1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-07 12:30:27 +00:00

Update Bullet to the latest commit 126b676

This commit is contained in:
Oussama
2019-01-03 14:26:51 +01:00
committed by Rémi Verschelde
parent a6722cf362
commit 22b7c9dfa8
612 changed files with 114715 additions and 103413 deletions

View File

@@ -29,29 +29,25 @@ subject to the following restrictions:
btShapePairCallback gCompoundCompoundChildShapePairCallback = 0;
btCompoundCompoundCollisionAlgorithm::btCompoundCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,bool isSwapped)
:btCompoundCollisionAlgorithm(ci,body0Wrap,body1Wrap,isSwapped)
btCompoundCompoundCollisionAlgorithm::btCompoundCompoundCollisionAlgorithm(const btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, bool isSwapped)
: btCompoundCollisionAlgorithm(ci, body0Wrap, body1Wrap, isSwapped)
{
void* ptr = btAlignedAlloc(sizeof(btHashedSimplePairCache),16);
m_childCollisionAlgorithmCache= new(ptr) btHashedSimplePairCache();
void* ptr = btAlignedAlloc(sizeof(btHashedSimplePairCache), 16);
m_childCollisionAlgorithmCache = new (ptr) btHashedSimplePairCache();
const btCollisionObjectWrapper* col0ObjWrap = body0Wrap;
btAssert (col0ObjWrap->getCollisionShape()->isCompound());
btAssert(col0ObjWrap->getCollisionShape()->isCompound());
const btCollisionObjectWrapper* col1ObjWrap = body1Wrap;
btAssert (col1ObjWrap->getCollisionShape()->isCompound());
btAssert(col1ObjWrap->getCollisionShape()->isCompound());
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(col0ObjWrap->getCollisionShape());
m_compoundShapeRevision0 = compoundShape0->getUpdateRevision();
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(col1ObjWrap->getCollisionShape());
m_compoundShapeRevision1 = compoundShape1->getUpdateRevision();
}
btCompoundCompoundCollisionAlgorithm::~btCompoundCompoundCollisionAlgorithm()
{
removeChildAlgorithms();
@@ -59,32 +55,30 @@ btCompoundCompoundCollisionAlgorithm::~btCompoundCompoundCollisionAlgorithm()
btAlignedFree(m_childCollisionAlgorithmCache);
}
void btCompoundCompoundCollisionAlgorithm::getAllContactManifolds(btManifoldArray& manifoldArray)
void btCompoundCompoundCollisionAlgorithm::getAllContactManifolds(btManifoldArray& manifoldArray)
{
int i;
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
for (i=0;i<pairs.size();i++)
for (i = 0; i < pairs.size(); i++)
{
if (pairs[i].m_userPointer)
{
((btCollisionAlgorithm*)pairs[i].m_userPointer)->getAllContactManifolds(manifoldArray);
}
}
}
void btCompoundCompoundCollisionAlgorithm::removeChildAlgorithms()
void btCompoundCompoundCollisionAlgorithm::removeChildAlgorithms()
{
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
int numChildren = pairs.size();
int i;
for (i=0;i<numChildren;i++)
for (i = 0; i < numChildren; i++)
{
if (pairs[i].m_userPointer)
{
btCollisionAlgorithm* algo = (btCollisionAlgorithm*) pairs[i].m_userPointer;
btCollisionAlgorithm* algo = (btCollisionAlgorithm*)pairs[i].m_userPointer;
algo->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(algo);
}
@@ -92,77 +86,65 @@ void btCompoundCompoundCollisionAlgorithm::removeChildAlgorithms()
m_childCollisionAlgorithmCache->removeAllPairs();
}
struct btCompoundCompoundLeafCallback : btDbvt::ICollide
struct btCompoundCompoundLeafCallback : btDbvt::ICollide
{
int m_numOverlapPairs;
const btCollisionObjectWrapper* m_compound0ColObjWrap;
const btCollisionObjectWrapper* m_compound1ColObjWrap;
btDispatcher* m_dispatcher;
const btDispatcherInfo& m_dispatchInfo;
btManifoldResult* m_resultOut;
class btHashedSimplePairCache* m_childCollisionAlgorithmCache;
btPersistentManifold* m_sharedManifold;
btCompoundCompoundLeafCallback (const btCollisionObjectWrapper* compound1ObjWrap,
const btCollisionObjectWrapper* compound0ObjWrap,
btDispatcher* dispatcher,
const btDispatcherInfo& dispatchInfo,
btManifoldResult* resultOut,
btHashedSimplePairCache* childAlgorithmsCache,
btPersistentManifold* sharedManifold)
:m_numOverlapPairs(0),m_compound0ColObjWrap(compound1ObjWrap),m_compound1ColObjWrap(compound0ObjWrap),m_dispatcher(dispatcher),m_dispatchInfo(dispatchInfo),m_resultOut(resultOut),
m_childCollisionAlgorithmCache(childAlgorithmsCache),
m_sharedManifold(sharedManifold)
{
btManifoldResult* m_resultOut;
class btHashedSimplePairCache* m_childCollisionAlgorithmCache;
btPersistentManifold* m_sharedManifold;
btCompoundCompoundLeafCallback(const btCollisionObjectWrapper* compound1ObjWrap,
const btCollisionObjectWrapper* compound0ObjWrap,
btDispatcher* dispatcher,
const btDispatcherInfo& dispatchInfo,
btManifoldResult* resultOut,
btHashedSimplePairCache* childAlgorithmsCache,
btPersistentManifold* sharedManifold)
: m_numOverlapPairs(0), m_compound0ColObjWrap(compound1ObjWrap), m_compound1ColObjWrap(compound0ObjWrap), m_dispatcher(dispatcher), m_dispatchInfo(dispatchInfo), m_resultOut(resultOut), m_childCollisionAlgorithmCache(childAlgorithmsCache), m_sharedManifold(sharedManifold)
{
}
void Process(const btDbvtNode* leaf0,const btDbvtNode* leaf1)
void Process(const btDbvtNode* leaf0, const btDbvtNode* leaf1)
{
BT_PROFILE("btCompoundCompoundLeafCallback::Process");
m_numOverlapPairs++;
int childIndex0 = leaf0->dataAsInt;
int childIndex1 = leaf1->dataAsInt;
btAssert(childIndex0>=0);
btAssert(childIndex1>=0);
btAssert(childIndex0 >= 0);
btAssert(childIndex1 >= 0);
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(m_compound0ColObjWrap->getCollisionShape());
btAssert(childIndex0<compoundShape0->getNumChildShapes());
btAssert(childIndex0 < compoundShape0->getNumChildShapes());
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(m_compound1ColObjWrap->getCollisionShape());
btAssert(childIndex1<compoundShape1->getNumChildShapes());
btAssert(childIndex1 < compoundShape1->getNumChildShapes());
const btCollisionShape* childShape0 = compoundShape0->getChildShape(childIndex0);
const btCollisionShape* childShape1 = compoundShape1->getChildShape(childIndex1);
//backup
btTransform orgTrans0 = m_compound0ColObjWrap->getWorldTransform();
btTransform orgTrans0 = m_compound0ColObjWrap->getWorldTransform();
const btTransform& childTrans0 = compoundShape0->getChildTransform(childIndex0);
btTransform newChildWorldTrans0 = orgTrans0*childTrans0 ;
btTransform orgTrans1 = m_compound1ColObjWrap->getWorldTransform();
btTransform newChildWorldTrans0 = orgTrans0 * childTrans0;
btTransform orgTrans1 = m_compound1ColObjWrap->getWorldTransform();
const btTransform& childTrans1 = compoundShape1->getChildTransform(childIndex1);
btTransform newChildWorldTrans1 = orgTrans1*childTrans1 ;
btTransform newChildWorldTrans1 = orgTrans1 * childTrans1;
//perform an AABB check first
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
childShape0->getAabb(newChildWorldTrans0,aabbMin0,aabbMax0);
childShape1->getAabb(newChildWorldTrans1,aabbMin1,aabbMax1);
btVector3 aabbMin0, aabbMax0, aabbMin1, aabbMax1;
childShape0->getAabb(newChildWorldTrans0, aabbMin0, aabbMax0);
childShape1->getAabb(newChildWorldTrans1, aabbMin1, aabbMax1);
btVector3 thresholdVec(m_resultOut->m_closestPointDistanceThreshold, m_resultOut->m_closestPointDistanceThreshold, m_resultOut->m_closestPointDistanceThreshold);
aabbMin0 -= thresholdVec;
@@ -170,17 +152,16 @@ struct btCompoundCompoundLeafCallback : btDbvt::ICollide
if (gCompoundCompoundChildShapePairCallback)
{
if (!gCompoundCompoundChildShapePairCallback(childShape0,childShape1))
if (!gCompoundCompoundChildShapePairCallback(childShape0, childShape1))
return;
}
if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
if (TestAabbAgainstAabb2(aabbMin0, aabbMax0, aabbMin1, aabbMax1))
{
btCollisionObjectWrapper compoundWrap0(this->m_compound0ColObjWrap,childShape0, m_compound0ColObjWrap->getCollisionObject(),newChildWorldTrans0,-1,childIndex0);
btCollisionObjectWrapper compoundWrap1(this->m_compound1ColObjWrap,childShape1,m_compound1ColObjWrap->getCollisionObject(),newChildWorldTrans1,-1,childIndex1);
btCollisionObjectWrapper compoundWrap0(this->m_compound0ColObjWrap, childShape0, m_compound0ColObjWrap->getCollisionObject(), newChildWorldTrans0, -1, childIndex0);
btCollisionObjectWrapper compoundWrap1(this->m_compound1ColObjWrap, childShape1, m_compound1ColObjWrap->getCollisionObject(), newChildWorldTrans1, -1, childIndex1);
btSimplePair* pair = m_childCollisionAlgorithmCache->findPair(childIndex0,childIndex1);
btSimplePair* pair = m_childCollisionAlgorithmCache->findPair(childIndex0, childIndex1);
bool removePair = false;
btCollisionAlgorithm* colAlgo = 0;
if (m_resultOut->m_closestPointDistanceThreshold > 0)
@@ -193,7 +174,6 @@ struct btCompoundCompoundLeafCallback : btDbvt::ICollide
if (pair)
{
colAlgo = (btCollisionAlgorithm*)pair->m_userPointer;
}
else
{
@@ -205,7 +185,7 @@ struct btCompoundCompoundLeafCallback : btDbvt::ICollide
}
btAssert(colAlgo);
const btCollisionObjectWrapper* tmpWrap0 = 0;
const btCollisionObjectWrapper* tmpWrap1 = 0;
@@ -215,105 +195,100 @@ struct btCompoundCompoundLeafCallback : btDbvt::ICollide
m_resultOut->setBody0Wrap(&compoundWrap0);
m_resultOut->setBody1Wrap(&compoundWrap1);
m_resultOut->setShapeIdentifiersA(-1,childIndex0);
m_resultOut->setShapeIdentifiersB(-1,childIndex1);
m_resultOut->setShapeIdentifiersA(-1, childIndex0);
m_resultOut->setShapeIdentifiersB(-1, childIndex1);
colAlgo->processCollision(&compoundWrap0, &compoundWrap1, m_dispatchInfo, m_resultOut);
colAlgo->processCollision(&compoundWrap0,&compoundWrap1,m_dispatchInfo,m_resultOut);
m_resultOut->setBody0Wrap(tmpWrap0);
m_resultOut->setBody1Wrap(tmpWrap1);
if (removePair)
{
colAlgo->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(colAlgo);
}
}
}
};
static DBVT_INLINE bool MyIntersect( const btDbvtAabbMm& a,
const btDbvtAabbMm& b, const btTransform& xform, btScalar distanceThreshold)
static DBVT_INLINE bool MyIntersect(const btDbvtAabbMm& a,
const btDbvtAabbMm& b, const btTransform& xform, btScalar distanceThreshold)
{
btVector3 newmin,newmax;
btTransformAabb(b.Mins(),b.Maxs(),0.f,xform,newmin,newmax);
btVector3 newmin, newmax;
btTransformAabb(b.Mins(), b.Maxs(), 0.f, xform, newmin, newmax);
newmin -= btVector3(distanceThreshold, distanceThreshold, distanceThreshold);
newmax += btVector3(distanceThreshold, distanceThreshold, distanceThreshold);
btDbvtAabbMm newb = btDbvtAabbMm::FromMM(newmin,newmax);
return Intersect(a,newb);
btDbvtAabbMm newb = btDbvtAabbMm::FromMM(newmin, newmax);
return Intersect(a, newb);
}
static inline void MycollideTT( const btDbvtNode* root0,
const btDbvtNode* root1,
const btTransform& xform,
btCompoundCompoundLeafCallback* callback, btScalar distanceThreshold)
static inline void MycollideTT(const btDbvtNode* root0,
const btDbvtNode* root1,
const btTransform& xform,
btCompoundCompoundLeafCallback* callback, btScalar distanceThreshold)
{
if(root0&&root1)
{
int depth=1;
int treshold=btDbvt::DOUBLE_STACKSIZE-4;
btAlignedObjectArray<btDbvt::sStkNN> stkStack;
if (root0 && root1)
{
int depth = 1;
int treshold = btDbvt::DOUBLE_STACKSIZE - 4;
btAlignedObjectArray<btDbvt::sStkNN> stkStack;
#ifdef USE_LOCAL_STACK
ATTRIBUTE_ALIGNED16(btDbvt::sStkNN localStack[btDbvt::DOUBLE_STACKSIZE]);
stkStack.initializeFromBuffer(&localStack,btDbvt::DOUBLE_STACKSIZE,btDbvt::DOUBLE_STACKSIZE);
ATTRIBUTE_ALIGNED16(btDbvt::sStkNN localStack[btDbvt::DOUBLE_STACKSIZE]);
stkStack.initializeFromBuffer(&localStack, btDbvt::DOUBLE_STACKSIZE, btDbvt::DOUBLE_STACKSIZE);
#else
stkStack.resize(btDbvt::DOUBLE_STACKSIZE);
stkStack.resize(btDbvt::DOUBLE_STACKSIZE);
#endif
stkStack[0]=btDbvt::sStkNN(root0,root1);
do {
btDbvt::sStkNN p=stkStack[--depth];
if(MyIntersect(p.a->volume,p.b->volume,xform, distanceThreshold))
stkStack[0] = btDbvt::sStkNN(root0, root1);
do
{
btDbvt::sStkNN p = stkStack[--depth];
if (MyIntersect(p.a->volume, p.b->volume, xform, distanceThreshold))
{
if (depth > treshold)
{
if(depth>treshold)
stkStack.resize(stkStack.size() * 2);
treshold = stkStack.size() - 4;
}
if (p.a->isinternal())
{
if (p.b->isinternal())
{
stkStack.resize(stkStack.size()*2);
treshold=stkStack.size()-4;
}
if(p.a->isinternal())
{
if(p.b->isinternal())
{
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b->childs[0]);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b->childs[0]);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b->childs[1]);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b->childs[1]);
}
else
{
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b);
}
stkStack[depth++] = btDbvt::sStkNN(p.a->childs[0], p.b->childs[0]);
stkStack[depth++] = btDbvt::sStkNN(p.a->childs[1], p.b->childs[0]);
stkStack[depth++] = btDbvt::sStkNN(p.a->childs[0], p.b->childs[1]);
stkStack[depth++] = btDbvt::sStkNN(p.a->childs[1], p.b->childs[1]);
}
else
{
if(p.b->isinternal())
{
stkStack[depth++]=btDbvt::sStkNN(p.a,p.b->childs[0]);
stkStack[depth++]=btDbvt::sStkNN(p.a,p.b->childs[1]);
}
else
{
callback->Process(p.a,p.b);
}
stkStack[depth++] = btDbvt::sStkNN(p.a->childs[0], p.b);
stkStack[depth++] = btDbvt::sStkNN(p.a->childs[1], p.b);
}
}
} while(depth);
}
else
{
if (p.b->isinternal())
{
stkStack[depth++] = btDbvt::sStkNN(p.a, p.b->childs[0]);
stkStack[depth++] = btDbvt::sStkNN(p.a, p.b->childs[1]);
}
else
{
callback->Process(p.a, p.b);
}
}
}
} while (depth);
}
}
void btCompoundCompoundCollisionAlgorithm::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
void btCompoundCompoundCollisionAlgorithm::processCollision(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
{
const btCollisionObjectWrapper* col0ObjWrap = body0Wrap;
const btCollisionObjectWrapper* col1ObjWrap= body1Wrap;
const btCollisionObjectWrapper* col1ObjWrap = body1Wrap;
btAssert (col0ObjWrap->getCollisionShape()->isCompound());
btAssert (col1ObjWrap->getCollisionShape()->isCompound());
btAssert(col0ObjWrap->getCollisionShape()->isCompound());
btAssert(col1ObjWrap->getCollisionShape()->isCompound());
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(col0ObjWrap->getCollisionShape());
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(col1ObjWrap->getCollisionShape());
@@ -321,7 +296,7 @@ void btCompoundCompoundCollisionAlgorithm::processCollision (const btCollisionOb
const btDbvt* tree1 = compoundShape1->getDynamicAabbTree();
if (!tree0 || !tree1)
{
return btCompoundCollisionAlgorithm::processCollision(body0Wrap,body1Wrap,dispatchInfo,resultOut);
return btCompoundCollisionAlgorithm::processCollision(body0Wrap, body1Wrap, dispatchInfo, resultOut);
}
///btCompoundShape might have changed:
////make sure the internal child collision algorithm caches are still valid
@@ -331,28 +306,26 @@ void btCompoundCompoundCollisionAlgorithm::processCollision (const btCollisionOb
removeChildAlgorithms();
m_compoundShapeRevision0 = compoundShape0->getUpdateRevision();
m_compoundShapeRevision1 = compoundShape1->getUpdateRevision();
}
///we need to refresh all contact manifolds
///note that we should actually recursively traverse all children, btCompoundShape can nested more then 1 level deep
///so we should add a 'refreshManifolds' in the btCollisionAlgorithm
{
int i;
btManifoldArray manifoldArray;
#ifdef USE_LOCAL_STACK
#ifdef USE_LOCAL_STACK
btPersistentManifold localManifolds[4];
manifoldArray.initializeFromBuffer(&localManifolds,0,4);
manifoldArray.initializeFromBuffer(&localManifolds, 0, 4);
#endif
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
for (i=0;i<pairs.size();i++)
for (i = 0; i < pairs.size(); i++)
{
if (pairs[i].m_userPointer)
{
btCollisionAlgorithm* algo = (btCollisionAlgorithm*) pairs[i].m_userPointer;
btCollisionAlgorithm* algo = (btCollisionAlgorithm*)pairs[i].m_userPointer;
algo->getAllContactManifolds(manifoldArray);
for (int m=0;m<manifoldArray.size();m++)
for (int m = 0; m < manifoldArray.size(); m++)
{
if (manifoldArray[m]->getNumContacts())
{
@@ -366,35 +339,27 @@ void btCompoundCompoundCollisionAlgorithm::processCollision (const btCollisionOb
}
}
btCompoundCompoundLeafCallback callback(col0ObjWrap, col1ObjWrap, this->m_dispatcher, dispatchInfo, resultOut, this->m_childCollisionAlgorithmCache, m_sharedManifold);
btCompoundCompoundLeafCallback callback(col0ObjWrap,col1ObjWrap,this->m_dispatcher,dispatchInfo,resultOut,this->m_childCollisionAlgorithmCache,m_sharedManifold);
const btTransform xform=col0ObjWrap->getWorldTransform().inverse()*col1ObjWrap->getWorldTransform();
MycollideTT(tree0->m_root,tree1->m_root,xform,&callback, resultOut->m_closestPointDistanceThreshold);
const btTransform xform = col0ObjWrap->getWorldTransform().inverse() * col1ObjWrap->getWorldTransform();
MycollideTT(tree0->m_root, tree1->m_root, xform, &callback, resultOut->m_closestPointDistanceThreshold);
//printf("#compound-compound child/leaf overlap =%d \r",callback.m_numOverlapPairs);
//remove non-overlapping child pairs
{
btAssert(m_removePairs.size()==0);
btAssert(m_removePairs.size() == 0);
//iterate over all children, perform an AABB check inside ProcessChildShape
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
int i;
btManifoldArray manifoldArray;
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
for (i=0;i<pairs.size();i++)
int i;
btManifoldArray manifoldArray;
btVector3 aabbMin0, aabbMax0, aabbMin1, aabbMax1;
for (i = 0; i < pairs.size(); i++)
{
if (pairs[i].m_userPointer)
{
@@ -402,52 +367,47 @@ void btCompoundCompoundCollisionAlgorithm::processCollision (const btCollisionOb
{
const btCollisionShape* childShape0 = 0;
btTransform newChildWorldTrans0;
btTransform newChildWorldTrans0;
childShape0 = compoundShape0->getChildShape(pairs[i].m_indexA);
const btTransform& childTrans0 = compoundShape0->getChildTransform(pairs[i].m_indexA);
newChildWorldTrans0 = col0ObjWrap->getWorldTransform()*childTrans0 ;
childShape0->getAabb(newChildWorldTrans0,aabbMin0,aabbMax0);
newChildWorldTrans0 = col0ObjWrap->getWorldTransform() * childTrans0;
childShape0->getAabb(newChildWorldTrans0, aabbMin0, aabbMax0);
}
btVector3 thresholdVec(resultOut->m_closestPointDistanceThreshold, resultOut->m_closestPointDistanceThreshold, resultOut->m_closestPointDistanceThreshold);
aabbMin0 -= thresholdVec;
aabbMax0 += thresholdVec;
{
const btCollisionShape* childShape1 = 0;
btTransform newChildWorldTrans1;
btTransform newChildWorldTrans1;
childShape1 = compoundShape1->getChildShape(pairs[i].m_indexB);
const btTransform& childTrans1 = compoundShape1->getChildTransform(pairs[i].m_indexB);
newChildWorldTrans1 = col1ObjWrap->getWorldTransform()*childTrans1 ;
childShape1->getAabb(newChildWorldTrans1,aabbMin1,aabbMax1);
newChildWorldTrans1 = col1ObjWrap->getWorldTransform() * childTrans1;
childShape1->getAabb(newChildWorldTrans1, aabbMin1, aabbMax1);
}
aabbMin1 -= thresholdVec;
aabbMax1 += thresholdVec;
if (!TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
if (!TestAabbAgainstAabb2(aabbMin0, aabbMax0, aabbMin1, aabbMax1))
{
algo->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(algo);
m_removePairs.push_back(btSimplePair(pairs[i].m_indexA,pairs[i].m_indexB));
m_removePairs.push_back(btSimplePair(pairs[i].m_indexA, pairs[i].m_indexB));
}
}
}
for (int i=0;i<m_removePairs.size();i++)
for (int i = 0; i < m_removePairs.size(); i++)
{
m_childCollisionAlgorithmCache->removeOverlappingPair(m_removePairs[i].m_indexA,m_removePairs[i].m_indexB);
m_childCollisionAlgorithmCache->removeOverlappingPair(m_removePairs[i].m_indexA, m_removePairs[i].m_indexB);
}
m_removePairs.clear();
}
}
btScalar btCompoundCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
btScalar btCompoundCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0, btCollisionObject* body1, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
{
btAssert(0);
return 0.f;
}