You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-11-12 13:20:55 +00:00
Addition of SDFGI for open world global illumination
Move GI to a deferred pass
This commit is contained in:
@@ -258,7 +258,6 @@ VERTEX_SHADER_CODE
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef MODE_RENDER_MATERIAL
|
||||
if (scene_data.material_uv2_mode) {
|
||||
gl_Position.xy = (uv2_attrib.xy + draw_call.bake_uv2_offset) * 2.0 - 1.0;
|
||||
@@ -341,11 +340,13 @@ layout(location = 4) out float depth_output_buffer;
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef MODE_RENDER_NORMAL
|
||||
layout(location = 0) out vec4 normal_output_buffer;
|
||||
#ifdef MODE_RENDER_ROUGHNESS
|
||||
layout(location = 1) out float roughness_output_buffer;
|
||||
#endif //MODE_RENDER_ROUGHNESS
|
||||
#ifdef MODE_RENDER_NORMAL_ROUGHNESS
|
||||
layout(location = 0) out vec4 normal_roughness_output_buffer;
|
||||
|
||||
#ifdef MODE_RENDER_GIPROBE
|
||||
layout(location = 1) out uvec2 giprobe_buffer;
|
||||
#endif
|
||||
|
||||
#endif //MODE_RENDER_NORMAL
|
||||
#else // RENDER DEPTH
|
||||
|
||||
@@ -1321,37 +1322,39 @@ void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughnes
|
||||
reflection_accum += reflection;
|
||||
}
|
||||
|
||||
#if !defined(USE_LIGHTMAP) && !defined(USE_VOXEL_CONE_TRACING)
|
||||
if (reflections.data[ref_index].ambient.a > 0.0) { //compute ambient using skybox
|
||||
switch (reflections.data[ref_index].ambient_mode) {
|
||||
case REFLECTION_AMBIENT_DISABLED: {
|
||||
//do nothing
|
||||
} break;
|
||||
case REFLECTION_AMBIENT_ENVIRONMENT: {
|
||||
//do nothing
|
||||
vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz;
|
||||
|
||||
vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz;
|
||||
vec4 ambient_out;
|
||||
|
||||
vec4 ambient_out;
|
||||
ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
|
||||
ambient_out.a = blend;
|
||||
if (reflections.data[ref_index].params.z < 0.5) { //interior
|
||||
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
|
||||
}
|
||||
|
||||
ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
|
||||
|
||||
ambient_out.a = blend;
|
||||
ambient_out.rgb = mix(reflections.data[ref_index].ambient.rgb, ambient_out.rgb, reflections.data[ref_index].ambient.a);
|
||||
if (reflections.data[ref_index].params.z < 0.5) {
|
||||
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
|
||||
}
|
||||
|
||||
ambient_out.rgb *= ambient_out.a;
|
||||
ambient_accum += ambient_out;
|
||||
} else {
|
||||
vec4 ambient_out;
|
||||
ambient_out.a = blend;
|
||||
ambient_out.rgb = reflections.data[ref_index].ambient.rgb;
|
||||
if (reflections.data[ref_index].params.z < 0.5) {
|
||||
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
|
||||
}
|
||||
ambient_out.rgb *= ambient_out.a;
|
||||
ambient_accum += ambient_out;
|
||||
ambient_out.rgb *= ambient_out.a;
|
||||
ambient_accum += ambient_out;
|
||||
} break;
|
||||
case REFLECTION_AMBIENT_COLOR: {
|
||||
vec4 ambient_out;
|
||||
ambient_out.a = blend;
|
||||
ambient_out.rgb = reflections.data[ref_index].ambient;
|
||||
if (reflections.data[ref_index].params.z < 0.5) {
|
||||
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
|
||||
}
|
||||
ambient_out.rgb *= ambient_out.a;
|
||||
ambient_accum += ambient_out;
|
||||
} break;
|
||||
}
|
||||
#endif //USE_LIGHTMAP or VCT
|
||||
}
|
||||
|
||||
#ifdef USE_VOXEL_CONE_TRACING
|
||||
#ifdef USE_FORWARD_GI
|
||||
|
||||
//standard voxel cone trace
|
||||
vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
|
||||
@@ -1375,42 +1378,6 @@ vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction,
|
||||
return color;
|
||||
}
|
||||
|
||||
#ifndef GI_PROBE_HIGH_QUALITY
|
||||
//faster version for 45 degrees
|
||||
|
||||
#ifdef GI_PROBE_USE_ANISOTROPY
|
||||
|
||||
vec4 voxel_cone_trace_anisotropic_45_degrees(texture3D probe, texture3D aniso_pos, texture3D aniso_neg, vec3 normal, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
|
||||
float dist = p_bias;
|
||||
vec4 color = vec4(0.0);
|
||||
float radius = max(0.5, tan_half_angle * dist);
|
||||
float lod_level = log2(radius * 2.0);
|
||||
|
||||
while (dist < max_distance && color.a < 0.95) {
|
||||
vec3 uvw_pos = (pos + dist * direction) * cell_size;
|
||||
//check if outside, then break
|
||||
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) {
|
||||
break;
|
||||
}
|
||||
|
||||
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level);
|
||||
vec3 aniso_neg = textureLod(sampler3D(aniso_neg, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level).rgb;
|
||||
vec3 aniso_pos = textureLod(sampler3D(aniso_pos, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level).rgb;
|
||||
|
||||
scolor.rgb *= dot(max(vec3(0.0), (normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-normal * aniso_neg)), vec3(1.0));
|
||||
lod_level += 1.0;
|
||||
|
||||
float a = (1.0 - color.a);
|
||||
scolor *= a;
|
||||
color += scolor;
|
||||
dist += radius;
|
||||
radius = max(0.5, tan_half_angle * dist);
|
||||
}
|
||||
|
||||
return color;
|
||||
}
|
||||
#else
|
||||
|
||||
vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
|
||||
float dist = p_bias;
|
||||
vec4 color = vec4(0.0);
|
||||
@@ -1437,41 +1404,6 @@ vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3
|
||||
return color;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#elif defined(GI_PROBE_USE_ANISOTROPY)
|
||||
|
||||
//standard voxel cone trace
|
||||
vec4 voxel_cone_trace_anisotropic(texture3D probe, texture3D aniso_pos, texture3D aniso_neg, vec3 normal, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
|
||||
float dist = p_bias;
|
||||
vec4 color = vec4(0.0);
|
||||
|
||||
while (dist < max_distance && color.a < 0.95) {
|
||||
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
|
||||
vec3 uvw_pos = (pos + dist * direction) * cell_size;
|
||||
float half_diameter = diameter * 0.5;
|
||||
//check if outside, then break
|
||||
if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) {
|
||||
break;
|
||||
}
|
||||
float log2_diameter = log2(diameter);
|
||||
vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter);
|
||||
vec3 aniso_neg = textureLod(sampler3D(aniso_neg, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter).rgb;
|
||||
vec3 aniso_pos = textureLod(sampler3D(aniso_pos, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter).rgb;
|
||||
|
||||
scolor.rgb *= dot(max(vec3(0.0), (normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-normal * aniso_neg)), vec3(1.0));
|
||||
|
||||
float a = (1.0 - color.a);
|
||||
scolor *= a;
|
||||
color += scolor;
|
||||
dist += half_diameter;
|
||||
}
|
||||
|
||||
return color;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) {
|
||||
position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz;
|
||||
ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz);
|
||||
@@ -1493,31 +1425,6 @@ void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3
|
||||
|
||||
//radiance
|
||||
|
||||
#ifdef GI_PROBE_HIGH_QUALITY
|
||||
|
||||
#define MAX_CONE_DIRS 6
|
||||
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
|
||||
vec3(0.0, 0.0, 1.0),
|
||||
vec3(0.866025, 0.0, 0.5),
|
||||
vec3(0.267617, 0.823639, 0.5),
|
||||
vec3(-0.700629, 0.509037, 0.5),
|
||||
vec3(-0.700629, -0.509037, 0.5),
|
||||
vec3(0.267617, -0.823639, 0.5));
|
||||
|
||||
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
|
||||
float cone_angle_tan = 0.577;
|
||||
|
||||
#elif defined(GI_PROBE_LOW_QUALITY)
|
||||
|
||||
#define MAX_CONE_DIRS 1
|
||||
|
||||
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
|
||||
vec3(0.0, 0.0, 1.0));
|
||||
|
||||
float cone_weights[MAX_CONE_DIRS] = float[](1.0);
|
||||
float cone_angle_tan = 4; //~76 degrees
|
||||
#else // MEDIUM QUALITY
|
||||
|
||||
#define MAX_CONE_DIRS 4
|
||||
|
||||
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
|
||||
@@ -1529,31 +1436,13 @@ void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3
|
||||
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
|
||||
float cone_angle_tan = 0.98269;
|
||||
|
||||
#endif
|
||||
vec3 light = vec3(0.0);
|
||||
|
||||
for (int i = 0; i < MAX_CONE_DIRS; i++) {
|
||||
vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz);
|
||||
|
||||
#if defined(GI_PROBE_HIGH_QUALITY) || defined(GI_PROBE_LOW_QUALITY)
|
||||
vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[index], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
|
||||
|
||||
#ifdef GI_PROBE_USE_ANISOTROPY
|
||||
vec4 cone_light = voxel_cone_trace_anisotropic(gi_probe_textures[gi_probes.data[index].texture_slot], gi_probe_textures[gi_probes.data[index].texture_slot + 1], gi_probe_textures[gi_probes.data[index].texture_slot + 2], normalize(mix(dir, normal, gi_probes.data[index].anisotropy_strength)), cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
|
||||
#else
|
||||
|
||||
vec4 cone_light = voxel_cone_trace(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
|
||||
|
||||
#endif // GI_PROBE_USE_ANISOTROPY
|
||||
|
||||
#else
|
||||
|
||||
#ifdef GI_PROBE_USE_ANISOTROPY
|
||||
vec4 cone_light = voxel_cone_trace_anisotropic_45_degrees(gi_probe_textures[gi_probes.data[index].texture_slot], gi_probe_textures[gi_probes.data[index].texture_slot + 1], gi_probe_textures[gi_probes.data[index].texture_slot + 2], normalize(mix(dir, normal, gi_probes.data[index].anisotropy_strength)), cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
|
||||
#else
|
||||
vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
|
||||
#endif // GI_PROBE_USE_ANISOTROPY
|
||||
|
||||
#endif
|
||||
if (gi_probes.data[index].blend_ambient) {
|
||||
cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95));
|
||||
}
|
||||
@@ -1562,33 +1451,10 @@ void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3
|
||||
}
|
||||
|
||||
light *= gi_probes.data[index].dynamic_range;
|
||||
|
||||
if (gi_probes.data[index].ambient_occlusion > 0.001) {
|
||||
float size = 1.0 + gi_probes.data[index].ambient_occlusion_size * 7.0;
|
||||
|
||||
float taps, blend;
|
||||
blend = modf(size, taps);
|
||||
float ao = 0.0;
|
||||
for (float i = 1.0; i <= taps; i++) {
|
||||
vec3 ofs = (position + normal * (i * 0.5 + 1.0)) * cell_size;
|
||||
ao += textureLod(sampler3D(gi_probe_textures[gi_probes.data[index].texture_slot], material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ofs, i - 1.0).a * i;
|
||||
}
|
||||
|
||||
if (blend > 0.001) {
|
||||
vec3 ofs = (position + normal * ((taps + 1.0) * 0.5 + 1.0)) * cell_size;
|
||||
ao += textureLod(sampler3D(gi_probe_textures[gi_probes.data[index].texture_slot], material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ofs, taps).a * (taps + 1.0) * blend;
|
||||
}
|
||||
|
||||
ao = 1.0 - min(1.0, ao);
|
||||
|
||||
light = mix(scene_data.ao_color.rgb, light, mix(1.0, ao, gi_probes.data[index].ambient_occlusion));
|
||||
}
|
||||
|
||||
out_diff += vec4(light * blend, blend);
|
||||
|
||||
//irradiance
|
||||
#ifndef GI_PROBE_LOW_QUALITY
|
||||
vec4 irr_light = voxel_cone_trace(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias);
|
||||
vec4 irr_light = voxel_cone_trace(gi_probe_textures[index], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias);
|
||||
if (gi_probes.data[index].blend_ambient) {
|
||||
irr_light.rgb = mix(environment, irr_light.rgb, min(1.0, irr_light.a / 0.95));
|
||||
}
|
||||
@@ -1596,10 +1462,142 @@ void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3
|
||||
//irr_light=vec3(0.0);
|
||||
|
||||
out_spec += vec4(irr_light.rgb * blend, blend);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif //USE_VOXEL_CONE_TRACING
|
||||
#endif //USE_FORWARD_GI
|
||||
|
||||
vec2 octahedron_wrap(vec2 v) {
|
||||
vec2 signVal;
|
||||
signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
|
||||
signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
|
||||
return (1.0 - abs(v.yx)) * signVal;
|
||||
}
|
||||
|
||||
vec2 octahedron_encode(vec3 n) {
|
||||
// https://twitter.com/Stubbesaurus/status/937994790553227264
|
||||
n /= (abs(n.x) + abs(n.y) + abs(n.z));
|
||||
n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
|
||||
n.xy = n.xy * 0.5 + 0.5;
|
||||
return n.xy;
|
||||
}
|
||||
|
||||
void sdfgi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal, vec3 cam_specular_normal, bool use_specular, float roughness, out vec3 diffuse_light, out vec3 specular_light, out float blend) {
|
||||
cascade_pos += cam_normal * sdfgi.normal_bias;
|
||||
|
||||
vec3 base_pos = floor(cascade_pos);
|
||||
//cascade_pos += mix(vec3(0.0),vec3(0.01),lessThan(abs(cascade_pos-base_pos),vec3(0.01))) * cam_normal;
|
||||
ivec3 probe_base_pos = ivec3(base_pos);
|
||||
|
||||
vec4 diffuse_accum = vec4(0.0);
|
||||
vec3 specular_accum;
|
||||
|
||||
ivec3 tex_pos = ivec3(probe_base_pos.xy, int(cascade));
|
||||
tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;
|
||||
tex_pos.xy = tex_pos.xy * (SDFGI_OCT_SIZE + 2) + ivec2(1);
|
||||
|
||||
vec3 diffuse_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;
|
||||
|
||||
vec3 specular_posf;
|
||||
|
||||
if (use_specular) {
|
||||
specular_accum = vec3(0.0);
|
||||
specular_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_specular_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;
|
||||
}
|
||||
|
||||
vec4 light_accum = vec4(0.0);
|
||||
float weight_accum = 0.0;
|
||||
|
||||
for (uint j = 0; j < 8; j++) {
|
||||
ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
|
||||
ivec3 probe_posi = probe_base_pos;
|
||||
probe_posi += offset;
|
||||
|
||||
// Compute weight
|
||||
|
||||
vec3 probe_pos = vec3(probe_posi);
|
||||
vec3 probe_to_pos = cascade_pos - probe_pos;
|
||||
vec3 probe_dir = normalize(-probe_to_pos);
|
||||
|
||||
vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
|
||||
float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(cam_normal, probe_dir));
|
||||
|
||||
// Compute lightprobe occlusion
|
||||
|
||||
if (sdfgi.use_occlusion) {
|
||||
ivec3 occ_indexv = abs((sdfgi.cascades[cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
|
||||
vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));
|
||||
|
||||
vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
|
||||
occ_pos.z += float(cascade);
|
||||
if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
|
||||
occ_pos.x += 1.0;
|
||||
}
|
||||
|
||||
occ_pos *= sdfgi.occlusion_renormalize;
|
||||
float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_cascades, material_samplers[SAMPLER_LINEAR_CLAMP]), occ_pos, 0.0), occ_mask);
|
||||
|
||||
weight *= max(occlusion, 0.01);
|
||||
}
|
||||
|
||||
// Compute lightprobe texture position
|
||||
|
||||
vec3 diffuse;
|
||||
vec3 pos_uvw = diffuse_posf;
|
||||
pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
|
||||
pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
|
||||
diffuse = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb;
|
||||
|
||||
diffuse_accum += vec4(diffuse * weight, weight);
|
||||
|
||||
if (use_specular) {
|
||||
vec3 specular = vec3(0.0);
|
||||
vec3 pos_uvw = specular_posf;
|
||||
pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
|
||||
pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
|
||||
if (roughness < 0.99) {
|
||||
specular = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw + vec3(0, 0, float(sdfgi.max_cascades)), 0.0).rgb;
|
||||
}
|
||||
if (roughness > 0.5) {
|
||||
specular = mix(specular, textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb, (roughness - 0.5) * 2.0);
|
||||
}
|
||||
|
||||
specular_accum += specular * weight;
|
||||
}
|
||||
}
|
||||
|
||||
if (diffuse_accum.a > 0.0) {
|
||||
diffuse_accum.rgb /= diffuse_accum.a;
|
||||
}
|
||||
|
||||
diffuse_light = diffuse_accum.rgb;
|
||||
|
||||
if (use_specular) {
|
||||
if (diffuse_accum.a > 0.0) {
|
||||
specular_accum /= diffuse_accum.a;
|
||||
}
|
||||
|
||||
specular_light = specular_accum;
|
||||
}
|
||||
|
||||
{
|
||||
//process blend
|
||||
float blend_from = (float(sdfgi.probe_axis_size - 1) / 2.0) - 2.5;
|
||||
float blend_to = blend_from + 2.0;
|
||||
|
||||
vec3 inner_pos = cam_pos * sdfgi.cascades[cascade].to_probe;
|
||||
|
||||
float len = length(inner_pos);
|
||||
|
||||
inner_pos = abs(normalize(inner_pos));
|
||||
len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z));
|
||||
|
||||
if (len >= blend_from) {
|
||||
blend = smoothstep(blend_from, blend_to, len);
|
||||
} else {
|
||||
blend = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
||||
|
||||
@@ -1812,6 +1810,15 @@ FRAGMENT_SHADER_CODE
|
||||
#endif //not render depth
|
||||
/////////////////////// LIGHTING //////////////////////////////
|
||||
|
||||
if (scene_data.roughness_limiter_enabled) {
|
||||
//http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf
|
||||
float roughness2 = roughness * roughness;
|
||||
vec3 dndu = dFdx(normal), dndv = dFdx(normal);
|
||||
float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv));
|
||||
float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect
|
||||
float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2);
|
||||
roughness = sqrt(filteredRoughness2);
|
||||
}
|
||||
//apply energy conservation
|
||||
|
||||
vec3 specular_light = vec3(0.0, 0.0, 0.0);
|
||||
@@ -1820,11 +1827,6 @@ FRAGMENT_SHADER_CODE
|
||||
|
||||
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
||||
|
||||
if (scene_data.roughness_limiter_enabled) {
|
||||
float limit = texelFetch(sampler2D(roughness_buffer, material_samplers[SAMPLER_NEAREST_CLAMP]), ivec2(gl_FragCoord.xy), 0).r;
|
||||
roughness = max(roughness, limit);
|
||||
}
|
||||
|
||||
if (scene_data.use_reflection_cubemap) {
|
||||
vec3 ref_vec = reflect(-view, normal);
|
||||
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
|
||||
@@ -1871,7 +1873,6 @@ FRAGMENT_SHADER_CODE
|
||||
#endif
|
||||
|
||||
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
||||
//gi probes
|
||||
|
||||
#ifdef USE_LIGHTMAP
|
||||
|
||||
@@ -1928,10 +1929,80 @@ FRAGMENT_SHADER_CODE
|
||||
ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
//lightmap capture
|
||||
#elif defined(USE_FORWARD_GI)
|
||||
|
||||
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SDFGI)) { //has lightmap capture
|
||||
|
||||
//make vertex orientation the world one, but still align to camera
|
||||
vec3 cam_pos = mat3(scene_data.camera_matrix) * vertex;
|
||||
vec3 cam_normal = mat3(scene_data.camera_matrix) * normal;
|
||||
vec3 cam_reflection = mat3(scene_data.camera_matrix) * reflect(-view, normal);
|
||||
|
||||
//apply y-mult
|
||||
cam_pos.y *= sdfgi.y_mult;
|
||||
cam_normal.y *= sdfgi.y_mult;
|
||||
cam_normal = normalize(cam_normal);
|
||||
cam_reflection.y *= sdfgi.y_mult;
|
||||
cam_normal = normalize(cam_normal);
|
||||
cam_reflection = normalize(cam_reflection);
|
||||
|
||||
vec4 light_accum = vec4(0.0);
|
||||
float weight_accum = 0.0;
|
||||
|
||||
vec4 light_blend_accum = vec4(0.0);
|
||||
float weight_blend_accum = 0.0;
|
||||
|
||||
float blend = -1.0;
|
||||
|
||||
// helper constants, compute once
|
||||
|
||||
uint cascade = 0xFFFFFFFF;
|
||||
vec3 cascade_pos;
|
||||
vec3 cascade_normal;
|
||||
|
||||
for (uint i = 0; i < sdfgi.max_cascades; i++) {
|
||||
cascade_pos = (cam_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;
|
||||
|
||||
if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
|
||||
continue; //skip cascade
|
||||
}
|
||||
|
||||
cascade = i;
|
||||
break;
|
||||
}
|
||||
|
||||
if (cascade < SDFGI_MAX_CASCADES) {
|
||||
bool use_specular = true;
|
||||
float blend;
|
||||
vec3 diffuse, specular;
|
||||
sdfgi_process(cascade, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse, specular, blend);
|
||||
|
||||
if (blend > 0.0) {
|
||||
//blend
|
||||
if (cascade == sdfgi.max_cascades - 1) {
|
||||
diffuse = mix(diffuse, ambient_light, blend);
|
||||
if (use_specular) {
|
||||
specular = mix(specular, specular_light, blend);
|
||||
}
|
||||
} else {
|
||||
vec3 diffuse2, specular2;
|
||||
float blend2;
|
||||
cascade_pos = (cam_pos - sdfgi.cascades[cascade + 1].position) * sdfgi.cascades[cascade + 1].to_probe;
|
||||
sdfgi_process(cascade + 1, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse2, specular2, blend2);
|
||||
diffuse = mix(diffuse, diffuse2, blend);
|
||||
if (use_specular) {
|
||||
specular = mix(specular, specular2, blend);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ambient_light = diffuse;
|
||||
if (use_specular) {
|
||||
specular_light = specular;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_VOXEL_CONE_TRACING
|
||||
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
|
||||
|
||||
uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
|
||||
@@ -1963,6 +2034,56 @@ FRAGMENT_SHADER_CODE
|
||||
specular_light = spec_accum.rgb;
|
||||
ambient_light = amb_accum.rgb;
|
||||
}
|
||||
#else
|
||||
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GI_BUFFERS)) { //use GI buffers
|
||||
|
||||
ivec2 coord;
|
||||
|
||||
if (scene_data.gi_upscale_for_msaa) {
|
||||
/*
|
||||
//find the closest depth to upscale from, based on neighbours
|
||||
ivec2 base_coord = ivec2(gl_FragCoord.xy);
|
||||
float z_dist = gl_FragCoord.z;
|
||||
ivec2 closest_coord = base_coord;
|
||||
float closest_z_dist = abs(texelFetch(sampler2D(depth_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), base_coord,0).r-z_dist);
|
||||
|
||||
for(int i=0;i<4;i++) {
|
||||
const ivec2 neighbours[4]=ivec2[](ivec2(-1,0),ivec2(1,0),ivec2(0,-1),ivec2(0,1));
|
||||
ivec2 neighbour_coord = base_coord + neighbours[i];
|
||||
float neighbour_z_dist = abs(texelFetch(sampler2D(depth_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), neighbour_coord,0).r-z_dist);
|
||||
if (neighbour_z_dist < closest_z_dist) {
|
||||
closest_z_dist = neighbour_z_dist;
|
||||
closest_coord = neighbour_coord;
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
ivec2 base_coord = ivec2(gl_FragCoord.xy);
|
||||
ivec2 closest_coord = base_coord;
|
||||
float closest_ang = dot(normal, texelFetch(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), base_coord, 0).xyz * 2.0 - 1.0);
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
const ivec2 neighbours[4] = ivec2[](ivec2(-1, 0), ivec2(1, 0), ivec2(0, -1), ivec2(0, 1));
|
||||
ivec2 neighbour_coord = base_coord + neighbours[i];
|
||||
float neighbour_ang = dot(normal, texelFetch(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), neighbour_coord, 0).xyz * 2.0 - 1.0);
|
||||
if (neighbour_ang > closest_ang) {
|
||||
closest_ang = neighbour_ang;
|
||||
closest_coord = neighbour_coord;
|
||||
}
|
||||
}
|
||||
|
||||
coord = closest_coord;
|
||||
|
||||
} else {
|
||||
coord = ivec2(gl_FragCoord.xy);
|
||||
}
|
||||
|
||||
vec4 buffer_ambient = texelFetch(sampler2D(ambient_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0);
|
||||
vec4 buffer_reflection = texelFetch(sampler2D(reflection_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0);
|
||||
|
||||
ambient_light = mix(ambient_light, buffer_ambient.rgb, buffer_ambient.a);
|
||||
specular_light = mix(specular_light, buffer_reflection.rgb, buffer_reflection.a);
|
||||
}
|
||||
#endif
|
||||
|
||||
{ // process reflections
|
||||
@@ -2376,6 +2497,93 @@ FRAGMENT_SHADER_CODE
|
||||
|
||||
#ifdef MODE_RENDER_DEPTH
|
||||
|
||||
#ifdef MODE_RENDER_SDF
|
||||
|
||||
{
|
||||
vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz;
|
||||
ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size));
|
||||
|
||||
uint albedo16 = 0x1; //solid flag
|
||||
albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11;
|
||||
albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6;
|
||||
albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1;
|
||||
|
||||
imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16));
|
||||
|
||||
uint facing_bits = 0;
|
||||
const vec3 aniso_dir[6] = vec3[](
|
||||
vec3(1, 0, 0),
|
||||
vec3(0, 1, 0),
|
||||
vec3(0, 0, 1),
|
||||
vec3(-1, 0, 0),
|
||||
vec3(0, -1, 0),
|
||||
vec3(0, 0, -1));
|
||||
|
||||
vec3 cam_normal = mat3(scene_data.camera_matrix) * normal;
|
||||
|
||||
for (uint i = 0; i < 6; i++) {
|
||||
if (dot(cam_normal, aniso_dir[i]) > 0.001) {
|
||||
facing_bits |= (1 << i);
|
||||
}
|
||||
}
|
||||
|
||||
imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits
|
||||
|
||||
if (length(emission) > 0.001) {
|
||||
float lumas[6];
|
||||
vec3 light_total = vec3(0);
|
||||
|
||||
for (int i = 0; i < 6; i++) {
|
||||
float strength = max(0.0, dot(cam_normal, aniso_dir[i]));
|
||||
vec3 light = emission * strength;
|
||||
light_total += light;
|
||||
lumas[i] = max(light.r, max(light.g, light.b));
|
||||
}
|
||||
|
||||
float luma_total = max(light_total.r, max(light_total.g, light_total.b));
|
||||
|
||||
uint light_aniso = 0;
|
||||
|
||||
for (int i = 0; i < 6; i++) {
|
||||
light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
|
||||
}
|
||||
|
||||
//compress to RGBE9995 to save space
|
||||
|
||||
const float pow2to9 = 512.0f;
|
||||
const float B = 15.0f;
|
||||
const float N = 9.0f;
|
||||
const float LN2 = 0.6931471805599453094172321215;
|
||||
|
||||
float cRed = clamp(light_total.r, 0.0, 65408.0);
|
||||
float cGreen = clamp(light_total.g, 0.0, 65408.0);
|
||||
float cBlue = clamp(light_total.b, 0.0, 65408.0);
|
||||
|
||||
float cMax = max(cRed, max(cGreen, cBlue));
|
||||
|
||||
float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;
|
||||
|
||||
float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);
|
||||
|
||||
float exps = expp + 1.0f;
|
||||
|
||||
if (0.0 <= sMax && sMax < pow2to9) {
|
||||
exps = expp;
|
||||
}
|
||||
|
||||
float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
|
||||
float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
|
||||
float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
|
||||
//store as 8985 to have 2 extra neighbour bits
|
||||
uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);
|
||||
|
||||
imageStore(emission_grid, grid_pos, uvec4(light_rgbe));
|
||||
imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso));
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef MODE_RENDER_MATERIAL
|
||||
|
||||
albedo_output_buffer.rgb = albedo;
|
||||
@@ -2398,11 +2606,21 @@ FRAGMENT_SHADER_CODE
|
||||
emission_output_buffer.a = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef MODE_RENDER_NORMAL
|
||||
normal_output_buffer = vec4(normal * 0.5 + 0.5, 0.0);
|
||||
#ifdef MODE_RENDER_ROUGHNESS
|
||||
roughness_output_buffer = roughness;
|
||||
#endif //MODE_RENDER_ROUGHNESS
|
||||
#ifdef MODE_RENDER_NORMAL_ROUGHNESS
|
||||
normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness);
|
||||
|
||||
#ifdef MODE_RENDER_GIPROBE
|
||||
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
|
||||
uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
|
||||
uint index2 = instances.data[instance_index].gi_offset >> 16;
|
||||
giprobe_buffer.x = index1 & 0xFF;
|
||||
giprobe_buffer.y = index2 & 0xFF;
|
||||
} else {
|
||||
giprobe_buffer.x = 0xFF;
|
||||
giprobe_buffer.y = 0xFF;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif //MODE_RENDER_NORMAL
|
||||
|
||||
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
|
||||
@@ -2455,7 +2673,6 @@ FRAGMENT_SHADER_CODE
|
||||
#endif
|
||||
diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
|
||||
specular_buffer = vec4(specular_light, metallic);
|
||||
|
||||
#endif
|
||||
|
||||
#else //MODE_MULTIPLE_RENDER_TARGETS
|
||||
|
||||
Reference in New Issue
Block a user