;
blur_raster.push_constant.level = p_level * 0.5;
blur_raster.push_constant.glow_strength = p_base_strength;
uint32_t spec_constant = p_use_debanding ? 1 : 0;
spec_constant |= p_level > 0.01 ? 2 : 0;
// setup our uniforms
RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
RD::Uniform u_source_rd_texture(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector<RID>({ default_sampler, p_source_rd_texture }));
RD::Uniform u_blend_rd_texture(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector<RID>({ default_sampler, p_blend_texture }));
RID shader = blur_raster.shader.version_get_shader(blur_raster.shader_version, blur_mode);
ERR_FAIL_COND(shader.is_null());
//VERTICAL
draw_list = RD::get_singleton()->draw_list_begin(dest_framebuffer);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, blur_raster.pipelines[blur_mode].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(dest_framebuffer)));
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set_cache->get_cache(shader, 0, u_half_texture), 0);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(dest_framebuffer);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, blur_raster.pipelines[blur_mode].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(dest_framebuffer), false, 0, spec_constant));
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set_cache->get_cache(shader, 0, u_source_rd_texture), 0);
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set_cache->get_cache(shader, 1, u_blend_rd_texture), 1);
blur_raster.push_constant.flags = base_flags;
RD::get_singleton()->draw_list_set_push_constant(draw_list, &blur_raster.push_constant, sizeof(BlurRasterPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, false, 1u, 3u);
@@ -925,8 +951,8 @@ void CopyEffects::make_mipmap_raster(RID p_source_rd_texture, RID p_dest_texture
BlurRasterMode mode = BLUR_MIPMAP;
blur_raster.push_constant.pixel_size[0] = 1.0 / float(p_size.x);
blur_raster.push_constant.pixel_size[1] = 1.0 / float(p_size.y);
blur_raster.push_constant.dest_pixel_size[0] = 1.0 / float(p_size.x);
blur_raster.push_constant.dest_pixel_size[1] = 1.0 / float(p_size.y);
// setup our uniforms
RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);

View File

@@ -59,8 +59,9 @@ private:
BLUR_MIPMAP,
BLUR_MODE_GAUSSIAN_BLUR,
BLUR_MODE_GAUSSIAN_GLOW,
BLUR_MODE_GAUSSIAN_GLOW_AUTO_EXPOSURE,
BLUR_MODE_GAUSSIAN_GLOW_GATHER,
BLUR_MODE_GAUSSIAN_GLOW_DOWNSAMPLE,
BLUR_MODE_GAUSSIAN_GLOW_UPSAMPLE,
BLUR_MODE_COPY,
BLUR_MODE_SET_COLOR,
@@ -69,15 +70,16 @@ private:
};
enum {
BLUR_FLAG_HORIZONTAL = (1 << 0),
BLUR_FLAG_USE_ORTHOGONAL_PROJECTION = (1 << 1),
BLUR_FLAG_GLOW_FIRST_PASS = (1 << 2),
};
struct BlurRasterPushConstant {
float pixel_size[2];
float dest_pixel_size[2];
float source_pixel_size[2];
float pad[2];
uint32_t flags;
uint32_t pad;
float level;
//glow
float glow_strength;
@@ -88,12 +90,7 @@ private:
float glow_exposure;
float glow_white;
float glow_luminance_cap;
float glow_auto_exposure_scale;
float luminance_multiplier;
float res1;
float res2;
float res3;
};
struct BlurRaster {
@@ -101,6 +98,7 @@ private:
BlurRasterShaderRD shader;
RID shader_version;
PipelineCacheRD pipelines[BLUR_MODE_MAX];
RID glow_sampler;
} blur_raster;
// Copy shader
@@ -337,7 +335,8 @@ public:
void gaussian_blur(RID p_source_rd_texture, RID p_texture, const Rect2i &p_region, const Size2i &p_size, bool p_8bit_dst = false);
void gaussian_blur_raster(RID p_source_rd_texture, RID p_dest_texture, const Rect2i &p_region, const Size2i &p_size);
void gaussian_glow(RID p_source_rd_texture, RID p_back_texture, const Size2i &p_size, float p_strength = 1.0, bool p_first_pass = false, float p_luminance_cap = 16.0, float p_exposure = 1.0, float p_bloom = 0.0, float p_hdr_bleed_threshold = 1.0, float p_hdr_bleed_scale = 1.0, RID p_auto_exposure = RID(), float p_auto_exposure_scale = 1.0);
void gaussian_glow_raster(RID p_source_rd_texture, RID p_half_texture, RID p_dest_texture, float p_luminance_multiplier, const Size2i &p_size, float p_strength = 1.0, bool p_first_pass = false, float p_luminance_cap = 16.0, float p_exposure = 1.0, float p_bloom = 0.0, float p_hdr_bleed_threshold = 1.0, float p_hdr_bleed_scale = 1.0, RID p_auto_exposure = RID(), float p_auto_exposure_scale = 1.0);
void gaussian_glow_downsample_raster(RID p_source_rd_texture, RID p_dest_texture, float p_luminance_multiplier, const Size2i &p_size, float p_strength = 1.0, bool p_first_pass = false, float p_luminance_cap = 16.0, float p_exposure = 1.0, float p_bloom = 0.0, float p_hdr_bleed_threshold = 1.0, float p_hdr_bleed_scale = 1.0);
void gaussian_glow_upsample_raster(RID p_source_rd_texture, RID p_dest_texture, RID p_blend_texture, float p_luminance_multiplier, const Size2i &p_source_size, const Size2i &p_dest_size, float p_level, float p_base_strength, bool p_use_debanding);
void make_mipmap(RID p_source_rd_texture, RID p_dest_texture, const Size2i &p_size);
void make_mipmap_raster(RID p_source_rd_texture, RID p_dest_texture, const Size2i &p_size);

View File

@@ -157,7 +157,7 @@ void SMAA::allocate_render_targets(Ref<RenderSceneBuffersRD> p_render_buffers) {
p_render_buffers->create_texture(RB_SCOPE_SMAA, RB_STENCIL, smaa.stencil_format, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, RD::TEXTURE_SAMPLES_1, full_size, 1, 1, true, true);
}
void SMAA::process(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_source_color, RID p_dst_framebuffer) {
void SMAA::process(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_source_color, RID p_dst_framebuffer, bool p_use_debanding) {
UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton();
ERR_FAIL_NULL(uniform_set_cache);
MaterialStorage *material_storage = MaterialStorage::get_singleton();
@@ -181,11 +181,7 @@ void SMAA::process(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_source_colo
smaa.blend_push_constant.inv_size[0] = inv_size.x;
smaa.blend_push_constant.inv_size[1] = inv_size.y;
if (debanding_mode == DEBANDING_MODE_8_BIT) {
smaa.blend_push_constant.flags |= SMAA_BLEND_FLAG_USE_8_BIT_DEBANDING;
} else if (debanding_mode == DEBANDING_MODE_10_BIT) {
smaa.blend_push_constant.flags |= SMAA_BLEND_FLAG_USE_10_BIT_DEBANDING;
}
smaa.blend_push_constant.use_debanding = p_use_debanding;
RID linear_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);

View File

@@ -71,7 +71,7 @@ private:
struct SMAABlendPushConstant {
float inv_size[2];
uint32_t flags;
uint32_t use_debanding;
float pad;
};
@@ -108,14 +108,7 @@ public:
~SMAA();
void allocate_render_targets(Ref<RenderSceneBuffersRD> p_render_buffers);
void process(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_source_color, RID p_dst_framebuffer);
enum DebandingMode {
DEBANDING_MODE_DISABLED,
DEBANDING_MODE_8_BIT,
DEBANDING_MODE_10_BIT,
};
DebandingMode debanding_mode = DEBANDING_MODE_DISABLED;
void process(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_source_color, RID p_dst_framebuffer, bool p_use_debanding);
};
} // namespace RendererRD

View File

@@ -35,24 +35,54 @@
using namespace RendererRD;
ToneMapper::ToneMapper() {
{
ToneMapper::ToneMapper(bool p_use_mobile_version) {
using_mobile_version = p_use_mobile_version;
if (using_mobile_version) {
// Initialize tonemapper
Vector<String> tonemap_modes;
tonemap_modes.push_back("\n");
tonemap_modes.push_back("\n#define USE_1D_LUT\n");
tonemap_modes.push_back("\n#define SUBPASS\n");
tonemap_modes.push_back("\n#define SUBPASS\n#define USE_1D_LUT\n");
// multiview versions of our shaders
tonemap_modes.push_back("\n#define USE_MULTIVIEW\n");
tonemap_modes.push_back("\n#define USE_MULTIVIEW\n#define USE_1D_LUT\n");
tonemap_modes.push_back("\n#define USE_MULTIVIEW\n#define SUBPASS\n");
tonemap_modes.push_back("\n#define USE_MULTIVIEW\n#define SUBPASS\n#define USE_1D_LUT\n");
tonemap_mobile.shader.initialize(tonemap_modes);
if (!RendererCompositorRD::get_singleton()->is_xr_enabled()) {
tonemap_mobile.shader.set_variant_enabled(TONEMAP_MOBILE_MODE_NORMAL_MULTIVIEW, false);
tonemap_mobile.shader.set_variant_enabled(TONEMAP_MOBILE_MODE_1D_LUT_MULTIVIEW, false);
tonemap_mobile.shader.set_variant_enabled(TONEMAP_MOBILE_MODE_SUBPASS_MULTIVIEW, false);
tonemap_mobile.shader.set_variant_enabled(TONEMAP_MOBILE_MODE_SUBPASS_1D_LUT_MULTIVIEW, false);
}
tonemap_mobile.shader_version = tonemap_mobile.shader.version_create();
for (int i = 0; i < TONEMAP_MODE_MAX; i++) {
if (tonemap_mobile.shader.is_variant_enabled(i)) {
tonemap_mobile.pipelines[i].setup(tonemap_mobile.shader.version_get_shader(tonemap_mobile.shader_version, i), RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_disabled(), 0);
} else {
tonemap_mobile.pipelines[i].clear();
}
}
} else {
// Initialize tonemapper
Vector<String> tonemap_modes;
tonemap_modes.push_back("\n");
tonemap_modes.push_back("\n#define USE_GLOW_FILTER_BICUBIC\n");
tonemap_modes.push_back("\n#define USE_1D_LUT\n");
tonemap_modes.push_back("\n#define USE_GLOW_FILTER_BICUBIC\n#define USE_1D_LUT\n");
tonemap_modes.push_back("\n#define SUBPASS\n");
tonemap_modes.push_back("\n#define SUBPASS\n#define USE_1D_LUT\n");
// multiview versions of our shaders
tonemap_modes.push_back("\n#define USE_MULTIVIEW\n");
tonemap_modes.push_back("\n#define USE_MULTIVIEW\n#define USE_GLOW_FILTER_BICUBIC\n");
tonemap_modes.push_back("\n#define USE_MULTIVIEW\n#define USE_1D_LUT\n");
tonemap_modes.push_back("\n#define USE_MULTIVIEW\n#define USE_GLOW_FILTER_BICUBIC\n#define USE_1D_LUT\n");
tonemap_modes.push_back("\n#define USE_MULTIVIEW\n#define SUBPASS\n");
tonemap_modes.push_back("\n#define USE_MULTIVIEW\n#define SUBPASS\n#define USE_1D_LUT\n");
tonemap.shader.initialize(tonemap_modes);
@@ -61,8 +91,6 @@ ToneMapper::ToneMapper() {
tonemap.shader.set_variant_enabled(TONEMAP_MODE_BICUBIC_GLOW_FILTER_MULTIVIEW, false);
tonemap.shader.set_variant_enabled(TONEMAP_MODE_1D_LUT_MULTIVIEW, false);
tonemap.shader.set_variant_enabled(TONEMAP_MODE_BICUBIC_GLOW_FILTER_1D_LUT_MULTIVIEW, false);
tonemap.shader.set_variant_enabled(TONEMAP_MODE_SUBPASS_MULTIVIEW, false);
tonemap.shader.set_variant_enabled(TONEMAP_MODE_SUBPASS_1D_LUT_MULTIVIEW, false);
}
tonemap.shader_version = tonemap.shader.version_create();
@@ -78,10 +106,15 @@ ToneMapper::ToneMapper() {
}
ToneMapper::~ToneMapper() {
tonemap.shader.version_free(tonemap.shader_version);
if (using_mobile_version) {
tonemap_mobile.shader.version_free(tonemap_mobile.shader_version);
} else {
tonemap.shader.version_free(tonemap.shader_version);
}
}
void ToneMapper::tonemapper(RID p_source_color, RID p_dst_framebuffer, const TonemapSettings &p_settings) {
ERR_FAIL_COND_MSG(using_mobile_version, "Can't use the non mobile version of the tonemapper with the Mobile renderer.");
UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton();
ERR_FAIL_NULL(uniform_set_cache);
MaterialStorage *material_storage = MaterialStorage::get_singleton();
@@ -125,8 +158,6 @@ void ToneMapper::tonemapper(RID p_source_color, RID p_dst_framebuffer, const Ton
tonemap.push_constant.flags |= p_settings.use_fxaa ? TONEMAP_FLAG_USE_FXAA : 0;
if (p_settings.debanding_mode == TonemapSettings::DEBANDING_MODE_8_BIT) {
tonemap.push_constant.flags |= TONEMAP_FLAG_USE_8_BIT_DEBANDING;
} else if (p_settings.debanding_mode == TonemapSettings::DEBANDING_MODE_10_BIT) {
tonemap.push_constant.flags |= TONEMAP_FLAG_USE_10_BIT_DEBANDING;
}
tonemap.push_constant.pixel_size[0] = 1.0 / p_settings.texture_size.x;
tonemap.push_constant.pixel_size[1] = 1.0 / p_settings.texture_size.y;
@@ -135,7 +166,7 @@ void ToneMapper::tonemapper(RID p_source_color, RID p_dst_framebuffer, const Ton
if (p_settings.view_count > 1) {
// Use USE_MULTIVIEW versions
mode += 6;
mode += 4;
}
RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
@@ -182,57 +213,61 @@ void ToneMapper::tonemapper(RID p_source_color, RID p_dst_framebuffer, const Ton
RD::get_singleton()->draw_list_end();
}
void ToneMapper::tonemapper(RD::DrawListID p_subpass_draw_list, RID p_source_color, RD::FramebufferFormatID p_dst_format_id, const TonemapSettings &p_settings) {
void ToneMapper::tonemapper_mobile(RID p_source_color, RID p_dst_framebuffer, const TonemapSettings &p_settings) {
ERR_FAIL_COND_MSG(!using_mobile_version, "Can't use the mobile version of the tonemapper with the clustered renderer.");
UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton();
ERR_FAIL_NULL(uniform_set_cache);
MaterialStorage *material_storage = MaterialStorage::get_singleton();
ERR_FAIL_NULL(material_storage);
memset(&tonemap.push_constant, 0, sizeof(TonemapPushConstant));
memset(&tonemap_mobile.push_constant, 0, sizeof(TonemapPushConstantMobile));
tonemap.push_constant.flags |= p_settings.use_bcs ? TONEMAP_FLAG_USE_BCS : 0;
tonemap.push_constant.bcs[0] = p_settings.brightness;
tonemap.push_constant.bcs[1] = p_settings.contrast;
tonemap.push_constant.bcs[2] = p_settings.saturation;
tonemap_mobile.push_constant.bcs[0] = p_settings.brightness;
tonemap_mobile.push_constant.bcs[1] = p_settings.contrast;
tonemap_mobile.push_constant.bcs[2] = p_settings.saturation;
ERR_FAIL_COND_MSG(p_settings.use_glow, "Glow is not supported when using subpasses.");
tonemap.push_constant.flags |= p_settings.use_glow ? TONEMAP_FLAG_USE_GLOW : 0;
tonemap_mobile.push_constant.src_pixel_size[0] = 1.0 / p_settings.texture_size.x;
tonemap_mobile.push_constant.src_pixel_size[1] = 1.0 / p_settings.texture_size.y;
tonemap_mobile.push_constant.dest_pixel_size[0] = 1.0 / p_settings.dest_texture_size.x;
tonemap_mobile.push_constant.dest_pixel_size[1] = 1.0 / p_settings.dest_texture_size.y;
tonemap_mobile.push_constant.glow_intensity = p_settings.glow_intensity;
tonemap_mobile.push_constant.glow_map_strength = p_settings.glow_map_strength;
tonemap_mobile.push_constant.exposure = p_settings.exposure;
tonemap_mobile.push_constant.white = p_settings.white;
tonemap_mobile.push_constant.luminance_multiplier = p_settings.luminance_multiplier;
uint32_t spec_constant = 0;
spec_constant |= p_settings.use_bcs ? TONEMAP_MOBILE_FLAG_USE_BCS : 0;
spec_constant |= p_settings.use_glow ? TONEMAP_MOBILE_FLAG_USE_GLOW : 0;
spec_constant |= p_settings.glow_map_strength > 0.01 ? TONEMAP_MOBILE_FLAG_USE_GLOW_MAP : 0;
spec_constant |= p_settings.use_color_correction ? TONEMAP_MOBILE_FLAG_USE_COLOR_CORRECTION : 0;
spec_constant |= p_settings.use_fxaa ? TONEMAP_MOBILE_FLAG_USE_FXAA : 0;
spec_constant |= p_settings.debanding_mode == TonemapSettings::DEBANDING_MODE_8_BIT ? TONEMAP_MOBILE_FLAG_USE_8_BIT_DEBANDING : 0;
spec_constant |= p_settings.debanding_mode == TonemapSettings::DEBANDING_MODE_10_BIT ? TONEMAP_MOBILE_FLAG_USE_10_BIT_DEBANDING : 0;
spec_constant |= p_settings.convert_to_srgb ? TONEMAP_MOBILE_FLAG_CONVERT_TO_SRGB : 0;
spec_constant |= p_settings.tonemap_mode == RS::ENV_TONE_MAPPER_LINEAR ? TONEMAP_MOBILE_FLAG_TONEMAPPER_LINEAR : 0;
spec_constant |= p_settings.tonemap_mode == RS::ENV_TONE_MAPPER_REINHARD ? TONEMAP_MOBILE_FLAG_TONEMAPPER_REINHARD : 0;
spec_constant |= p_settings.tonemap_mode == RS::ENV_TONE_MAPPER_FILMIC ? TONEMAP_MOBILE_FLAG_TONEMAPPER_FILMIC : 0;
spec_constant |= p_settings.tonemap_mode == RS::ENV_TONE_MAPPER_ACES ? TONEMAP_MOBILE_FLAG_TONEMAPPER_ACES : 0;
spec_constant |= p_settings.tonemap_mode == RS::ENV_TONE_MAPPER_AGX ? TONEMAP_MOBILE_FLAG_TONEMAPPER_AGX : 0;
spec_constant |= p_settings.glow_mode == RS::ENV_GLOW_BLEND_MODE_ADDITIVE ? TONEMAP_MOBILE_FLAG_GLOW_MODE_ADD : 0;
spec_constant |= p_settings.glow_mode == RS::ENV_GLOW_BLEND_MODE_SCREEN ? TONEMAP_MOBILE_FLAG_GLOW_MODE_SCREEN : 0;
spec_constant |= p_settings.glow_mode == RS::ENV_GLOW_BLEND_MODE_SOFTLIGHT ? TONEMAP_MOBILE_FLAG_GLOW_MODE_SOFTLIGHT : 0;
spec_constant |= p_settings.glow_mode == RS::ENV_GLOW_BLEND_MODE_REPLACE ? TONEMAP_MOBILE_FLAG_GLOW_MODE_REPLACE : 0;
spec_constant |= p_settings.glow_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? TONEMAP_MOBILE_FLAG_GLOW_MODE_MIX : 0;
int mode = p_settings.use_1d_color_correction ? TONEMAP_MOBILE_MODE_1D_LUT : TONEMAP_MOBILE_MODE_NORMAL;
int mode = p_settings.use_1d_color_correction ? TONEMAP_MODE_SUBPASS_1D_LUT : TONEMAP_MODE_SUBPASS;
if (p_settings.view_count > 1) {
// Use USE_MULTIVIEW versions
mode += 6;
mode += 4;
}
tonemap.push_constant.tonemapper = p_settings.tonemap_mode;
tonemap.push_constant.flags |= p_settings.use_auto_exposure ? TONEMAP_FLAG_USE_AUTO_EXPOSURE : 0;
tonemap.push_constant.exposure = p_settings.exposure;
tonemap.push_constant.white = p_settings.white;
tonemap.push_constant.auto_exposure_scale = p_settings.auto_exposure_scale;
tonemap.push_constant.flags |= p_settings.use_color_correction ? TONEMAP_FLAG_USE_COLOR_CORRECTION : 0;
if (p_settings.debanding_mode == TonemapSettings::DEBANDING_MODE_8_BIT) {
tonemap.push_constant.flags |= TONEMAP_FLAG_USE_8_BIT_DEBANDING;
} else if (p_settings.debanding_mode == TonemapSettings::DEBANDING_MODE_10_BIT) {
tonemap.push_constant.flags |= TONEMAP_FLAG_USE_10_BIT_DEBANDING;
}
tonemap.push_constant.luminance_multiplier = p_settings.luminance_multiplier;
tonemap.push_constant.flags |= p_settings.convert_to_srgb ? TONEMAP_FLAG_CONVERT_TO_SRGB : 0;
RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
RID default_mipmap_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
RD::Uniform u_source_color;
u_source_color.uniform_type = RD::UNIFORM_TYPE_INPUT_ATTACHMENT;
u_source_color.binding = 0;
u_source_color.append_id(p_source_color);
RD::Uniform u_exposure_texture;
u_exposure_texture.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE;
u_exposure_texture.binding = 0;
u_exposure_texture.append_id(default_sampler);
u_exposure_texture.append_id(p_settings.exposure_texture);
RD::Uniform u_source_color(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector<RID>({ default_sampler, p_source_color }));
RD::Uniform u_glow_texture;
u_glow_texture.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE;
@@ -252,15 +287,102 @@ void ToneMapper::tonemapper(RD::DrawListID p_subpass_draw_list, RID p_source_col
u_color_correction_texture.append_id(default_sampler);
u_color_correction_texture.append_id(p_settings.color_correction_texture);
RID shader = tonemap.shader.version_get_shader(tonemap.shader_version, mode);
RID shader = tonemap_mobile.shader.version_get_shader(tonemap_mobile.shader_version, mode);
ERR_FAIL_COND(shader.is_null());
RD::get_singleton()->draw_list_bind_render_pipeline(p_subpass_draw_list, tonemap.pipelines[mode].get_render_pipeline(RD::INVALID_ID, p_dst_format_id, false, RD::get_singleton()->draw_list_get_current_pass()));
RD::get_singleton()->draw_list_bind_uniform_set(p_subpass_draw_list, uniform_set_cache->get_cache(shader, 0, u_source_color), 0);
RD::get_singleton()->draw_list_bind_uniform_set(p_subpass_draw_list, uniform_set_cache->get_cache(shader, 1, u_exposure_texture), 1); // should be set to a default texture, it's ignored
RD::get_singleton()->draw_list_bind_uniform_set(p_subpass_draw_list, uniform_set_cache->get_cache(shader, 2, u_glow_texture, u_glow_map), 2); // should be set to a default texture, it's ignored
RD::get_singleton()->draw_list_bind_uniform_set(p_subpass_draw_list, uniform_set_cache->get_cache(shader, 3, u_color_correction_texture), 3);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dst_framebuffer);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, tonemap_mobile.pipelines[mode].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_dst_framebuffer), false, RD::get_singleton()->draw_list_get_current_pass(), spec_constant));
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set_cache->get_cache(shader, 0, u_source_color), 0);
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set_cache->get_cache(shader, 1, u_glow_texture, u_glow_map), 1);
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set_cache->get_cache(shader, 2, u_color_correction_texture), 2);
RD::get_singleton()->draw_list_set_push_constant(p_subpass_draw_list, &tonemap.push_constant, sizeof(TonemapPushConstant));
RD::get_singleton()->draw_list_set_push_constant(draw_list, &tonemap_mobile.push_constant, sizeof(TonemapPushConstantMobile));
RD::get_singleton()->draw_list_draw(draw_list, false, 1u, 3u);
RD::get_singleton()->draw_list_end();
}
void ToneMapper::tonemapper_subpass(RD::DrawListID p_subpass_draw_list, RID p_source_color, RD::FramebufferFormatID p_dst_format_id, const TonemapSettings &p_settings) {
UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton();
ERR_FAIL_NULL(uniform_set_cache);
MaterialStorage *material_storage = MaterialStorage::get_singleton();
ERR_FAIL_NULL(material_storage);
ERR_FAIL_COND_MSG(p_settings.use_glow, "Glow is not supported when using subpasses.");
memset(&tonemap_mobile.push_constant, 0, sizeof(TonemapPushConstantMobile));
tonemap_mobile.push_constant.bcs[0] = p_settings.brightness;
tonemap_mobile.push_constant.bcs[1] = p_settings.contrast;
tonemap_mobile.push_constant.bcs[2] = p_settings.saturation;
tonemap_mobile.push_constant.src_pixel_size[0] = 1.0 / p_settings.texture_size.x;
tonemap_mobile.push_constant.src_pixel_size[1] = 1.0 / p_settings.texture_size.y;
tonemap_mobile.push_constant.glow_intensity = p_settings.glow_intensity;
tonemap_mobile.push_constant.glow_map_strength = p_settings.glow_map_strength;
tonemap_mobile.push_constant.exposure = p_settings.exposure;
tonemap_mobile.push_constant.white = p_settings.white;
tonemap_mobile.push_constant.luminance_multiplier = p_settings.luminance_multiplier;
uint32_t spec_constant = 0;
spec_constant |= p_settings.use_bcs ? TONEMAP_MOBILE_FLAG_USE_BCS : 0;
//spec_constant |= p_settings.use_glow ? TONEMAP_MOBILE_FLAG_USE_GLOW : 0;
//spec_constant |= p_settings.glow_map_strength > 0.01 ? TONEMAP_MOBILE_FLAG_USE_GLOW_MAP : 0;
//spec_constant |= p_settings.use_color_correction ? TONEMAP_MOBILE_FLAG_USE_COLOR_CORRECTION : 0;
//spec_constant |= p_settings.use_fxaa ? TONEMAP_MOBILE_FLAG_USE_FXAA : 0;
spec_constant |= p_settings.debanding_mode == TonemapSettings::DEBANDING_MODE_8_BIT ? TONEMAP_MOBILE_FLAG_USE_8_BIT_DEBANDING : 0;
spec_constant |= p_settings.convert_to_srgb ? TONEMAP_MOBILE_FLAG_CONVERT_TO_SRGB : 0;
spec_constant |= p_settings.tonemap_mode == RS::ENV_TONE_MAPPER_LINEAR ? TONEMAP_MOBILE_FLAG_TONEMAPPER_LINEAR : 0;
spec_constant |= p_settings.tonemap_mode == RS::ENV_TONE_MAPPER_REINHARD ? TONEMAP_MOBILE_FLAG_TONEMAPPER_REINHARD : 0;
spec_constant |= p_settings.tonemap_mode == RS::ENV_TONE_MAPPER_FILMIC ? TONEMAP_MOBILE_FLAG_TONEMAPPER_FILMIC : 0;
spec_constant |= p_settings.tonemap_mode == RS::ENV_TONE_MAPPER_ACES ? TONEMAP_MOBILE_FLAG_TONEMAPPER_ACES : 0;
spec_constant |= p_settings.tonemap_mode == RS::ENV_TONE_MAPPER_AGX ? TONEMAP_MOBILE_FLAG_TONEMAPPER_AGX : 0;
//spec_constant |= p_settings.glow_mode == RS::ENV_GLOW_BLEND_MODE_ADDITIVE ? TONEMAP_MOBILE_FLAG_GLOW_MODE_ADD : 0;
//spec_constant |= p_settings.glow_mode == RS::ENV_GLOW_BLEND_MODE_SCREEN ? TONEMAP_MOBILE_FLAG_GLOW_MODE_SCREEN : 0;
//spec_constant |= p_settings.glow_mode == RS::ENV_GLOW_BLEND_MODE_SOFTLIGHT ? TONEMAP_MOBILE_FLAG_GLOW_MODE_SOFTLIGHT : 0;
//spec_constant |= p_settings.glow_mode == RS::ENV_GLOW_BLEND_MODE_REPLACE ? TONEMAP_MOBILE_FLAG_GLOW_MODE_REPLACE : 0;
//spec_constant |= p_settings.glow_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? TONEMAP_MOBILE_FLAG_GLOW_MODE_MIX : 0;
int mode = p_settings.use_1d_color_correction ? TONEMAP_MOBILE_MODE_SUBPASS_1D_LUT : TONEMAP_MOBILE_MODE_SUBPASS;
if (p_settings.view_count > 1) {
// Use USE_MULTIVIEW versions
mode += 4;
}
RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
RID default_mipmap_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
RD::Uniform u_source_color;
u_source_color.uniform_type = RD::UNIFORM_TYPE_INPUT_ATTACHMENT;
u_source_color.binding = 0;
u_source_color.append_id(p_source_color);
RD::Uniform u_glow_texture;
u_glow_texture.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE;
u_glow_texture.binding = 0;
u_glow_texture.append_id(default_mipmap_sampler);
u_glow_texture.append_id(p_settings.glow_texture);
RD::Uniform u_glow_map;
u_glow_map.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE;
u_glow_map.binding = 1;
u_glow_map.append_id(default_mipmap_sampler);
u_glow_map.append_id(p_settings.glow_map);
RD::Uniform u_color_correction_texture;
u_color_correction_texture.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE;
u_color_correction_texture.binding = 0;
u_color_correction_texture.append_id(default_sampler);
u_color_correction_texture.append_id(p_settings.color_correction_texture);
RID shader = tonemap_mobile.shader.version_get_shader(tonemap_mobile.shader_version, mode);
ERR_FAIL_COND(shader.is_null());
RD::get_singleton()->draw_list_bind_render_pipeline(p_subpass_draw_list, tonemap_mobile.pipelines[mode].get_render_pipeline(RD::INVALID_ID, p_dst_format_id, false, RD::get_singleton()->draw_list_get_current_pass(), spec_constant));
RD::get_singleton()->draw_list_bind_uniform_set(p_subpass_draw_list, uniform_set_cache->get_cache(shader, 0, u_source_color), 0);
RD::get_singleton()->draw_list_bind_uniform_set(p_subpass_draw_list, uniform_set_cache->get_cache(shader, 1, u_glow_texture, u_glow_map), 1); // should be set to a default texture, it's ignored
RD::get_singleton()->draw_list_bind_uniform_set(p_subpass_draw_list, uniform_set_cache->get_cache(shader, 2, u_color_correction_texture), 2);
RD::get_singleton()->draw_list_set_push_constant(p_subpass_draw_list, &tonemap_mobile.push_constant, sizeof(TonemapPushConstantMobile));
RD::get_singleton()->draw_list_draw(p_subpass_draw_list, false, 1u, 3u);
}

View File

@@ -32,6 +32,7 @@
#include "servers/rendering/renderer_rd/pipeline_cache_rd.h"
#include "servers/rendering/renderer_rd/shaders/effects/tonemap.glsl.gen.h"
#include "servers/rendering/renderer_rd/shaders/effects/tonemap_mobile.glsl.gen.h"
#include "servers/rendering/rendering_server.h"
@@ -39,35 +40,68 @@ namespace RendererRD {
class ToneMapper {
private:
bool using_mobile_version = false;
enum TonemapMode {
TONEMAP_MODE_NORMAL,
TONEMAP_MODE_BICUBIC_GLOW_FILTER,
TONEMAP_MODE_1D_LUT,
TONEMAP_MODE_BICUBIC_GLOW_FILTER_1D_LUT,
TONEMAP_MODE_SUBPASS,
TONEMAP_MODE_SUBPASS_1D_LUT,
TONEMAP_MODE_NORMAL_MULTIVIEW,
TONEMAP_MODE_BICUBIC_GLOW_FILTER_MULTIVIEW,
TONEMAP_MODE_1D_LUT_MULTIVIEW,
TONEMAP_MODE_BICUBIC_GLOW_FILTER_1D_LUT_MULTIVIEW,
TONEMAP_MODE_SUBPASS_MULTIVIEW,
TONEMAP_MODE_SUBPASS_1D_LUT_MULTIVIEW,
TONEMAP_MODE_MAX
};
enum {
enum TonemapModeMobile {
TONEMAP_MOBILE_MODE_NORMAL,
TONEMAP_MOBILE_MODE_1D_LUT,
TONEMAP_MOBILE_MODE_SUBPASS,
TONEMAP_MOBILE_MODE_SUBPASS_1D_LUT,
TONEMAP_MOBILE_MODE_NORMAL_MULTIVIEW,
TONEMAP_MOBILE_MODE_1D_LUT_MULTIVIEW,
TONEMAP_MOBILE_MODE_SUBPASS_MULTIVIEW,
TONEMAP_MOBILE_MODE_SUBPASS_1D_LUT_MULTIVIEW,
TONEMAP_MOBILE_MODE_MAX
};
enum Flags {
TONEMAP_FLAG_USE_BCS = (1 << 0),
TONEMAP_FLAG_USE_GLOW = (1 << 1),
TONEMAP_FLAG_USE_AUTO_EXPOSURE = (1 << 2),
TONEMAP_FLAG_USE_COLOR_CORRECTION = (1 << 3),
TONEMAP_FLAG_USE_FXAA = (1 << 4),
TONEMAP_FLAG_USE_8_BIT_DEBANDING = (1 << 5),
TONEMAP_FLAG_USE_10_BIT_DEBANDING = (1 << 6),
TONEMAP_FLAG_CONVERT_TO_SRGB = (1 << 7),
};
enum FlagsMobile {
TONEMAP_MOBILE_FLAG_USE_BCS = (1 << 0),
TONEMAP_MOBILE_FLAG_USE_GLOW = (1 << 1),
TONEMAP_MOBILE_FLAG_USE_GLOW_MAP = (1 << 2),
TONEMAP_MOBILE_FLAG_USE_COLOR_CORRECTION = (1 << 3),
TONEMAP_MOBILE_FLAG_USE_FXAA = (1 << 4),
TONEMAP_MOBILE_FLAG_USE_8_BIT_DEBANDING = (1 << 5),
TONEMAP_MOBILE_FLAG_USE_10_BIT_DEBANDING = (1 << 6),
TONEMAP_MOBILE_FLAG_CONVERT_TO_SRGB = (1 << 7),
TONEMAP_MOBILE_FLAG_TONEMAPPER_LINEAR = (1 << 8),
TONEMAP_MOBILE_FLAG_TONEMAPPER_REINHARD = (1 << 9),
TONEMAP_MOBILE_FLAG_TONEMAPPER_FILMIC = (1 << 10),
TONEMAP_MOBILE_FLAG_TONEMAPPER_ACES = (1 << 11),
TONEMAP_MOBILE_FLAG_TONEMAPPER_AGX = (1 << 12),
TONEMAP_MOBILE_FLAG_GLOW_MODE_ADD = (1 << 13),
TONEMAP_MOBILE_FLAG_GLOW_MODE_SCREEN = (1 << 14),
TONEMAP_MOBILE_FLAG_GLOW_MODE_SOFTLIGHT = (1 << 15),
TONEMAP_MOBILE_FLAG_GLOW_MODE_REPLACE = (1 << 16),
TONEMAP_MOBILE_FLAG_GLOW_MODE_MIX = (1 << 17),
};
struct TonemapPushConstant {
float bcs[3]; // 12 - 12
uint32_t flags; // 4 - 16
@@ -89,6 +123,19 @@ private:
float luminance_multiplier; // 4 - 96
};
struct TonemapPushConstantMobile {
float bcs[3]; // 12 - 12
float luminance_multiplier; // 4 - 16
float src_pixel_size[2]; // 8 - 24
float dest_pixel_size[2]; // 8 - 32
float glow_intensity; // 4 - 36
float glow_map_strength; // 4 - 40
float exposure; // 4 - 44
float white; // 4 - 48
};
/* tonemap actually writes to a framebuffer, which is
* better to do using the raster pipeline rather than
* compute, as that framebuffer might be in different formats
@@ -100,21 +147,20 @@ private:
PipelineCacheRD pipelines[TONEMAP_MODE_MAX];
} tonemap;
struct TonemapMobile {
TonemapPushConstantMobile push_constant;
TonemapMobileShaderRD shader;
RID shader_version;
PipelineCacheRD pipelines[TONEMAP_MOBILE_MODE_MAX];
} tonemap_mobile;
public:
ToneMapper();
ToneMapper(bool p_use_mobile_version);
~ToneMapper();
struct TonemapSettings {
bool use_glow = false;
enum GlowMode {
GLOW_MODE_ADD,
GLOW_MODE_SCREEN,
GLOW_MODE_SOFTLIGHT,
GLOW_MODE_REPLACE,
GLOW_MODE_MIX
};
GlowMode glow_mode = GLOW_MODE_SCREEN;
RS::EnvironmentGlowBlendMode glow_mode = RS::ENV_GLOW_BLEND_MODE_SCREEN;
float glow_intensity = 0.3;
float glow_map_strength = 0.0f;
float glow_levels[7] = { 1.0, 0.8, 0.4, 0.1, 0.0, 0.0, 0.0 };
@@ -149,13 +195,15 @@ public:
};
DebandingMode debanding_mode = DEBANDING_MODE_DISABLED;
Vector2i texture_size;
Vector2i dest_texture_size;
uint32_t view_count = 1;
bool convert_to_srgb = false;
};
void tonemapper(RID p_source_color, RID p_dst_framebuffer, const TonemapSettings &p_settings);
void tonemapper(RD::DrawListID p_subpass_draw_list, RID p_source_color, RD::FramebufferFormatID p_dst_format_id, const TonemapSettings &p_settings);
void tonemapper_mobile(RID p_source_color, RID p_dst_framebuffer, const TonemapSettings &p_settings);
void tonemapper_subpass(RD::DrawListID p_subpass_draw_list, RID p_source_color, RD::FramebufferFormatID p_dst_format_id, const TonemapSettings &p_settings);
};
} // namespace RendererRD

View File

@@ -568,58 +568,99 @@ void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const Rende
RD::get_singleton()->draw_command_end_label();
}
int max_glow_level = -1;
if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
RENDER_TIMESTAMP("Glow");
RD::get_singleton()->draw_command_begin_label("Gaussian Glow");
rb->allocate_blur_textures();
int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1).mipmaps);
Vector<float> glow_levels = environment_get_glow_levels(p_render_data->environment);
bool use_debanding = rb->get_use_debanding() && !texture_storage->render_target_is_using_hdr(render_target);
int max_glow_index = -1;
int min_glow_level = RS::MAX_GLOW_LEVELS;
for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
if (environment_get_glow_levels(p_render_data->environment)[i] > 0.0) {
int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1).mipmaps);
if (i >= mipmaps) {
max_glow_level = mipmaps - 1;
} else {
max_glow_level = i;
}
if (glow_levels[i] > 0.01) {
max_glow_index = MAX(max_glow_index, i);
min_glow_level = MIN(min_glow_level, i);
}
}
max_glow_index = MIN(max_glow_index, mipmaps - 1);
float luminance_multiplier = rb->get_luminance_multiplier();
for (uint32_t l = 0; l < rb->get_view_count(); l++) {
for (int i = 0; i < (max_glow_level + 1); i++) {
Size2i vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, i);
if (can_use_storage) {
RD::get_singleton()->draw_command_begin_label("Gaussian Glow");
RID luminance_texture;
if (RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
luminance_texture = luminance->get_current_luminance_buffer(rb); // this will return and empty RID if we don't have an auto exposure buffer
}
for (uint32_t l = 0; l < rb->get_view_count(); l++) {
Size2i vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0);
RID source = rb->get_internal_texture(l);
RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, 0);
copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
if (i == 0) {
RID luminance_texture;
if (RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
luminance_texture = luminance->get_current_luminance_buffer(rb); // this will return and empty RID if we don't have an auto exposure buffer
}
RID source = rb->get_internal_texture(l);
RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
if (can_use_storage) {
copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
} else {
RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
}
} else {
RID source = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i - 1);
RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
if (can_use_storage) {
copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment));
} else {
RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment));
}
for (int i = 1; i < (max_glow_index + 1); i++) {
source = dest;
vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, i);
dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment));
}
}
}
RD::get_singleton()->draw_command_end_label();
} else {
// For the mobile renderer we blur down and up the mip chain. Which works out to (2*level-1) passes. This
// allows us to gather our levels at low resolutions and ultimately save a lot of texture read bandwidth.
// The tradeoff is that we need to use single-pass blur to minimize the number of render passes.
RD::get_singleton()->draw_command_end_label();
RID source;
RID dest;
for (uint32_t l = 0; l < rb->get_view_count(); l++) {
RD::get_singleton()->draw_command_begin_label("Gaussian Glow downsample");
Size2i source_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_COLOR, 0);
source = rb->get_internal_texture(l);
dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, 1); // Level 1 is quarter res.
copy_effects->gaussian_glow_downsample_raster(source, dest, luminance_multiplier, source_size, environment_get_glow_strength(p_render_data->environment), true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment));
Size2i vp_size;
for (int i = 1; i < (max_glow_index + 1); i++) {
source = dest;
vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, i);
dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i + 1);
copy_effects->gaussian_glow_downsample_raster(source, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment));
}
RD::get_singleton()->draw_command_end_label();
RD::get_singleton()->draw_command_begin_label("Gaussian Glow upsample");
if (max_glow_index <= 0) {
// Only layer 1 is visible, just copy over.
source = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK); // Technically a waste, but oh well. I'm not optimizing for the case of only level 1.
vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 2); // RB_TEX_BLUR_0 is double the size of RB_TEX_BLUR_1, so go up a mip level.
dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, l, 2);
RID blend_tex = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, 1);
source_size = vp_size;
copy_effects->gaussian_glow_upsample_raster(source, dest, blend_tex, luminance_multiplier, source_size, vp_size, glow_levels[0], 0.0, use_debanding);
}
for (int i = max_glow_index - 1; i >= 0; i--) {
source = dest;
source_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, i + 3);
vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, i + 2); // RB_TEX_BLUR_0 is double the size of RB_TEX_BLUR_1, so go up a mip level.
dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, l, i + 2);
RID blend_tex = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i + 1);
copy_effects->gaussian_glow_upsample_raster(source, dest, blend_tex, luminance_multiplier, source_size, vp_size, glow_levels[i], i == (max_glow_index - 1) ? glow_levels[i + 1] : 1.0, use_debanding);
}
RD::get_singleton()->draw_command_end_label();
}
}
}
{
@@ -640,8 +681,8 @@ void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const Rende
if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
tonemap.use_glow = true;
tonemap.glow_mode = RendererRD::ToneMapper::TonemapSettings::GlowMode(environment_get_glow_blend_mode(p_render_data->environment));
tonemap.glow_intensity = environment_get_glow_blend_mode(p_render_data->environment) == RS::ENV_GLOW_BLEND_MODE_MIX ? environment_get_glow_mix(p_render_data->environment) : environment_get_glow_intensity(p_render_data->environment);
tonemap.glow_mode = environment_get_glow_blend_mode(p_render_data->environment);
tonemap.glow_intensity = tonemap.glow_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? environment_get_glow_mix(p_render_data->environment) : environment_get_glow_intensity(p_render_data->environment);
for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
tonemap.glow_levels[i] = environment_get_glow_levels(p_render_data->environment)[i];
}
@@ -650,7 +691,13 @@ void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const Rende
tonemap.glow_texture_size.x = msize.width;
tonemap.glow_texture_size.y = msize.height;
tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
tonemap.glow_texture = rb->get_texture(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1);
if (can_use_storage) {
tonemap.glow_texture = rb->get_texture(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1);
} else {
tonemap.glow_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 2, rb->get_view_count());
}
if (environment_get_glow_map(p_render_data->environment).is_valid()) {
tonemap.glow_map_strength = environment_get_glow_map_strength(p_render_data->environment);
tonemap.glow_map = texture_storage->texture_get_rd_texture(environment_get_glow_map(p_render_data->environment));
@@ -698,24 +745,13 @@ void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const Rende
RID dest_fb;
RD::DataFormat dest_fb_format;
RD::DataFormat format_for_debanding;
if (spatial_upscaler != nullptr || use_smaa) {
// If we use a spatial upscaler to upscale or SMAA to antialias we need to write our result into an intermediate buffer.
// Note that this is cached so we only create the texture the first time.
dest_fb_format = rb->get_base_data_format();
RID dest_texture = rb->create_texture(SNAME("Tonemapper"), SNAME("destination"), dest_fb_format, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT, RD::TEXTURE_SAMPLES_1, Size2i(), 0, 1, true, true);
dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture);
if (use_smaa) {
format_for_debanding = dest_fb_format;
} else {
// Debanding is currently not supported when using spatial upscaling, so apply it before scaling.
// This produces suboptimal results because the image will be modified by spatial upscaling after
// debanding has been applied. Ideally, debanding should be applied as the final step before quantization
// to integer values, but in the case of MetalFX, it may not be worth the performance cost of creating a new
// intermediate buffer. In the case of FSR 1.0, the work of adding debanding support hasn't been done yet.
// Assume that the DataFormat that will be used by spatial_upscaler is the same as render_target_get_color_format.
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, tonemap.convert_to_srgb);
}
tonemap.dest_texture_size = rb->get_internal_size();
} else {
// If we do a bilinear upscale we just render into our render target and our shader will upscale automatically.
// Target size in this case is lying as we never get our real target size communicated.
@@ -723,30 +759,27 @@ void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const Rende
if (dest_is_msaa_2d) {
dest_fb = FramebufferCacheRD::get_singleton()->get_cache(texture_storage->render_target_get_rd_texture_msaa(render_target));
// Assume that the DataFormat of render_target_get_rd_texture_msaa is the same as render_target_get_color_format.
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, tonemap.convert_to_srgb);
texture_storage->render_target_set_msaa_needs_resolve(render_target, true); // Make sure this gets resolved.
} else {
dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target);
// Assume that the DataFormat of render_target_get_rd_framebuffer is the same as render_target_get_color_format.
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, tonemap.convert_to_srgb);
}
tonemap.dest_texture_size = texture_storage->render_target_get_size(render_target);
}
if (rb->get_use_debanding()) {
if (_is_8bit_data_format(format_for_debanding)) {
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_8_BIT;
} else if (_is_10bit_data_format(format_for_debanding)) {
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_DISABLED;
if (rb->get_use_debanding() && !using_hdr) {
if (!can_use_storage && (use_smaa || spatial_upscaler)) {
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_10_BIT;
} else {
// In this case, debanding will be handled later when quantizing to an integer data format. (During blit or SMAA, for example.)
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_DISABLED;
} else if (!(use_smaa || spatial_upscaler)) {
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_8_BIT;
}
} else {
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_DISABLED;
}
tone_mapper->tonemapper(color_texture, dest_fb, tonemap);
if (can_use_storage) {
tone_mapper->tonemapper(color_texture, dest_fb, tonemap);
} else {
tone_mapper->tonemapper_mobile(color_texture, dest_fb, tonemap);
}
RD::get_singleton()->draw_command_end_label();
}
@@ -756,6 +789,7 @@ void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const Rende
RD::get_singleton()->draw_command_begin_label("SMAA");
bool using_hdr = texture_storage->render_target_is_using_hdr(render_target);
RID dest_fb;
if (spatial_upscaler) {
rb->create_texture(SNAME("SMAA"), SNAME("destination"), rb->get_base_data_format(), RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT, RD::TEXTURE_SAMPLES_1, Size2i(), 0, 1, true, true);
@@ -765,79 +799,31 @@ void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const Rende
RID source_texture = rb->get_texture_slice(SNAME("Tonemapper"), SNAME("destination"), v, 0);
RID dest_texture;
RD::DataFormat format_for_debanding;
if (spatial_upscaler) {
dest_texture = rb->get_texture_slice(SNAME("SMAA"), SNAME("destination"), v, 0);
// Debanding is currently not supported when using spatial upscaling, so apply it before scaling.
// This produces suboptimal results because the image will be modified by spatial upscaling after
// debanding has been applied. Ideally, debanding should be applied as the final step before quantization
// to integer values, but in the case of MetalFX, it may not be worth the performance cost of creating a new
// intermediate buffer. In the case of FSR 1.0, the work of adding debanding support hasn't been done yet.
// Assume that the DataFormat that will be used by spatial_upscaler is the same as render_target_get_color_format.
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, !using_hdr);
} else {
dest_texture = texture_storage->render_target_get_rd_texture_slice(render_target, v);
// Assume that the DataFormat is the same as render_target_get_color_format.
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, !using_hdr);
}
dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture);
if (rb->get_use_debanding()) {
if (_is_8bit_data_format(format_for_debanding)) {
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_8_BIT;
} else if (_is_10bit_data_format(format_for_debanding)) {
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_10_BIT;
} else {
// In this case, debanding will be handled later when quantizing to an integer data format. (During blit, for example.)
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_DISABLED;
}
} else {
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_DISABLED;
}
smaa->process(rb, source_texture, dest_fb);
smaa->process(rb, source_texture, dest_fb, rb->get_use_debanding() && !using_hdr);
}
} else {
RID source_texture = rb->get_texture(SNAME("Tonemapper"), SNAME("destination"));
RD::DataFormat format_for_debanding;
if (spatial_upscaler) {
RID dest_texture = rb->create_texture(SNAME("SMAA"), SNAME("destination"), rb->get_base_data_format(), RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT, RD::TEXTURE_SAMPLES_1, Size2i(), 0, 1, true, true);
dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture);
// Debanding is currently not supported when using spatial upscaling, so apply it before scaling.
// This produces suboptimal results because the image will be modified by spatial upscaling after
// debanding has been applied. Ideally, debanding should be applied as the final step before quantization
// to integer values, but in the case of MetalFX, it may not be worth the performance cost of creating a new
// intermediate buffer. In the case of FSR 1.0, the work of adding debanding support hasn't been done yet.
// Assume that the DataFormat that will be used by spatial_upscaler is the same as render_target_get_color_format.
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, !using_hdr);
} else {
if (dest_is_msaa_2d) {
dest_fb = FramebufferCacheRD::get_singleton()->get_cache(texture_storage->render_target_get_rd_texture_msaa(render_target));
// Assume that the DataFormat of render_target_get_rd_texture_msaa is the same as render_target_get_color_format.
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, !using_hdr);
texture_storage->render_target_set_msaa_needs_resolve(render_target, true); // Make sure this gets resolved.
} else {
dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target);
// Assume that the DataFormat of render_target_get_rd_framebuffer is the same as render_target_get_color_format.
format_for_debanding = texture_storage->render_target_get_color_format(using_hdr, !using_hdr);
}
}
if (rb->get_use_debanding()) {
if (_is_8bit_data_format(format_for_debanding)) {
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_8_BIT;
} else if (_is_10bit_data_format(format_for_debanding)) {
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_10_BIT;
} else {
// In this case, debanding will be handled later when quantizing to an integer data format. (During blit, for example.)
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_DISABLED;
}
} else {
smaa->debanding_mode = RendererRD::SMAA::DebandingMode::DEBANDING_MODE_DISABLED;
}
smaa->process(rb, source_texture, dest_fb);
smaa->process(rb, source_texture, dest_fb, rb->get_use_debanding() && !using_hdr);
}
RD::get_singleton()->draw_command_end_label();
@@ -939,21 +925,12 @@ void RendererSceneRenderRD::_post_process_subpass(RID p_source_texture, RID p_fr
tonemap.view_count = rb->get_view_count();
if (rb->get_use_debanding()) {
// Assume that the DataFormat of p_framebuffer is the same as render_target_get_color_format.
RD::DataFormat dest_fb_format = texture_storage->render_target_get_color_format(using_hdr, tonemap.convert_to_srgb);
if (dest_fb_format >= RD::DATA_FORMAT_R8_UNORM && dest_fb_format <= RD::DATA_FORMAT_A8B8G8R8_SRGB_PACK32) {
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_8_BIT;
} else if (dest_fb_format >= RD::DATA_FORMAT_A2R10G10B10_UNORM_PACK32 && dest_fb_format <= RD::DATA_FORMAT_A2B10G10R10_SINT_PACK32) {
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_10_BIT;
} else {
// In this case, debanding will be handled later when quantizing to an integer data format. (During blit, for example.)
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_DISABLED;
}
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_8_BIT;
} else {
tonemap.debanding_mode = RendererRD::ToneMapper::TonemapSettings::DebandingMode::DEBANDING_MODE_DISABLED;
}
tone_mapper->tonemapper(draw_list, p_source_texture, RD::get_singleton()->framebuffer_get_format(p_framebuffer), tonemap);
tone_mapper->tonemapper_subpass(draw_list, p_source_texture, RD::get_singleton()->framebuffer_get_format(p_framebuffer), tonemap);
RD::get_singleton()->draw_command_end_label();
}
@@ -1714,7 +1691,7 @@ void RendererSceneRenderRD::init() {
debug_effects = memnew(RendererRD::DebugEffects);
luminance = memnew(RendererRD::Luminance(!can_use_storage));
smaa = memnew(RendererRD::SMAA);
tone_mapper = memnew(RendererRD::ToneMapper);
tone_mapper = memnew(RendererRD::ToneMapper(!can_use_storage));
if (can_use_vrs) {
vrs = memnew(RendererRD::VRS);
}

View File

@@ -115,14 +115,6 @@ protected:
void _post_process_subpass(RID p_source_texture, RID p_framebuffer, const RenderDataRD *p_render_data);
void _disable_clear_request(const RenderDataRD *p_render_data);
_FORCE_INLINE_ bool _is_8bit_data_format(RD::DataFormat p_data_format) {
return p_data_format >= RD::DATA_FORMAT_R8_UNORM && p_data_format <= RD::DATA_FORMAT_A8B8G8R8_SRGB_PACK32;
}
_FORCE_INLINE_ bool _is_10bit_data_format(RD::DataFormat p_data_format) {
return p_data_format >= RD::DATA_FORMAT_A2R10G10B10_UNORM_PACK32 && p_data_format <= RD::DATA_FORMAT_A2B10G10R10_SINT_PACK32;
}
// needed for a single argument calls (material and uv2)
PagedArrayPool<RenderGeometryInstance *> cull_argument_pool;
PagedArray<RenderGeometryInstance *> cull_argument; //need this to exist

View File

@@ -43,18 +43,103 @@ layout(location = 0) in vec2 uv_interp;
layout(set = 0, binding = 0) uniform sampler2D source_color;
#ifdef GLOW_USE_AUTO_EXPOSURE
layout(set = 1, binding = 0) uniform sampler2D source_auto_exposure;
#ifdef MODE_GLOW_UPSAMPLE
// When upsampling this is original downsampled texture, not the blended upsampled texture.
layout(set = 1, binding = 0) uniform sampler2D blend_color;
layout(constant_id = 0) const bool use_debanding = false;
layout(constant_id = 1) const bool use_blend_color = false;
// From https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom)
// NOTE: `frag_coord` is in pixels (i.e. not normalized UV).
// This dithering must be applied after encoding changes (linear/nonlinear) have been applied
// as the final step before quantization from floating point to integer values.
vec3 screen_space_dither(vec2 frag_coord, float bit_alignment_diviser) {
// Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR.
// Removed the time component to avoid passing time into this shader.
vec3 dither = vec3(dot(vec2(171.0, 231.0), frag_coord));
dither.rgb = fract(dither.rgb / vec3(103.0, 71.0, 97.0));
// Subtract 0.5 to avoid slightly brightening the whole viewport.
// Use a dither strength of 100% rather than the 37.5% suggested by the original source.
return (dither.rgb - 0.5) / bit_alignment_diviser;
}
#endif
layout(location = 0) out vec4 frag_color;
#ifdef MODE_GLOW_DOWNSAMPLE
// https://www.shadertoy.com/view/mdsyDf
vec4 BloomDownKernel4(sampler2D Tex, vec2 uv0) {
vec2 RcpSrcTexRes = blur.source_pixel_size;
vec2 tc = (uv0 * 2.0 + 1.0) * RcpSrcTexRes;
float la = 1.0 / 4.0;
vec2 o = (0.5 + la) * RcpSrcTexRes;
vec4 c = vec4(0.0);
c += textureLod(Tex, tc + vec2(-1.0, -1.0) * o, 0.0) * 0.25;
c += textureLod(Tex, tc + vec2(1.0, -1.0) * o, 0.0) * 0.25;
c += textureLod(Tex, tc + vec2(-1.0, 1.0) * o, 0.0) * 0.25;
c += textureLod(Tex, tc + vec2(1.0, 1.0) * o, 0.0) * 0.25;
return c;
}
#endif
#ifdef MODE_GLOW_UPSAMPLE
// https://www.shadertoy.com/view/mdsyDf
vec4 BloomUpKernel4(sampler2D Tex, vec2 uv0) {
vec2 RcpSrcTexRes = blur.source_pixel_size;
vec2 uv = uv0 * 0.5 + 0.5;
vec2 uvI = floor(uv);
vec2 uvF = uv - uvI;
vec2 tc = uvI * RcpSrcTexRes.xy;
// optimal stop-band
float lw = 0.357386;
float la = 25.0 / 32.0; // 0.78125 ~ 0.779627;
float lb = 3.0 / 64.0; // 0.046875 ~ 0.0493871;
vec2 l = vec2(-1.5 + la, 0.5 + lb);
vec2 lx = uvF.x == 0.0 ? l.xy : -l.yx;
vec2 ly = uvF.y == 0.0 ? l.xy : -l.yx;
lx *= RcpSrcTexRes.xx;
ly *= RcpSrcTexRes.yy;
vec4 c00 = textureLod(Tex, tc + vec2(lx.x, ly.x), 0.0);
vec4 c10 = textureLod(Tex, tc + vec2(lx.y, ly.x), 0.0);
vec4 c01 = textureLod(Tex, tc + vec2(lx.x, ly.y), 0.0);
vec4 c11 = textureLod(Tex, tc + vec2(lx.y, ly.y), 0.0);
vec2 w = abs(uvF * 2.0 - lw);
vec4 cx0 = c00 * (1.0 - w.x) + (c10 * w.x);
vec4 cx1 = c01 * (1.0 - w.x) + (c11 * w.x);
vec4 cxy = cx0 * (1.0 - w.y) + (cx1 * w.y);
return cxy;
}
#endif // MODE_GLOW_UPSAMPLE
void main() {
// We do not apply our color scale for our mobile renderer here, we'll leave our colors at half brightness and apply scale in the tonemap raster.
#ifdef MODE_MIPMAP
vec2 pix_size = blur.pixel_size;
vec2 pix_size = blur.dest_pixel_size;
vec4 color = texture(source_color, uv_interp + vec2(-0.5, -0.5) * pix_size);
color += texture(source_color, uv_interp + vec2(0.5, -0.5) * pix_size);
color += texture(source_color, uv_interp + vec2(0.5, 0.5) * pix_size);
@@ -68,19 +153,19 @@ void main() {
// For Gaussian Blur we use 13 taps in a single pass instead of 12 taps over 2 passes.
// This minimizes the number of times we change framebuffers which is very important for mobile.
// Source: http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
vec4 A = texture(source_color, uv_interp + blur.pixel_size * vec2(-1.0, -1.0));
vec4 B = texture(source_color, uv_interp + blur.pixel_size * vec2(0.0, -1.0));
vec4 C = texture(source_color, uv_interp + blur.pixel_size * vec2(1.0, -1.0));
vec4 D = texture(source_color, uv_interp + blur.pixel_size * vec2(-0.5, -0.5));
vec4 E = texture(source_color, uv_interp + blur.pixel_size * vec2(0.5, -0.5));
vec4 F = texture(source_color, uv_interp + blur.pixel_size * vec2(-1.0, 0.0));
vec4 A = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(-1.0, -1.0));
vec4 B = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(0.0, -1.0));
vec4 C = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(1.0, -1.0));
vec4 D = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(-0.5, -0.5));
vec4 E = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(0.5, -0.5));
vec4 F = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(-1.0, 0.0));
vec4 G = texture(source_color, uv_interp);
vec4 H = texture(source_color, uv_interp + blur.pixel_size * vec2(1.0, 0.0));
vec4 I = texture(source_color, uv_interp + blur.pixel_size * vec2(-0.5, 0.5));
vec4 J = texture(source_color, uv_interp + blur.pixel_size * vec2(0.5, 0.5));
vec4 K = texture(source_color, uv_interp + blur.pixel_size * vec2(-1.0, 1.0));
vec4 L = texture(source_color, uv_interp + blur.pixel_size * vec2(0.0, 1.0));
vec4 M = texture(source_color, uv_interp + blur.pixel_size * vec2(1.0, 1.0));
vec4 H = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(1.0, 0.0));
vec4 I = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(-0.5, 0.5));
vec4 J = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(0.5, 0.5));
vec4 K = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(-1.0, 1.0));
vec4 L = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(0.0, 1.0));
vec4 M = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(1.0, 1.0));
float base_weight = 0.5 / 4.0;
float lesser_weight = 0.125 / 4.0;
@@ -92,67 +177,55 @@ void main() {
frag_color += (G + H + M + L) * lesser_weight;
#endif
#ifdef MODE_GAUSSIAN_GLOW
#ifdef MODE_GLOW_GATHER
// First step, go straight to quarter resolution.
// Don't apply blur, but include thresholding.
//Glow uses larger sigma 1 for a more rounded blur effect
vec2 block_pos = floor(gl_FragCoord.xy) * 4.0;
vec2 end = max(1.0 / blur.source_pixel_size - vec2(4.0), vec2(0.0));
block_pos = clamp(block_pos, vec2(0.0), end);
#define GLOW_ADD(m_ofs, m_mult) \
{ \
vec2 ofs = uv_interp + m_ofs * pix_size; \
vec4 c = texture(source_color, ofs) * m_mult; \
if (any(lessThan(ofs, vec2(0.0))) || any(greaterThan(ofs, vec2(1.0)))) { \
c *= 0.0; \
} \
color += c; \
// We skipped a level, so gather 16 closest samples now.
vec4 color = textureLod(source_color, (block_pos + vec2(1.0, 1.0)) * blur.source_pixel_size, 0.0);
color += textureLod(source_color, (block_pos + vec2(1.0, 3.0)) * blur.source_pixel_size, 0.0);
color += textureLod(source_color, (block_pos + vec2(3.0, 1.0)) * blur.source_pixel_size, 0.0);
color += textureLod(source_color, (block_pos + vec2(3.0, 3.0)) * blur.source_pixel_size, 0.0);
frag_color = color * 0.25;
// Apply strength a second time since it usually gets added at each level.
frag_color *= blur.glow_strength;
frag_color *= blur.glow_strength;
// In the first pass bring back to correct color range else we're applying the wrong threshold
// in subsequent passes we can use it as is as we'd just be undoing it right after.
frag_color *= blur.luminance_multiplier;
frag_color *= blur.glow_exposure;
float luminance = max(frag_color.r, max(frag_color.g, frag_color.b));
float feedback = max(smoothstep(blur.glow_hdr_threshold, blur.glow_hdr_threshold + blur.glow_hdr_scale, luminance), blur.glow_bloom);
frag_color = min(frag_color * feedback, vec4(blur.glow_luminance_cap)) / blur.luminance_multiplier;
#endif // MODE_GLOW_GATHER_WIDE
#ifdef MODE_GLOW_DOWNSAMPLE
// Regular downsample, apply a simple blur.
frag_color = BloomDownKernel4(source_color, floor(gl_FragCoord.xy));
frag_color *= blur.glow_strength;
#endif // MODE_GLOW_DOWNSAMPLE
#ifdef MODE_GLOW_UPSAMPLE
frag_color = BloomUpKernel4(source_color, floor(gl_FragCoord.xy)) * blur.glow_strength; // "glow_strength" here is actually the glow level. It is always 1.0, except for the first upsample where we need to apply the level to two textures at once.
if (use_blend_color) {
vec2 uv = floor(gl_FragCoord.xy) + 0.5;
frag_color += textureLod(blend_color, uv * blur.dest_pixel_size, 0.0) * blur.glow_level;
}
if (bool(blur.flags & FLAG_HORIZONTAL)) {
vec2 pix_size = blur.pixel_size;
pix_size *= 0.5; //reading from larger buffer, so use more samples
vec4 color = texture(source_color, uv_interp + vec2(0.0, 0.0) * pix_size) * 0.174938;
GLOW_ADD(vec2(1.0, 0.0), 0.165569);
GLOW_ADD(vec2(2.0, 0.0), 0.140367);
GLOW_ADD(vec2(3.0, 0.0), 0.106595);
GLOW_ADD(vec2(-1.0, 0.0), 0.165569);
GLOW_ADD(vec2(-2.0, 0.0), 0.140367);
GLOW_ADD(vec2(-3.0, 0.0), 0.106595);
// only do this in the horizontal pass, if we also do this in the vertical pass we're doubling up.
color *= blur.glow_strength;
frag_color = color;
} else {
vec2 pix_size = blur.pixel_size;
vec4 color = texture(source_color, uv_interp + vec2(0.0, 0.0) * pix_size) * 0.288713;
GLOW_ADD(vec2(0.0, 1.0), 0.233062);
GLOW_ADD(vec2(0.0, 2.0), 0.122581);
GLOW_ADD(vec2(0.0, -1.0), 0.233062);
GLOW_ADD(vec2(0.0, -2.0), 0.122581);
frag_color = color;
if (use_debanding) {
frag_color.rgb += screen_space_dither(gl_FragCoord.xy, 1023.0);
}
#undef GLOW_ADD
if (bool(blur.flags & FLAG_GLOW_FIRST_PASS)) {
// In the first pass bring back to correct color range else we're applying the wrong threshold
// in subsequent passes we can use it as is as we'd just be undoing it right after.
frag_color *= blur.luminance_multiplier;
#ifdef GLOW_USE_AUTO_EXPOSURE
frag_color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / blur.glow_auto_exposure_scale;
#endif
frag_color *= blur.glow_exposure;
float luminance = max(frag_color.r, max(frag_color.g, frag_color.b));
float feedback = max(smoothstep(blur.glow_hdr_threshold, blur.glow_hdr_threshold + blur.glow_hdr_scale, luminance), blur.glow_bloom);
frag_color = min(frag_color * feedback, vec4(blur.glow_luminance_cap)) / blur.luminance_multiplier;
}
#endif // MODE_GAUSSIAN_GLOW
#endif // MODE_GLOW_UPSAMPLE
#ifdef MODE_COPY
vec4 color = textureLod(source_color, uv_interp, 0.0);

View File

@@ -3,24 +3,22 @@
#define FLAG_GLOW_FIRST_PASS (1 << 2)
layout(push_constant, std430) uniform Blur {
vec2 pixel_size; // 08 - 08
uint flags; // 04 - 12
uint pad; // 04 - 16
vec2 dest_pixel_size; // 08 - 08
vec2 source_pixel_size; // 08 - 16
vec2 pad; // 08 - 24
uint flags; // 04 - 28
float glow_level; // 04 - 32
// Glow.
float glow_strength; // 04 - 20
float glow_bloom; // 04 - 24
float glow_hdr_threshold; // 04 - 28
float glow_hdr_scale; // 04 - 32
float glow_strength; // 04 - 36
float glow_bloom; // 04 - 40
float glow_hdr_threshold; // 04 - 44
float glow_hdr_scale; // 04 - 48
float glow_exposure; // 04 - 36
float glow_white; // 04 - 40
float glow_luminance_cap; // 04 - 44
float glow_auto_exposure_scale; // 04 - 48
float luminance_multiplier; // 04 - 52
float res1; // 04 - 56
float res2; // 04 - 60
float res3; // 04 - 64
float glow_exposure; // 04 - 52
float glow_white; // 04 - 56
float glow_luminance_cap; // 04 - 60
float luminance_multiplier; // 04 - 64
}
blur;

View File

@@ -67,7 +67,7 @@ layout(location = 0) out vec4 out_color;
layout(push_constant, std430) uniform Params {
vec2 inv_size;
uint flags;
uint use_debanding;
float pad;
}
params;
@@ -140,11 +140,8 @@ void main() {
out_color.rgb = linear_to_srgb(out_color.rgb);
out_color.a = texture(color_tex, tex_coord).a;
}
if (bool(params.flags & FLAG_USE_8_BIT_DEBANDING)) {
if (bool(params.use_debanding)) {
// Divide by 255 to align to 8-bit quantization.
out_color.rgb += screen_space_dither(gl_FragCoord.xy, 255.0);
} else if (bool(params.flags & FLAG_USE_10_BIT_DEBANDING)) {
// Divide by 1023 to align to 10-bit quantization.
out_color.rgb += screen_space_dither(gl_FragCoord.xy, 1023.0);
}
}

View File

@@ -38,21 +38,16 @@ void main() {
layout(location = 0) in vec2 uv_interp;
#ifdef SUBPASS
layout(input_attachment_index = 0, set = 0, binding = 0) uniform subpassInput input_color;
#elif defined(USE_MULTIVIEW)
layout(set = 0, binding = 0) uniform sampler2DArray source_color;
#ifdef USE_MULTIVIEW
#define SAMPLER_FORMAT sampler2DArray
#else
layout(set = 0, binding = 0) uniform sampler2D source_color;
#define SAMPLER_FORMAT sampler2D
#endif
layout(set = 0, binding = 0) uniform SAMPLER_FORMAT source_color;
layout(set = 1, binding = 0) uniform sampler2D source_auto_exposure;
#ifdef USE_MULTIVIEW
layout(set = 2, binding = 0) uniform sampler2DArray source_glow;
#else
layout(set = 2, binding = 0) uniform sampler2D source_glow;
#endif
layout(set = 2, binding = 1) uniform sampler2D glow_map;
layout(set = 2, binding = 0) uniform SAMPLER_FORMAT source_glow;
layout(set = 2, binding = 1) uniform sampler2D glow_map; // TODO needs multiview support
#ifdef USE_1D_LUT
layout(set = 3, binding = 0) uniform sampler2D source_color_correction;
@@ -66,8 +61,7 @@ layout(set = 3, binding = 0) uniform sampler3D source_color_correction;
#define FLAG_USE_COLOR_CORRECTION (1 << 3)
#define FLAG_USE_FXAA (1 << 4)
#define FLAG_USE_8_BIT_DEBANDING (1 << 5)
#define FLAG_USE_10_BIT_DEBANDING (1 << 6)
#define FLAG_CONVERT_TO_SRGB (1 << 7)
#define FLAG_CONVERT_TO_SRGB (1 << 6)
layout(push_constant, std430) uniform Params {
vec3 bcs;
@@ -93,111 +87,6 @@ params;
layout(location = 0) out vec4 frag_color;
#ifdef USE_GLOW_FILTER_BICUBIC
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
float w0(float a) {
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
}
float w1(float a) {
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
}
float w2(float a) {
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
}
float w3(float a) {
return (1.0f / 6.0f) * (a * a * a);
}
// g0 and g1 are the two amplitude functions
float g0(float a) {
return w0(a) + w1(a);
}
float g1(float a) {
return w2(a) + w3(a);
}
// h0 and h1 are the two offset functions
float h0(float a) {
return -1.0f + w1(a) / (w0(a) + w1(a));
}
float h1(float a) {
return 1.0f + w3(a) / (w2(a) + w3(a));
}
#ifdef USE_MULTIVIEW
vec4 texture2D_bicubic(sampler2DArray tex, vec2 uv, int p_lod) {
float lod = float(p_lod);
vec2 tex_size = vec2(params.glow_texture_size >> p_lod);
vec2 pixel_size = vec2(1.0f) / tex_size;
uv = uv * tex_size + vec2(0.5f);
vec2 iuv = floor(uv);
vec2 fuv = fract(uv);
float g0x = g0(fuv.x);
float g1x = g1(fuv.x);
float h0x = h0(fuv.x);
float h1x = h1(fuv.x);
float h0y = h0(fuv.y);
float h1y = h1(fuv.y);
vec3 p0 = vec3((vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size, ViewIndex);
vec3 p1 = vec3((vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size, ViewIndex);
vec3 p2 = vec3((vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size, ViewIndex);
vec3 p3 = vec3((vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size, ViewIndex);
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
}
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
#else // USE_MULTIVIEW
vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
float lod = float(p_lod);
vec2 tex_size = vec2(params.glow_texture_size >> p_lod);
vec2 pixel_size = vec2(1.0f) / tex_size;
uv = uv * tex_size + vec2(0.5f);
vec2 iuv = floor(uv);
vec2 fuv = fract(uv);
float g0x = g0(fuv.x);
float g1x = g1(fuv.x);
float h0x = h0(fuv.x);
float h1x = h1(fuv.x);
float h0y = h0(fuv.y);
float h1y = h1(fuv.y);
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
}
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
#endif // !USE_MULTIVIEW
#else // USE_GLOW_FILTER_BICUBIC
#ifdef USE_MULTIVIEW
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, vec3(m_uv, ViewIndex), float(m_lod))
#else // USE_MULTIVIEW
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
#endif // !USE_MULTIVIEW
#endif // !USE_GLOW_FILTER_BICUBIC
// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
vec3 tonemap_reinhard(vec3 color, float white) {
float white_squared = white * white;
@@ -360,11 +249,113 @@ vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR
}
}
#ifdef USE_GLOW_FILTER_BICUBIC
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
float w0(float a) {
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
}
float w1(float a) {
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
}
float w2(float a) {
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
}
float w3(float a) {
return (1.0f / 6.0f) * (a * a * a);
}
// g0 and g1 are the two amplitude functions
float g0(float a) {
return w0(a) + w1(a);
}
float g1(float a) {
return w2(a) + w3(a);
}
// h0 and h1 are the two offset functions
float h0(float a) {
return -1.0f + w1(a) / (w0(a) + w1(a));
}
float h1(float a) {
return 1.0f + w3(a) / (w2(a) + w3(a));
}
#ifdef USE_MULTIVIEW
vec3 gather_glow(sampler2DArray tex, vec2 uv) { // sample all selected glow levels, view is added to uv later
#else
vec3 gather_glow(sampler2D tex, vec2 uv) { // sample all selected glow levels
#endif // defined(USE_MULTIVIEW)
vec4 texture2D_bicubic(sampler2DArray tex, vec2 uv, int p_lod) {
float lod = float(p_lod);
vec2 tex_size = vec2(params.glow_texture_size >> p_lod);
vec2 pixel_size = vec2(1.0f) / tex_size;
uv = uv * tex_size + vec2(0.5f);
vec2 iuv = floor(uv);
vec2 fuv = fract(uv);
float g0x = g0(fuv.x);
float g1x = g1(fuv.x);
float h0x = h0(fuv.x);
float h1x = h1(fuv.x);
float h0y = h0(fuv.y);
float h1y = h1(fuv.y);
vec3 p0 = vec3((vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size, ViewIndex);
vec3 p1 = vec3((vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size, ViewIndex);
vec3 p2 = vec3((vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size, ViewIndex);
vec3 p3 = vec3((vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size, ViewIndex);
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
}
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
#else // USE_MULTIVIEW
vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
float lod = float(p_lod);
vec2 tex_size = vec2(params.glow_texture_size >> p_lod);
vec2 pixel_size = vec2(1.0f) / tex_size;
uv = uv * tex_size + vec2(0.5f);
vec2 iuv = floor(uv);
vec2 fuv = fract(uv);
float g0x = g0(fuv.x);
float g1x = g1(fuv.x);
float h0x = h0(fuv.x);
float h1x = h1(fuv.x);
float h0y = h0(fuv.y);
float h1y = h1(fuv.y);
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
}
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
#endif // !USE_MULTIVIEW
#else // USE_GLOW_FILTER_BICUBIC
#ifdef USE_MULTIVIEW
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, vec3(m_uv, ViewIndex), float(m_lod))
#else // USE_MULTIVIEW
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
#endif // !USE_MULTIVIEW
#endif // !USE_GLOW_FILTER_BICUBIC
vec3 gather_glow(SAMPLER_FORMAT tex, vec2 uv) { // sample all selected glow levels
vec3 glow = vec3(0.0f);
if (params.glow_levels[0] > 0.0001) {
@@ -461,8 +452,6 @@ vec3 apply_color_correction(vec3 color) {
}
#endif
#ifndef SUBPASS
// FXAA 3.11 compact, Ported from https://github.com/kosua20/Rendu/blob/master/resources/common/shaders/screens/fxaa.frag
///////////////////////////////////////////////////////////////////////////////////
// MIT License
@@ -831,7 +820,6 @@ vec3 do_fxaa(vec3 color, float exposure, vec2 uv_interp) {
#endif
}
#endif // !SUBPASS
// From https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom)
@@ -850,15 +838,7 @@ vec3 screen_space_dither(vec2 frag_coord, float bit_alignment_diviser) {
}
void main() {
#ifdef SUBPASS
// SUBPASS and USE_MULTIVIEW can be combined but in that case we're already reading from the correct layer
#ifdef USE_MULTIVIEW
// In order to ensure the `SpvCapabilityMultiView` is included in the SPIR-V capabilities, gl_ViewIndex must
// be read in the shader. Without this, transpilation to Metal fails to include the multi-view variant.
uint vi = ViewIndex;
#endif
vec4 color = subpassLoad(input_color);
#elif defined(USE_MULTIVIEW)
vec4 color = textureLod(source_color, vec3(uv_interp, ViewIndex), 0.0f);
#else
vec4 color = textureLod(source_color, uv_interp, 0.0f);
@@ -869,17 +849,13 @@ void main() {
float exposure = params.exposure;
#ifndef SUBPASS
if (bool(params.flags & FLAG_USE_AUTO_EXPOSURE)) {
exposure *= 1.0 / (texelFetch(source_auto_exposure, ivec2(0, 0), 0).r * params.luminance_multiplier / params.auto_exposure_scale);
}
#endif
color.rgb *= exposure;
// Single-pass FXAA and pre-tonemap glow.
#ifndef SUBPASS
if (bool(params.flags & FLAG_USE_FXAA)) {
// FXAA must be performed before glow to preserve the "bleed" effect of glow.
color.rgb = do_fxaa(color.rgb, exposure, uv_interp);
@@ -900,15 +876,13 @@ void main() {
color.rgb = apply_glow(color.rgb, glow, params.white);
}
}
#endif
// Tonemap to lower dynamic range.
color.rgb = apply_tonemapping(color.rgb, params.white);
// Additional effects.
// Post-tonemap glow.
#ifndef SUBPASS
if (bool(params.flags & FLAG_USE_GLOW) && params.glow_mode == GLOW_MODE_SOFTLIGHT) {
// Apply soft light after tonemapping to mitigate the issue of discontinuity
// at 1.0 and higher. This makes the issue only appear with HDR output that
@@ -921,7 +895,8 @@ void main() {
glow = apply_tonemapping(glow, params.white);
color.rgb = apply_glow(color.rgb, glow, params.white);
}
#endif
// Additional effects.
if (bool(params.flags & FLAG_USE_BCS)) {
// Apply brightness:
@@ -964,9 +939,6 @@ void main() {
if (bool(params.flags & FLAG_USE_8_BIT_DEBANDING)) {
// Divide by 255 to align to 8-bit quantization.
color.rgb += screen_space_dither(gl_FragCoord.xy, 255.0);
} else if (bool(params.flags & FLAG_USE_10_BIT_DEBANDING)) {
// Divide by 1023 to align to 10-bit quantization.
color.rgb += screen_space_dither(gl_FragCoord.xy, 1023.0);
}
frag_color = color;

View File

@@ -0,0 +1,818 @@
#[vertex]
#version 450
#VERSION_DEFINES
layout(location = 0) out vec2 uv_interp;
void main() {
// old code, ARM driver bug on Mali-GXXx GPUs and Vulkan API 1.3.xxx
// https://github.com/godotengine/godot/pull/92817#issuecomment-2168625982
//vec2 base_arr[3] = vec2[](vec2(-1.0, -1.0), vec2(-1.0, 3.0), vec2(3.0, -1.0));
//gl_Position = vec4(base_arr[gl_VertexIndex], 0.0, 1.0);
//uv_interp = clamp(gl_Position.xy, vec2(0.0, 0.0), vec2(1.0, 1.0)) * 2.0; // saturate(x) * 2.0
vec2 vertex_base;
if (gl_VertexIndex == 0) {
vertex_base = vec2(-1.0, -1.0);
} else if (gl_VertexIndex == 1) {
vertex_base = vec2(-1.0, 3.0);
} else {
vertex_base = vec2(3.0, -1.0);
}
gl_Position = vec4(vertex_base, 0.0, 1.0);
uv_interp = clamp(vertex_base, vec2(0.0, 0.0), vec2(1.0, 1.0)) * 2.0; // saturate(x) * 2.0
}
#[fragment]
#version 450
#VERSION_DEFINES
#ifdef USE_MULTIVIEW
#extension GL_EXT_multiview : enable
#define ViewIndex gl_ViewIndex
#endif //USE_MULTIVIEW
layout(location = 0) in vec2 uv_interp;
#ifdef USE_MULTIVIEW
#define SAMPLER_FORMAT sampler2DArray
#else
#define SAMPLER_FORMAT sampler2D
#endif
#ifdef SUBPASS
layout(input_attachment_index = 0, set = 0, binding = 0) uniform subpassInput input_color;
#else
layout(set = 0, binding = 0) uniform SAMPLER_FORMAT source_color;
#endif
layout(set = 1, binding = 0) uniform SAMPLER_FORMAT source_glow;
layout(set = 1, binding = 1) uniform sampler2D glow_map;
#ifdef USE_1D_LUT
layout(set = 2, binding = 0) uniform sampler2D source_color_correction;
#else
layout(set = 2, binding = 0) uniform sampler3D source_color_correction;
#endif
layout(constant_id = 0) const bool use_bcs = false;
layout(constant_id = 1) const bool use_glow = false;
layout(constant_id = 2) const bool use_glow_map = false;
layout(constant_id = 3) const bool use_color_correction = false;
layout(constant_id = 4) const bool use_fxaa = false;
layout(constant_id = 5) const bool deband_8_bit = false;
layout(constant_id = 6) const bool deband_10_bit = false;
layout(constant_id = 7) const bool convert_to_srgb = false;
layout(constant_id = 8) const bool tonemapper_linear = false;
layout(constant_id = 9) const bool tonemapper_reinhard = false;
layout(constant_id = 10) const bool tonemapper_filmic = false;
layout(constant_id = 11) const bool tonemapper_aces = false;
layout(constant_id = 12) const bool tonemapper_agx = false;
layout(constant_id = 13) const bool glow_mode_add = false;
layout(constant_id = 14) const bool glow_mode_screen = false;
layout(constant_id = 15) const bool glow_mode_softlight = false;
layout(constant_id = 16) const bool glow_mode_replace = false;
layout(constant_id = 17) const bool glow_mode_mix = false;
layout(push_constant, std430) uniform Params {
vec3 bcs;
float luminance_multiplier;
vec2 src_pixel_size;
vec2 dest_pixel_size;
float glow_intensity;
float glow_map_strength;
float exposure;
float white;
}
params;
layout(location = 0) out vec4 frag_color;
// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
vec3 tonemap_reinhard(vec3 color, float white) {
float white_squared = white * white;
vec3 white_squared_color = white_squared * color;
// Equivalent to color * (1 + color / white_squared) / (1 + color)
return (white_squared_color + color * color) / (white_squared_color + white_squared);
}
vec3 tonemap_filmic(vec3 color, float white) {
// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
// has no effect on the curve's general shape or visual properties
const float exposure_bias = 2.0f;
const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
const float B = 0.30f * exposure_bias;
const float C = 0.10f;
const float D = 0.20f;
const float E = 0.01f;
const float F = 0.30f;
vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F;
return color_tonemapped / white_tonemapped;
}
// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
// (MIT License).
vec3 tonemap_aces(vec3 color, float white) {
const float exposure_bias = 1.8f;
const float A = 0.0245786f;
const float B = 0.000090537f;
const float C = 0.983729f;
const float D = 0.432951f;
const float E = 0.238081f;
// Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias`
const mat3 rgb_to_rrt = mat3(
vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias),
vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias),
vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias));
const mat3 odt_to_rgb = mat3(
vec3(1.60475f, -0.53108f, -0.07367f),
vec3(-0.10208f, 1.10813f, -0.00605f),
vec3(-0.00327f, -0.07276f, 1.07602f));
color *= rgb_to_rrt;
vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E);
color_tonemapped *= odt_to_rgb;
white *= exposure_bias;
float white_tonemapped = (white * (white + A) - B) / (white * (C * white + D) + E);
return color_tonemapped / white_tonemapped;
}
// Polynomial approximation of EaryChow's AgX sigmoid curve.
// x must be within the range [0.0, 1.0]
vec3 agx_contrast_approx(vec3 x) {
// Generated with Excel trendline
// Input data: Generated using python sigmoid with EaryChow's configuration and 57 steps
// Additional padding values were added to give correct intersections at 0.0 and 1.0
// 6th order, intercept of 0.0 to remove an operation and ensure intersection at 0.0
vec3 x2 = x * x;
vec3 x4 = x2 * x2;
return 0.021 * x + 4.0111 * x2 - 25.682 * x2 * x + 70.359 * x4 - 74.778 * x4 * x + 27.069 * x4 * x2;
}
// This is an approximation and simplification of EaryChow's AgX implementation that is used by Blender.
// This code is based off of the script that generates the AgX_Base_sRGB.cube LUT that Blender uses.
// Source: https://github.com/EaryChow/AgX_LUT_Gen/blob/main/AgXBasesRGB.py
vec3 tonemap_agx(vec3 color) {
// Combined linear sRGB to linear Rec 2020 and Blender AgX inset matrices:
const mat3 srgb_to_rec2020_agx_inset_matrix = mat3(
0.54490813676363087053, 0.14044005884001287035, 0.088827411851915368603,
0.37377945959812267119, 0.75410959864013760045, 0.17887712465043811023,
0.081384976686407536266, 0.10543358536857773485, 0.73224999956948382528);
// Combined inverse AgX outset matrix and linear Rec 2020 to linear sRGB matrices.
const mat3 agx_outset_rec2020_to_srgb_matrix = mat3(
1.9645509602733325934, -0.29932243390911083839, -0.16436833806080403409,
-0.85585845117807513559, 1.3264510741502356555, -0.23822464068860595117,
-0.10886710826831608324, -0.027084020983874825605, 1.402665347143271889);
// LOG2_MIN = -10.0
// LOG2_MAX = +6.5
// MIDDLE_GRAY = 0.18
const float min_ev = -12.4739311883324; // log2(pow(2, LOG2_MIN) * MIDDLE_GRAY)
const float max_ev = 4.02606881166759; // log2(pow(2, LOG2_MAX) * MIDDLE_GRAY)
// Large negative values in one channel and large positive values in other
// channels can result in a colour that appears darker and more saturated than
// desired after passing it through the inset matrix. For this reason, it is
// best to prevent negative input values.
// This is done before the Rec. 2020 transform to allow the Rec. 2020
// transform to be combined with the AgX inset matrix. This results in a loss
// of color information that could be correctly interpreted within the
// Rec. 2020 color space as positive RGB values, but it is less common for Godot
// to provide this function with negative sRGB values and therefore not worth
// the performance cost of an additional matrix multiplication.
// A value of 2e-10 intentionally introduces insignificant error to prevent
// log2(0.0) after the inset matrix is applied; color will be >= 1e-10 after
// the matrix transform.
color = max(color, 2e-10);
// Do AGX in rec2020 to match Blender and then apply inset matrix.
color = srgb_to_rec2020_agx_inset_matrix * color;
// Log2 space encoding.
// Must be clamped because agx_contrast_approx may not work
// well with values outside of the range [0.0, 1.0]
color = clamp(log2(color), min_ev, max_ev);
color = (color - min_ev) / (max_ev - min_ev);
// Apply sigmoid function approximation.
color = agx_contrast_approx(color);
// Convert back to linear before applying outset matrix.
color = pow(color, vec3(2.4));
// Apply outset to make the result more chroma-laden and then go back to linear sRGB.
color = agx_outset_rec2020_to_srgb_matrix * color;
// Blender's lusRGB.compensate_low_side is too complex for this shader, so
// simply return the color, even if it has negative components. These negative
// components may be useful for subsequent color adjustments.
return color;
}
vec3 linear_to_srgb(vec3 color) {
// Clamping is not strictly necessary for floating point nonlinear sRGB encoding,
// but many cases that call this function need the result clamped.
color = clamp(color, vec3(0.0), vec3(1.0));
const vec3 a = vec3(0.055f);
return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
}
vec3 srgb_to_linear(vec3 color) {
const vec3 a = vec3(0.055f);
return mix(pow((color.rgb + a) * (1.0f / (vec3(1.0f) + a)), vec3(2.4f)), color.rgb * (1.0f / 12.92f), lessThan(color.rgb, vec3(0.04045f)));
}
vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR
// Ensure color values passed to tonemappers are positive.
// They can be negative in the case of negative lights, which leads to undesired behavior.
if (tonemapper_linear) {
return color;
} else if (tonemapper_reinhard) {
return tonemap_reinhard(max(vec3(0.0f), color), white);
} else if (tonemapper_filmic) {
return tonemap_filmic(max(vec3(0.0f), color), white);
} else if (tonemapper_aces) {
return tonemap_aces(max(vec3(0.0f), color), white);
} else { // FLAG_TONEMAPPER_AGX
return tonemap_agx(color);
}
}
#ifdef USE_MULTIVIEW
vec3 gather_glow() {
vec2 uv = gl_FragCoord.xy * params.dest_pixel_size;
return textureLod(source_glow, vec3(uv, ViewIndex), 0.0).rgb;
}
#else
vec3 gather_glow() {
vec2 uv = gl_FragCoord.xy * params.dest_pixel_size;
return textureLod(source_glow, uv, 0.0).rgb;
}
#endif // !USE_MULTIVIEW
// Applies glow using the selected blending mode. Does not handle the mix blend mode.
vec3 apply_glow(vec3 color, vec3 glow, float white) {
if (glow_mode_add) {
return color + glow;
} else if (glow_mode_screen) {
// Glow cannot be above 1.0 after normalizing and should be non-negative
// to produce expected results. It is possible that glow can be negative
// if negative lights were used in the scene.
// We clamp to white because glow will be normalized to this range.
// Note: white cannot be smaller than the maximum output value.
glow.rgb = clamp(glow.rgb, 0.0, white);
// Normalize to white range.
//glow.rgb /= white;
//color.rgb /= white;
//color.rgb = (color.rgb + glow.rgb) - (color.rgb * glow.rgb);
// Expand back to original range.
//color.rgb *= white;
// The following is a mathematically simplified version of the above.
color.rgb = color.rgb + glow.rgb - (color.rgb * glow.rgb / white);
return color;
} else if (glow_mode_softlight) {
// Glow cannot be above 1.0 should be non-negative to produce
// expected results. It is possible that glow can be negative
// if negative lights were used in the scene.
// Note: This approach causes a discontinuity with scene values
// at 1.0, but because this glow should have its strongest influence
// anchored at 0.25 there is no way around this.
glow.rgb = clamp(glow.rgb, 0.0, 1.0);
color.r = color.r > 1.0 ? color.r : color.r + glow.r * ((color.r <= 0.25f ? ((16.0f * color.r - 12.0f) * color.r + 4.0f) * color.r : sqrt(color.r)) - color.r);
color.g = color.g > 1.0 ? color.g : color.g + glow.g * ((color.g <= 0.25f ? ((16.0f * color.g - 12.0f) * color.g + 4.0f) * color.g : sqrt(color.g)) - color.g);
color.b = color.b > 1.0 ? color.b : color.b + glow.b * ((color.b <= 0.25f ? ((16.0f * color.b - 12.0f) * color.b + 4.0f) * color.b : sqrt(color.b)) - color.b);
return color;
} else { //replace
return glow;
}
}
#ifdef USE_1D_LUT
vec3 apply_color_correction(vec3 color) {
color.r = texture(source_color_correction, vec2(color.r, 0.0f)).r;
color.g = texture(source_color_correction, vec2(color.g, 0.0f)).g;
color.b = texture(source_color_correction, vec2(color.b, 0.0f)).b;
return color;
}
#else
vec3 apply_color_correction(vec3 color) {
return textureLod(source_color_correction, color, 0.0).rgb;
}
#endif
#ifndef SUBPASS
// FXAA 3.11 compact, Ported from https://github.com/kosua20/Rendu/blob/master/resources/common/shaders/screens/fxaa.frag
///////////////////////////////////////////////////////////////////////////////////
// MIT License
//
// Copyright (c) 2017 Simon Rodriguez
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////
// Nvidia Original FXAA 3.11 License
//----------------------------------------------------------------------------------
// File: es3-kepler\FXAA/FXAA3_11.h
// SDK Version: v3.00
// Email: gameworks@nvidia.com
// Site: http://developer.nvidia.com/
//
// Copyright (c) 2014-2015, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//----------------------------------------------------------------------------------
//
// NVIDIA FXAA 3.11 by TIMOTHY LOTTES
//
//----------------------------------------------------------------------------------
float QUALITY(float q) {
return (q < 5 ? 1.0 : (q > 5 ? (q < 10 ? 2.0 : (q < 11 ? 4.0 : 8.0)) : 1.5));
}
float rgb2luma(vec3 rgb) {
return sqrt(dot(rgb, vec3(0.299, 0.587, 0.114)));
}
vec3 do_fxaa(vec3 color, float exposure, vec2 uv_interp) {
const float EDGE_THRESHOLD_MIN = 0.0312;
const float EDGE_THRESHOLD_MAX = 0.125;
const int ITERATIONS = 12;
const float SUBPIXEL_QUALITY = 0.75;
#ifdef USE_MULTIVIEW
float lumaUp = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(0, 1)).xyz * exposure * params.luminance_multiplier);
float lumaDown = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(0, -1)).xyz * exposure * params.luminance_multiplier);
float lumaLeft = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(-1, 0)).xyz * exposure * params.luminance_multiplier);
float lumaRight = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(1, 0)).xyz * exposure * params.luminance_multiplier);
float lumaCenter = rgb2luma(color);
float lumaMin = min(lumaCenter, min(min(lumaUp, lumaDown), min(lumaLeft, lumaRight)));
float lumaMax = max(lumaCenter, max(max(lumaUp, lumaDown), max(lumaLeft, lumaRight)));
float lumaRange = lumaMax - lumaMin;
if (lumaRange < max(EDGE_THRESHOLD_MIN, lumaMax * EDGE_THRESHOLD_MAX)) {
return color;
}
float lumaDownLeft = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(-1, -1)).xyz * exposure * params.luminance_multiplier);
float lumaUpRight = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(1, 1)).xyz * exposure * params.luminance_multiplier);
float lumaUpLeft = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(-1, 1)).xyz * exposure * params.luminance_multiplier);
float lumaDownRight = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(1, -1)).xyz * exposure * params.luminance_multiplier);
float lumaDownUp = lumaDown + lumaUp;
float lumaLeftRight = lumaLeft + lumaRight;
float lumaLeftCorners = lumaDownLeft + lumaUpLeft;
float lumaDownCorners = lumaDownLeft + lumaDownRight;
float lumaRightCorners = lumaDownRight + lumaUpRight;
float lumaUpCorners = lumaUpRight + lumaUpLeft;
float edgeHorizontal = abs(-2.0 * lumaLeft + lumaLeftCorners) + abs(-2.0 * lumaCenter + lumaDownUp) * 2.0 + abs(-2.0 * lumaRight + lumaRightCorners);
float edgeVertical = abs(-2.0 * lumaUp + lumaUpCorners) + abs(-2.0 * lumaCenter + lumaLeftRight) * 2.0 + abs(-2.0 * lumaDown + lumaDownCorners);
bool isHorizontal = (edgeHorizontal >= edgeVertical);
float stepLength = isHorizontal ? params.src_pixel_size.y : params.src_pixel_size.x;
float luma1 = isHorizontal ? lumaDown : lumaLeft;
float luma2 = isHorizontal ? lumaUp : lumaRight;
float gradient1 = luma1 - lumaCenter;
float gradient2 = luma2 - lumaCenter;
bool is1Steepest = abs(gradient1) >= abs(gradient2);
float gradientScaled = 0.25 * max(abs(gradient1), abs(gradient2));
float lumaLocalAverage = 0.0;
if (is1Steepest) {
stepLength = -stepLength;
lumaLocalAverage = 0.5 * (luma1 + lumaCenter);
} else {
lumaLocalAverage = 0.5 * (luma2 + lumaCenter);
}
vec2 currentUv = uv_interp;
if (isHorizontal) {
currentUv.y += stepLength * 0.5;
} else {
currentUv.x += stepLength * 0.5;
}
vec2 offset = isHorizontal ? vec2(params.src_pixel_size.x, 0.0) : vec2(0.0, params.src_pixel_size.y);
vec3 uv1 = vec3(currentUv - offset * QUALITY(0), ViewIndex);
vec3 uv2 = vec3(currentUv + offset * QUALITY(0), ViewIndex);
float lumaEnd1 = rgb2luma(textureLod(source_color, uv1, 0.0).xyz * exposure * params.luminance_multiplier);
float lumaEnd2 = rgb2luma(textureLod(source_color, uv2, 0.0).xyz * exposure * params.luminance_multiplier);
lumaEnd1 -= lumaLocalAverage;
lumaEnd2 -= lumaLocalAverage;
bool reached1 = abs(lumaEnd1) >= gradientScaled;
bool reached2 = abs(lumaEnd2) >= gradientScaled;
bool reachedBoth = reached1 && reached2;
if (!reached1) {
uv1 -= vec3(offset * QUALITY(1), 0.0);
}
if (!reached2) {
uv2 += vec3(offset * QUALITY(1), 0.0);
}
if (!reachedBoth) {
for (int i = 2; i < ITERATIONS; i++) {
if (!reached1) {
lumaEnd1 = rgb2luma(textureLod(source_color, uv1, 0.0).xyz * exposure * params.luminance_multiplier);
lumaEnd1 = lumaEnd1 - lumaLocalAverage;
}
if (!reached2) {
lumaEnd2 = rgb2luma(textureLod(source_color, uv2, 0.0).xyz * exposure * params.luminance_multiplier);
lumaEnd2 = lumaEnd2 - lumaLocalAverage;
}
reached1 = abs(lumaEnd1) >= gradientScaled;
reached2 = abs(lumaEnd2) >= gradientScaled;
reachedBoth = reached1 && reached2;
if (!reached1) {
uv1 -= vec3(offset * QUALITY(i), 0.0);
}
if (!reached2) {
uv2 += vec3(offset * QUALITY(i), 0.0);
}
if (reachedBoth) {
break;
}
}
}
float distance1 = isHorizontal ? (uv_interp.x - uv1.x) : (uv_interp.y - uv1.y);
float distance2 = isHorizontal ? (uv2.x - uv_interp.x) : (uv2.y - uv_interp.y);
bool isDirection1 = distance1 < distance2;
float distanceFinal = min(distance1, distance2);
float edgeThickness = (distance1 + distance2);
bool isLumaCenterSmaller = lumaCenter < lumaLocalAverage;
bool correctVariation1 = (lumaEnd1 < 0.0) != isLumaCenterSmaller;
bool correctVariation2 = (lumaEnd2 < 0.0) != isLumaCenterSmaller;
bool correctVariation = isDirection1 ? correctVariation1 : correctVariation2;
float pixelOffset = -distanceFinal / edgeThickness + 0.5;
float finalOffset = correctVariation ? pixelOffset : 0.0;
float lumaAverage = (1.0 / 12.0) * (2.0 * (lumaDownUp + lumaLeftRight) + lumaLeftCorners + lumaRightCorners);
float subPixelOffset1 = clamp(abs(lumaAverage - lumaCenter) / lumaRange, 0.0, 1.0);
float subPixelOffset2 = (-2.0 * subPixelOffset1 + 3.0) * subPixelOffset1 * subPixelOffset1;
float subPixelOffsetFinal = subPixelOffset2 * subPixelOffset2 * SUBPIXEL_QUALITY;
finalOffset = max(finalOffset, subPixelOffsetFinal);
vec3 finalUv = vec3(uv_interp, ViewIndex);
if (isHorizontal) {
finalUv.y += finalOffset * stepLength;
} else {
finalUv.x += finalOffset * stepLength;
}
vec3 finalColor = textureLod(source_color, finalUv, 0.0).xyz * exposure * params.luminance_multiplier;
return finalColor;
#else
float lumaUp = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(0, 1)).xyz * exposure * params.luminance_multiplier);
float lumaDown = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(0, -1)).xyz * exposure * params.luminance_multiplier);
float lumaLeft = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(-1, 0)).xyz * exposure * params.luminance_multiplier);
float lumaRight = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(1, 0)).xyz * exposure * params.luminance_multiplier);
float lumaCenter = rgb2luma(color);
float lumaMin = min(lumaCenter, min(min(lumaUp, lumaDown), min(lumaLeft, lumaRight)));
float lumaMax = max(lumaCenter, max(max(lumaUp, lumaDown), max(lumaLeft, lumaRight)));
float lumaRange = lumaMax - lumaMin;
if (lumaRange < max(EDGE_THRESHOLD_MIN, lumaMax * EDGE_THRESHOLD_MAX)) {
return color;
}
float lumaDownLeft = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(-1, -1)).xyz * exposure * params.luminance_multiplier);
float lumaUpRight = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(1, 1)).xyz * exposure * params.luminance_multiplier);
float lumaUpLeft = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(-1, 1)).xyz * exposure * params.luminance_multiplier);
float lumaDownRight = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(1, -1)).xyz * exposure * params.luminance_multiplier);
float lumaDownUp = lumaDown + lumaUp;
float lumaLeftRight = lumaLeft + lumaRight;
float lumaLeftCorners = lumaDownLeft + lumaUpLeft;
float lumaDownCorners = lumaDownLeft + lumaDownRight;
float lumaRightCorners = lumaDownRight + lumaUpRight;
float lumaUpCorners = lumaUpRight + lumaUpLeft;
float edgeHorizontal = abs(-2.0 * lumaLeft + lumaLeftCorners) + abs(-2.0 * lumaCenter + lumaDownUp) * 2.0 + abs(-2.0 * lumaRight + lumaRightCorners);
float edgeVertical = abs(-2.0 * lumaUp + lumaUpCorners) + abs(-2.0 * lumaCenter + lumaLeftRight) * 2.0 + abs(-2.0 * lumaDown + lumaDownCorners);
bool isHorizontal = (edgeHorizontal >= edgeVertical);
float stepLength = isHorizontal ? params.src_pixel_size.y : params.src_pixel_size.x;
float luma1 = isHorizontal ? lumaDown : lumaLeft;
float luma2 = isHorizontal ? lumaUp : lumaRight;
float gradient1 = luma1 - lumaCenter;
float gradient2 = luma2 - lumaCenter;
bool is1Steepest = abs(gradient1) >= abs(gradient2);
float gradientScaled = 0.25 * max(abs(gradient1), abs(gradient2));
float lumaLocalAverage = 0.0;
if (is1Steepest) {
stepLength = -stepLength;
lumaLocalAverage = 0.5 * (luma1 + lumaCenter);
} else {
lumaLocalAverage = 0.5 * (luma2 + lumaCenter);
}
vec2 currentUv = uv_interp;
if (isHorizontal) {
currentUv.y += stepLength * 0.5;
} else {
currentUv.x += stepLength * 0.5;
}
vec2 offset = isHorizontal ? vec2(params.src_pixel_size.x, 0.0) : vec2(0.0, params.src_pixel_size.y);
vec2 uv1 = currentUv - offset * QUALITY(0);
vec2 uv2 = currentUv + offset * QUALITY(0);
float lumaEnd1 = rgb2luma(textureLod(source_color, uv1, 0.0).xyz * exposure * params.luminance_multiplier);
float lumaEnd2 = rgb2luma(textureLod(source_color, uv2, 0.0).xyz * exposure * params.luminance_multiplier);
lumaEnd1 -= lumaLocalAverage;
lumaEnd2 -= lumaLocalAverage;
bool reached1 = abs(lumaEnd1) >= gradientScaled;
bool reached2 = abs(lumaEnd2) >= gradientScaled;
bool reachedBoth = reached1 && reached2;
if (!reached1) {
uv1 -= offset * QUALITY(1);
}
if (!reached2) {
uv2 += offset * QUALITY(1);
}
if (!reachedBoth) {
for (int i = 2; i < ITERATIONS; i++) {
if (!reached1) {
lumaEnd1 = rgb2luma(textureLod(source_color, uv1, 0.0).xyz * exposure * params.luminance_multiplier);
lumaEnd1 = lumaEnd1 - lumaLocalAverage;
}
if (!reached2) {
lumaEnd2 = rgb2luma(textureLod(source_color, uv2, 0.0).xyz * exposure * params.luminance_multiplier);
lumaEnd2 = lumaEnd2 - lumaLocalAverage;
}
reached1 = abs(lumaEnd1) >= gradientScaled;
reached2 = abs(lumaEnd2) >= gradientScaled;
reachedBoth = reached1 && reached2;
if (!reached1) {
uv1 -= offset * QUALITY(i);
}
if (!reached2) {
uv2 += offset * QUALITY(i);
}
if (reachedBoth) {
break;
}
}
}
float distance1 = isHorizontal ? (uv_interp.x - uv1.x) : (uv_interp.y - uv1.y);
float distance2 = isHorizontal ? (uv2.x - uv_interp.x) : (uv2.y - uv_interp.y);
bool isDirection1 = distance1 < distance2;
float distanceFinal = min(distance1, distance2);
float edgeThickness = (distance1 + distance2);
bool isLumaCenterSmaller = lumaCenter < lumaLocalAverage;
bool correctVariation1 = (lumaEnd1 < 0.0) != isLumaCenterSmaller;
bool correctVariation2 = (lumaEnd2 < 0.0) != isLumaCenterSmaller;
bool correctVariation = isDirection1 ? correctVariation1 : correctVariation2;
float pixelOffset = -distanceFinal / edgeThickness + 0.5;
float finalOffset = correctVariation ? pixelOffset : 0.0;
float lumaAverage = (1.0 / 12.0) * (2.0 * (lumaDownUp + lumaLeftRight) + lumaLeftCorners + lumaRightCorners);
float subPixelOffset1 = clamp(abs(lumaAverage - lumaCenter) / lumaRange, 0.0, 1.0);
float subPixelOffset2 = (-2.0 * subPixelOffset1 + 3.0) * subPixelOffset1 * subPixelOffset1;
float subPixelOffsetFinal = subPixelOffset2 * subPixelOffset2 * SUBPIXEL_QUALITY;
finalOffset = max(finalOffset, subPixelOffsetFinal);
vec2 finalUv = uv_interp;
if (isHorizontal) {
finalUv.y += finalOffset * stepLength;
} else {
finalUv.x += finalOffset * stepLength;
}
vec3 finalColor = textureLod(source_color, finalUv, 0.0).xyz * exposure * params.luminance_multiplier;
return finalColor;
#endif
}
#endif // !SUBPASS
// From https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom)
// NOTE: `frag_coord` is in pixels (i.e. not normalized UV).
// This dithering must be applied after encoding changes (linear/nonlinear) have been applied
// as the final step before quantization from floating point to integer values.
vec3 screen_space_dither(vec2 frag_coord, float bit_alignment_diviser) {
// Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR.
// Removed the time component to avoid passing time into this shader.
vec3 dither = vec3(dot(vec2(171.0, 231.0), frag_coord));
dither.rgb = fract(dither.rgb / vec3(103.0, 71.0, 97.0));
// Subtract 0.5 to avoid slightly brightening the whole viewport.
// Use a dither strength of 100% rather than the 37.5% suggested by the original source.
return (dither.rgb - 0.5) / bit_alignment_diviser;
}
void main() {
#ifdef SUBPASS
// SUBPASS and USE_MULTIVIEW can be combined but in that case we're already reading from the correct layer
#ifdef USE_MULTIVIEW
// In order to ensure the `SpvCapabilityMultiView` is included in the SPIR-V capabilities, gl_ViewIndex must
// be read in the shader. Without this, transpilation to Metal fails to include the multi-view variant.
uint vi = ViewIndex;
#endif
vec4 color = subpassLoad(input_color);
#elif defined(USE_MULTIVIEW)
vec4 color = textureLod(source_color, vec3(uv_interp, ViewIndex), 0.0f);
#else
vec4 color = textureLod(source_color, uv_interp, 0.0f);
#endif
color.rgb *= params.luminance_multiplier;
// Exposure
color.rgb *= params.exposure;
// Early Tonemap & SRGB Conversion
#ifndef SUBPASS
if (use_fxaa) {
// FXAA must be performed before glow to preserve the "bleed" effect of glow.
color.rgb = do_fxaa(color.rgb, params.exposure, uv_interp);
}
if (use_glow && !glow_mode_softlight) {
vec3 glow = gather_glow() * params.luminance_multiplier * params.glow_intensity;
if (use_glow_map) {
glow = mix(glow, texture(glow_map, uv_interp).rgb * glow, params.glow_map_strength);
}
if (glow_mode_mix) {
color.rgb = color.rgb * (1.0 - params.glow_intensity) + glow;
} else {
color.rgb = apply_glow(color.rgb, glow, params.white);
}
}
#endif
color.rgb = apply_tonemapping(color.rgb, params.white);
#ifndef SUBPASS
// Glow
if (use_glow && glow_mode_softlight) {
// Apply soft light after tonemapping to mitigate the issue of discontinuity
// at 1.0 and higher. This makes the issue only appear with HDR output that
// can exceed a 1.0 output value.
vec3 glow = gather_glow() * params.glow_intensity * params.luminance_multiplier;
if (use_glow_map) {
glow = mix(glow, texture(glow_map, uv_interp).rgb * glow, params.glow_map_strength);
}
glow = apply_tonemapping(glow, params.white);
color.rgb = apply_glow(color.rgb, glow, params.white);
}
#endif
// Additional effects
if (use_bcs) {
// Apply brightness:
// Apply to relative luminance. This ensures that the hue and saturation of
// colors is not affected by the adjustment, but requires the multiplication
// to be performed on linear-encoded values.
color.rgb = color.rgb * params.bcs.x;
color.rgb = linear_to_srgb(color.rgb);
// Apply contrast:
// By applying contrast to RGB values that are perceptually uniform (nonlinear),
// the darkest values are not hard-clipped as badly, which produces a
// higher quality contrast adjustment and maintains compatibility with
// existing projects.
color.rgb = mix(vec3(0.5), color.rgb, params.bcs.y);
// Apply saturation:
// By applying saturation adjustment to nonlinear sRGB-encoded values with
// even weights the preceived brightness of blues are affected, but this
// maintains compatibility with existing projects.
color.rgb = mix(vec3(dot(vec3(1.0), color.rgb) * (1.0 / 3.0)), color.rgb, params.bcs.z);
if (use_color_correction) {
color.rgb = clamp(color.rgb, vec3(0.0), vec3(1.0));
color.rgb = apply_color_correction(color.rgb);
// When using color correction and convert_to_srgb is false, there
// is no need to convert back to linear because the color correction
// texture sampling does this for us.
} else if (!convert_to_srgb) {
color.rgb = srgb_to_linear(color.rgb);
}
} else if (convert_to_srgb) {
color.rgb = linear_to_srgb(color.rgb); // Regular linear -> SRGB conversion.
}
// Debanding should be done at the end of tonemapping, but before writing to the LDR buffer.
// Otherwise, we're adding noise to an already-quantized image.
if (deband_8_bit) {
// Divide by 255 to align to 8-bit quantization.
color.rgb += screen_space_dither(gl_FragCoord.xy, 255.0);
} else if (deband_10_bit) {
// Divide by 1023 to align to 10-bit quantization.
color.rgb += screen_space_dither(gl_FragCoord.xy, 1023.0);
}
frag_color = color;
}

View File

@@ -530,11 +530,6 @@ void RenderSceneBuffersRD::allocate_blur_textures() {
create_texture(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, get_base_data_format(), usage_bits, RD::TEXTURE_SAMPLES_1, blur_size, view_count, mipmaps_required);
create_texture(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, get_base_data_format(), usage_bits, RD::TEXTURE_SAMPLES_1, Size2i(blur_size.x >> 1, blur_size.y >> 1), view_count, mipmaps_required - 1);
// if !can_be_storage we need a half width version
if (!can_be_storage) {
create_texture(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, get_base_data_format(), usage_bits, RD::TEXTURE_SAMPLES_1, Size2i(blur_size.x >> 1, blur_size.y), 1, mipmaps_required);
}
// TODO redo this:
if (!can_be_storage) {
// create 4 weight textures, 2 full size, 2 half size

View File

@@ -55,7 +55,6 @@
#define RB_TEX_BLUR_0 SNAME("blur_0")
#define RB_TEX_BLUR_1 SNAME("blur_1")
#define RB_TEX_HALF_BLUR SNAME("half_blur") // only for raster!
#define RB_TEX_BACK_COLOR SNAME("back_color")
#define RB_TEX_BACK_DEPTH SNAME("back_depth")

View File

@@ -507,7 +507,7 @@ RS::EnvironmentGlowBlendMode RendererEnvironmentStorage::environment_get_glow_bl
float RendererEnvironmentStorage::environment_get_glow_hdr_bleed_threshold(RID p_env) const {
Environment *env = environment_owner.get_or_null(p_env);
ERR_FAIL_NULL_V(env, 1.0);
ERR_FAIL_NULL_V(env, 0.0);
return env->glow_hdr_bleed_threshold;
}

View File

@@ -103,7 +103,7 @@ private:
float glow_bloom = 0.0;
float glow_mix = 0.01;
RS::EnvironmentGlowBlendMode glow_blend_mode = RS::ENV_GLOW_BLEND_MODE_SCREEN;
float glow_hdr_bleed_threshold = 1.0;
float glow_hdr_bleed_threshold = 0.0;
float glow_hdr_luminance_cap = 12.0;
float glow_hdr_bleed_scale = 2.0;
float glow_map_strength = 0.0f; // 1.0f in GLES3 ??