You've already forked godot
mirror of
https://github.com/godotengine/godot.git
synced 2025-12-04 17:04:49 +00:00
Added volumetric fog effect.
This commit is contained in:
@@ -35,3 +35,5 @@ if "RD_GLSL" in env["BUILDERS"]:
|
||||
env.RD_GLSL("sdfgi_direct_light.glsl")
|
||||
env.RD_GLSL("sdfgi_debug.glsl")
|
||||
env.RD_GLSL("sdfgi_debug_probes.glsl")
|
||||
env.RD_GLSL("volumetric_fog.glsl")
|
||||
env.RD_GLSL("shadow_reduce.glsl")
|
||||
|
||||
@@ -0,0 +1,95 @@
|
||||
|
||||
#define CLUSTER_COUNTER_SHIFT 20
|
||||
#define CLUSTER_POINTER_MASK ((1 << CLUSTER_COUNTER_SHIFT) - 1)
|
||||
#define CLUSTER_COUNTER_MASK 0xfff
|
||||
|
||||
struct LightData { //this structure needs to be as packed as possible
|
||||
vec3 position;
|
||||
float inv_radius;
|
||||
vec3 direction;
|
||||
float size;
|
||||
uint attenuation_energy; //attenuation
|
||||
uint color_specular; //rgb color, a specular (8 bit unorm)
|
||||
uint cone_attenuation_angle; // attenuation and angle, (16bit float)
|
||||
uint shadow_color_enabled; //shadow rgb color, a>0.5 enabled (8bit unorm)
|
||||
vec4 atlas_rect; // rect in the shadow atlas
|
||||
mat4 shadow_matrix;
|
||||
float shadow_bias;
|
||||
float shadow_normal_bias;
|
||||
float transmittance_bias;
|
||||
float soft_shadow_size; // for spot, it's the size in uv coordinates of the light, for omni it's the span angle
|
||||
float soft_shadow_scale; // scales the shadow kernel for blurrier shadows
|
||||
uint mask;
|
||||
float shadow_volumetric_fog_fade;
|
||||
uint pad;
|
||||
vec4 projector_rect; //projector rect in srgb decal atlas
|
||||
};
|
||||
|
||||
#define REFLECTION_AMBIENT_DISABLED 0
|
||||
#define REFLECTION_AMBIENT_ENVIRONMENT 1
|
||||
#define REFLECTION_AMBIENT_COLOR 2
|
||||
|
||||
struct ReflectionData {
|
||||
vec3 box_extents;
|
||||
float index;
|
||||
vec3 box_offset;
|
||||
uint mask;
|
||||
vec4 params; // intensity, 0, interior , boxproject
|
||||
vec3 ambient; // ambient color
|
||||
uint ambient_mode;
|
||||
mat4 local_matrix; // up to here for spot and omni, rest is for directional
|
||||
// notes: for ambientblend, use distance to edge to blend between already existing global environment
|
||||
};
|
||||
|
||||
struct DirectionalLightData {
|
||||
vec3 direction;
|
||||
float energy;
|
||||
vec3 color;
|
||||
float size;
|
||||
float specular;
|
||||
uint mask;
|
||||
float softshadow_angle;
|
||||
float soft_shadow_scale;
|
||||
bool blend_splits;
|
||||
bool shadow_enabled;
|
||||
float fade_from;
|
||||
float fade_to;
|
||||
uvec3 pad;
|
||||
float shadow_volumetric_fog_fade;
|
||||
vec4 shadow_bias;
|
||||
vec4 shadow_normal_bias;
|
||||
vec4 shadow_transmittance_bias;
|
||||
vec4 shadow_z_range;
|
||||
vec4 shadow_range_begin;
|
||||
vec4 shadow_split_offsets;
|
||||
mat4 shadow_matrix1;
|
||||
mat4 shadow_matrix2;
|
||||
mat4 shadow_matrix3;
|
||||
mat4 shadow_matrix4;
|
||||
vec4 shadow_color1;
|
||||
vec4 shadow_color2;
|
||||
vec4 shadow_color3;
|
||||
vec4 shadow_color4;
|
||||
vec2 uv_scale1;
|
||||
vec2 uv_scale2;
|
||||
vec2 uv_scale3;
|
||||
vec2 uv_scale4;
|
||||
};
|
||||
|
||||
struct DecalData {
|
||||
mat4 xform; //to decal transform
|
||||
vec3 inv_extents;
|
||||
float albedo_mix;
|
||||
vec4 albedo_rect;
|
||||
vec4 normal_rect;
|
||||
vec4 orm_rect;
|
||||
vec4 emission_rect;
|
||||
vec4 modulate;
|
||||
float emission_energy;
|
||||
uint mask;
|
||||
float upper_fade;
|
||||
float lower_fade;
|
||||
mat3x4 normal_xform;
|
||||
vec3 normal;
|
||||
float normal_fade;
|
||||
};
|
||||
@@ -80,7 +80,7 @@ struct GIProbeData {
|
||||
float anisotropy_strength;
|
||||
float ambient_occlusion;
|
||||
float ambient_occlusion_size;
|
||||
uint pad2;
|
||||
uint mipmaps;
|
||||
};
|
||||
|
||||
layout(set = 0, binding = 16, std140) uniform GIProbes {
|
||||
|
||||
@@ -1237,7 +1237,7 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
|
||||
|
||||
float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
|
||||
//reconstruct depth
|
||||
shadow_z / lights.data[idx].inv_radius;
|
||||
shadow_z /= lights.data[idx].inv_radius;
|
||||
//distance to light plane
|
||||
float z = dot(spot_dir, -light_rel_vec);
|
||||
transmittance_z = z - shadow_z;
|
||||
@@ -1601,6 +1601,21 @@ void sdfgi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal
|
||||
|
||||
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
|
||||
|
||||
#ifndef MODE_RENDER_DEPTH
|
||||
|
||||
vec4 volumetric_fog_process(vec2 screen_uv, float z) {
|
||||
vec3 fog_pos = vec3(screen_uv, z * scene_data.volumetric_fog_inv_length);
|
||||
if (fog_pos.z < 0.0) {
|
||||
return vec4(0.0);
|
||||
} else if (fog_pos.z < 1.0) {
|
||||
fog_pos.z = pow(fog_pos.z, scene_data.volumetric_fog_detail_spread);
|
||||
}
|
||||
|
||||
return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
void main() {
|
||||
#ifdef MODE_DUAL_PARABOLOID
|
||||
|
||||
@@ -2187,8 +2202,8 @@ FRAGMENT_SHADER_CODE
|
||||
trans_coord /= trans_coord.w;
|
||||
|
||||
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
||||
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x;
|
||||
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x;
|
||||
shadow_z *= directional_lights.data[i].shadow_z_range.x;
|
||||
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.x;
|
||||
|
||||
transmittance_z = z - shadow_z;
|
||||
}
|
||||
@@ -2219,8 +2234,8 @@ FRAGMENT_SHADER_CODE
|
||||
trans_coord /= trans_coord.w;
|
||||
|
||||
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
||||
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y;
|
||||
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y;
|
||||
shadow_z *= directional_lights.data[i].shadow_z_range.y;
|
||||
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.y;
|
||||
|
||||
transmittance_z = z - shadow_z;
|
||||
}
|
||||
@@ -2251,8 +2266,8 @@ FRAGMENT_SHADER_CODE
|
||||
trans_coord /= trans_coord.w;
|
||||
|
||||
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
||||
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z;
|
||||
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z;
|
||||
shadow_z *= directional_lights.data[i].shadow_z_range.z;
|
||||
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.z;
|
||||
|
||||
transmittance_z = z - shadow_z;
|
||||
}
|
||||
@@ -2285,8 +2300,8 @@ FRAGMENT_SHADER_CODE
|
||||
trans_coord /= trans_coord.w;
|
||||
|
||||
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
|
||||
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w;
|
||||
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w;
|
||||
shadow_z *= directional_lights.data[i].shadow_z_range.w;
|
||||
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.w;
|
||||
|
||||
transmittance_z = z - shadow_z;
|
||||
}
|
||||
@@ -2662,8 +2677,6 @@ FRAGMENT_SHADER_CODE
|
||||
diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
|
||||
ambient_light *= 1.0 - metallic;
|
||||
|
||||
//fog
|
||||
|
||||
#ifdef MODE_MULTIPLE_RENDER_TARGETS
|
||||
|
||||
#ifdef MODE_UNSHADED
|
||||
@@ -2679,16 +2692,27 @@ FRAGMENT_SHADER_CODE
|
||||
specular_buffer = vec4(specular_light, metallic);
|
||||
#endif
|
||||
|
||||
if (scene_data.volumetric_fog_enabled) {
|
||||
vec4 fog = volumetric_fog_process(screen_uv, -vertex.z);
|
||||
diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
|
||||
specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
|
||||
;
|
||||
}
|
||||
|
||||
#else //MODE_MULTIPLE_RENDER_TARGETS
|
||||
|
||||
#ifdef MODE_UNSHADED
|
||||
frag_color = vec4(albedo, alpha);
|
||||
#else
|
||||
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
|
||||
//frag_color = vec4(1.0);;;
|
||||
|
||||
//frag_color = vec4(1.0);
|
||||
#endif //USE_NO_SHADING
|
||||
|
||||
if (scene_data.volumetric_fog_enabled) {
|
||||
vec4 fog = volumetric_fog_process(screen_uv, -vertex.z);
|
||||
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
|
||||
}
|
||||
|
||||
#endif //MODE_MULTIPLE_RENDER_TARGETS
|
||||
|
||||
#endif //MODE_RENDER_DEPTH
|
||||
|
||||
@@ -3,6 +3,8 @@
|
||||
|
||||
#define MAX_GI_PROBES 8
|
||||
|
||||
#include "cluster_data_inc.glsl"
|
||||
|
||||
layout(push_constant, binding = 0, std430) uniform DrawCall {
|
||||
uint instance_index;
|
||||
uint pad; //16 bits minimum size
|
||||
@@ -94,6 +96,10 @@ layout(set = 0, binding = 3, std140) uniform SceneData {
|
||||
ivec3 sdf_size;
|
||||
bool gi_upscale_for_msaa;
|
||||
|
||||
bool volumetric_fog_enabled;
|
||||
float volumetric_fog_inv_length;
|
||||
float volumetric_fog_detail_spread;
|
||||
uint volumetric_fog_pad;
|
||||
#if 0
|
||||
vec4 ambient_light_color;
|
||||
vec4 bg_color;
|
||||
@@ -163,86 +169,16 @@ layout(set = 0, binding = 4, std430) restrict readonly buffer Instances {
|
||||
}
|
||||
instances;
|
||||
|
||||
struct LightData { //this structure needs to be as packed as possible
|
||||
vec3 position;
|
||||
float inv_radius;
|
||||
vec3 direction;
|
||||
float size;
|
||||
uint attenuation_energy; //attenuation
|
||||
uint color_specular; //rgb color, a specular (8 bit unorm)
|
||||
uint cone_attenuation_angle; // attenuation and angle, (16bit float)
|
||||
uint shadow_color_enabled; //shadow rgb color, a>0.5 enabled (8bit unorm)
|
||||
vec4 atlas_rect; // rect in the shadow atlas
|
||||
mat4 shadow_matrix;
|
||||
float shadow_bias;
|
||||
float shadow_normal_bias;
|
||||
float transmittance_bias;
|
||||
float soft_shadow_size; // for spot, it's the size in uv coordinates of the light, for omni it's the span angle
|
||||
float soft_shadow_scale; // scales the shadow kernel for blurrier shadows
|
||||
uint mask;
|
||||
uint pad[2];
|
||||
vec4 projector_rect; //projector rect in srgb decal atlas
|
||||
};
|
||||
|
||||
layout(set = 0, binding = 5, std430) restrict readonly buffer Lights {
|
||||
LightData data[];
|
||||
}
|
||||
lights;
|
||||
|
||||
#define REFLECTION_AMBIENT_DISABLED 0
|
||||
#define REFLECTION_AMBIENT_ENVIRONMENT 1
|
||||
#define REFLECTION_AMBIENT_COLOR 2
|
||||
|
||||
struct ReflectionData {
|
||||
vec3 box_extents;
|
||||
float index;
|
||||
vec3 box_offset;
|
||||
uint mask;
|
||||
vec4 params; // intensity, 0, interior , boxproject
|
||||
vec3 ambient; // ambient color
|
||||
uint ambient_mode;
|
||||
mat4 local_matrix; // up to here for spot and omni, rest is for directional
|
||||
// notes: for ambientblend, use distance to edge to blend between already existing global environment
|
||||
};
|
||||
|
||||
layout(set = 0, binding = 6) buffer restrict readonly ReflectionProbeData {
|
||||
ReflectionData data[];
|
||||
}
|
||||
reflections;
|
||||
|
||||
struct DirectionalLightData {
|
||||
vec3 direction;
|
||||
float energy;
|
||||
vec3 color;
|
||||
float size;
|
||||
float specular;
|
||||
uint mask;
|
||||
float softshadow_angle;
|
||||
float soft_shadow_scale;
|
||||
bool blend_splits;
|
||||
bool shadow_enabled;
|
||||
float fade_from;
|
||||
float fade_to;
|
||||
vec4 shadow_bias;
|
||||
vec4 shadow_normal_bias;
|
||||
vec4 shadow_transmittance_bias;
|
||||
vec4 shadow_transmittance_z_scale;
|
||||
vec4 shadow_range_begin;
|
||||
vec4 shadow_split_offsets;
|
||||
mat4 shadow_matrix1;
|
||||
mat4 shadow_matrix2;
|
||||
mat4 shadow_matrix3;
|
||||
mat4 shadow_matrix4;
|
||||
vec4 shadow_color1;
|
||||
vec4 shadow_color2;
|
||||
vec4 shadow_color3;
|
||||
vec4 shadow_color4;
|
||||
vec2 uv_scale1;
|
||||
vec2 uv_scale2;
|
||||
vec2 uv_scale3;
|
||||
vec2 uv_scale4;
|
||||
};
|
||||
|
||||
layout(set = 0, binding = 7, std140) uniform DirectionalLights {
|
||||
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
|
||||
}
|
||||
@@ -271,31 +207,9 @@ layout(set = 0, binding = 12, std140) restrict readonly buffer LightmapCaptures
|
||||
}
|
||||
lightmap_captures;
|
||||
|
||||
#define CLUSTER_COUNTER_SHIFT 20
|
||||
#define CLUSTER_POINTER_MASK ((1 << CLUSTER_COUNTER_SHIFT) - 1)
|
||||
#define CLUSTER_COUNTER_MASK 0xfff
|
||||
|
||||
layout(set = 0, binding = 13) uniform texture2D decal_atlas;
|
||||
layout(set = 0, binding = 14) uniform texture2D decal_atlas_srgb;
|
||||
|
||||
struct DecalData {
|
||||
mat4 xform; //to decal transform
|
||||
vec3 inv_extents;
|
||||
float albedo_mix;
|
||||
vec4 albedo_rect;
|
||||
vec4 normal_rect;
|
||||
vec4 orm_rect;
|
||||
vec4 emission_rect;
|
||||
vec4 modulate;
|
||||
float emission_energy;
|
||||
uint mask;
|
||||
float upper_fade;
|
||||
float lower_fade;
|
||||
mat3x4 normal_xform;
|
||||
vec3 normal;
|
||||
float normal_fade;
|
||||
};
|
||||
|
||||
layout(set = 0, binding = 15, std430) restrict readonly buffer Decals {
|
||||
DecalData data[];
|
||||
}
|
||||
@@ -394,9 +308,7 @@ layout(set = 3, binding = 2) uniform texture2D normal_roughness_buffer;
|
||||
layout(set = 3, binding = 4) uniform texture2D ao_buffer;
|
||||
layout(set = 3, binding = 5) uniform texture2D ambient_buffer;
|
||||
layout(set = 3, binding = 6) uniform texture2D reflection_buffer;
|
||||
|
||||
layout(set = 3, binding = 7) uniform texture2DArray sdfgi_lightprobe_texture;
|
||||
|
||||
layout(set = 3, binding = 8) uniform texture3D sdfgi_occlusion_cascades;
|
||||
|
||||
struct GIProbeData {
|
||||
@@ -412,7 +324,7 @@ struct GIProbeData {
|
||||
float anisotropy_strength;
|
||||
float ambient_occlusion;
|
||||
float ambient_occlusion_size;
|
||||
uint pad2;
|
||||
uint mipmaps;
|
||||
};
|
||||
|
||||
layout(set = 3, binding = 9, std140) uniform GIProbes {
|
||||
@@ -420,6 +332,8 @@ layout(set = 3, binding = 9, std140) uniform GIProbes {
|
||||
}
|
||||
gi_probes;
|
||||
|
||||
layout(set = 3, binding = 10) uniform texture3D volumetric_fog_texture;
|
||||
|
||||
#endif
|
||||
|
||||
/* Set 4 Skeleton & Instancing (Multimesh) */
|
||||
|
||||
@@ -37,6 +37,8 @@ layout(rgba32i, set = 0, binding = 12) uniform restrict iimage2D lightprobe_aver
|
||||
|
||||
layout(rgba32i, set = 0, binding = 13) uniform restrict iimage2D lightprobe_average_parent_texture;
|
||||
|
||||
layout(rgba16f, set = 0, binding = 14) uniform restrict writeonly image2DArray lightprobe_ambient_texture;
|
||||
|
||||
layout(set = 1, binding = 0) uniform textureCube sky_irradiance;
|
||||
|
||||
layout(set = 1, binding = 1) uniform sampler linear_sampler_mipmaps;
|
||||
@@ -68,6 +70,9 @@ layout(push_constant, binding = 0, std430) uniform Params {
|
||||
|
||||
vec3 sky_color;
|
||||
float y_mult;
|
||||
|
||||
bool store_ambient_texture;
|
||||
uint pad[3];
|
||||
}
|
||||
params;
|
||||
|
||||
@@ -319,6 +324,13 @@ void main() {
|
||||
|
||||
imageStore(lightprobe_history_texture, prev_pos, ivalue);
|
||||
imageStore(lightprobe_average_texture, average_pos, average);
|
||||
|
||||
if (params.store_ambient_texture && i == 0) {
|
||||
ivec3 ambient_pos = ivec3(pos, int(params.cascade));
|
||||
vec4 ambient_light = (vec4(average) / float(params.history_size)) / float(1 << HISTORY_BITS);
|
||||
ambient_light *= 0.88622; // SHL0
|
||||
imageStore(lightprobe_ambient_texture, ambient_pos, ambient_light);
|
||||
}
|
||||
}
|
||||
#endif // MODE PROCESS
|
||||
|
||||
|
||||
105
servers/rendering/rasterizer_rd/shaders/shadow_reduce.glsl
Normal file
105
servers/rendering/rasterizer_rd/shaders/shadow_reduce.glsl
Normal file
@@ -0,0 +1,105 @@
|
||||
#[compute]
|
||||
|
||||
#version 450
|
||||
|
||||
VERSION_DEFINES
|
||||
|
||||
#define BLOCK_SIZE 8
|
||||
|
||||
layout(local_size_x = BLOCK_SIZE, local_size_y = BLOCK_SIZE, local_size_z = 1) in;
|
||||
|
||||
#ifdef MODE_REDUCE
|
||||
|
||||
shared float tmp_data[BLOCK_SIZE * BLOCK_SIZE];
|
||||
const uint swizzle_table[BLOCK_SIZE] = uint[](0, 4, 2, 6, 1, 5, 3, 7);
|
||||
const uint unswizzle_table[BLOCK_SIZE] = uint[](0, 0, 0, 1, 0, 2, 1, 3);
|
||||
|
||||
#endif
|
||||
|
||||
layout(r32f, set = 0, binding = 0) uniform restrict readonly image2D source_depth;
|
||||
layout(r32f, set = 0, binding = 1) uniform restrict writeonly image2D dst_depth;
|
||||
|
||||
layout(push_constant, binding = 1, std430) uniform Params {
|
||||
ivec2 source_size;
|
||||
ivec2 source_offset;
|
||||
uint min_size;
|
||||
uint gaussian_kernel_version;
|
||||
ivec2 filter_dir;
|
||||
}
|
||||
params;
|
||||
|
||||
void main() {
|
||||
#ifdef MODE_REDUCE
|
||||
|
||||
uvec2 pos = gl_LocalInvocationID.xy;
|
||||
|
||||
ivec2 image_offset = params.source_offset;
|
||||
ivec2 image_pos = image_offset + ivec2(gl_GlobalInvocationID.xy);
|
||||
uint dst_t = swizzle_table[pos.y] * BLOCK_SIZE + swizzle_table[pos.x];
|
||||
tmp_data[dst_t] = imageLoad(source_depth, min(image_pos, params.source_size - ivec2(1))).r;
|
||||
ivec2 image_size = params.source_size;
|
||||
|
||||
uint t = pos.y * BLOCK_SIZE + pos.x;
|
||||
|
||||
//neighbours
|
||||
uint size = BLOCK_SIZE;
|
||||
|
||||
do {
|
||||
groupMemoryBarrier();
|
||||
barrier();
|
||||
|
||||
size >>= 1;
|
||||
image_size >>= 1;
|
||||
image_offset >>= 1;
|
||||
|
||||
if (all(lessThan(pos, uvec2(size)))) {
|
||||
uint nx = t + size;
|
||||
uint ny = t + (BLOCK_SIZE * size);
|
||||
uint nxy = ny + size;
|
||||
|
||||
tmp_data[t] += tmp_data[nx];
|
||||
tmp_data[t] += tmp_data[ny];
|
||||
tmp_data[t] += tmp_data[nxy];
|
||||
tmp_data[t] /= 4.0;
|
||||
}
|
||||
|
||||
} while (size > params.min_size);
|
||||
|
||||
if (all(lessThan(pos, uvec2(size)))) {
|
||||
image_pos = ivec2(unswizzle_table[size + pos.x], unswizzle_table[size + pos.y]);
|
||||
image_pos += image_offset + ivec2(gl_WorkGroupID.xy) * int(size);
|
||||
|
||||
image_size = max(ivec2(1), image_size); //in case image size became 0
|
||||
|
||||
if (all(lessThan(image_pos, uvec2(image_size)))) {
|
||||
imageStore(dst_depth, image_pos, vec4(tmp_data[t]));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef MODE_FILTER
|
||||
|
||||
ivec2 image_pos = params.source_offset + ivec2(gl_GlobalInvocationID.xy);
|
||||
if (any(greaterThanEqual(image_pos, params.source_size))) {
|
||||
return;
|
||||
}
|
||||
|
||||
ivec2 clamp_min = ivec2(params.source_offset);
|
||||
ivec2 clamp_max = ivec2(params.source_size) - 1;
|
||||
|
||||
//gaussian kernel, size 9, sigma 4
|
||||
const int kernel_size = 9;
|
||||
const float gaussian_kernel[kernel_size * 3] = float[](
|
||||
0.000229, 0.005977, 0.060598, 0.241732, 0.382928, 0.241732, 0.060598, 0.005977, 0.000229,
|
||||
0.028532, 0.067234, 0.124009, 0.179044, 0.20236, 0.179044, 0.124009, 0.067234, 0.028532,
|
||||
0.081812, 0.101701, 0.118804, 0.130417, 0.134535, 0.130417, 0.118804, 0.101701, 0.081812);
|
||||
float accum = 0.0;
|
||||
for (int i = 0; i < kernel_size; i++) {
|
||||
ivec2 ofs = clamp(image_pos + params.filter_dir * (i - kernel_size / 2), clamp_min, clamp_max);
|
||||
accum += imageLoad(source_depth, ofs).r * gaussian_kernel[params.gaussian_kernel_version + i];
|
||||
}
|
||||
|
||||
imageStore(dst_depth, image_pos, vec4(accum));
|
||||
|
||||
#endif
|
||||
}
|
||||
530
servers/rendering/rasterizer_rd/shaders/volumetric_fog.glsl
Normal file
530
servers/rendering/rasterizer_rd/shaders/volumetric_fog.glsl
Normal file
@@ -0,0 +1,530 @@
|
||||
#[compute]
|
||||
|
||||
#version 450
|
||||
|
||||
VERSION_DEFINES
|
||||
|
||||
#if defined(MODE_FOG) || defined(MODE_FILTER)
|
||||
|
||||
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(MODE_DENSITY)
|
||||
|
||||
layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
|
||||
|
||||
#endif
|
||||
|
||||
#include "cluster_data_inc.glsl"
|
||||
|
||||
#define M_PI 3.14159265359
|
||||
|
||||
layout(set = 0, binding = 1) uniform texture2D shadow_atlas;
|
||||
layout(set = 0, binding = 2) uniform texture2D directional_shadow_atlas;
|
||||
|
||||
layout(set = 0, binding = 3, std430) restrict readonly buffer Lights {
|
||||
LightData data[];
|
||||
}
|
||||
lights;
|
||||
|
||||
layout(set = 0, binding = 4, std140) uniform DirectionalLights {
|
||||
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
|
||||
}
|
||||
directional_lights;
|
||||
|
||||
layout(set = 0, binding = 5) uniform utexture3D cluster_texture;
|
||||
|
||||
layout(set = 0, binding = 6, std430) restrict readonly buffer ClusterData {
|
||||
uint indices[];
|
||||
}
|
||||
cluster_data;
|
||||
|
||||
layout(set = 0, binding = 7) uniform sampler linear_sampler;
|
||||
|
||||
#ifdef MODE_DENSITY
|
||||
layout(rgba16f, set = 0, binding = 8) uniform restrict writeonly image3D density_map;
|
||||
layout(rgba16f, set = 0, binding = 9) uniform restrict readonly image3D fog_map; //unused
|
||||
#endif
|
||||
|
||||
#ifdef MODE_FOG
|
||||
layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D density_map;
|
||||
layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D fog_map;
|
||||
#endif
|
||||
|
||||
#ifdef MODE_FILTER
|
||||
layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D source_map;
|
||||
layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D dest_map;
|
||||
#endif
|
||||
|
||||
layout(set = 0, binding = 10) uniform sampler shadow_sampler;
|
||||
|
||||
#define MAX_GI_PROBES 8
|
||||
|
||||
struct GIProbeData {
|
||||
mat4 xform;
|
||||
vec3 bounds;
|
||||
float dynamic_range;
|
||||
|
||||
float bias;
|
||||
float normal_bias;
|
||||
bool blend_ambient;
|
||||
uint texture_slot;
|
||||
|
||||
float anisotropy_strength;
|
||||
float ambient_occlusion;
|
||||
float ambient_occlusion_size;
|
||||
uint mipmaps;
|
||||
};
|
||||
|
||||
layout(set = 0, binding = 11, std140) uniform GIProbes {
|
||||
GIProbeData data[MAX_GI_PROBES];
|
||||
}
|
||||
gi_probes;
|
||||
|
||||
layout(set = 0, binding = 12) uniform texture3D gi_probe_textures[MAX_GI_PROBES];
|
||||
|
||||
layout(set = 0, binding = 13) uniform sampler linear_sampler_with_mipmaps;
|
||||
|
||||
#ifdef ENABLE_SDFGI
|
||||
|
||||
// SDFGI Integration on set 1
|
||||
#define SDFGI_MAX_CASCADES 8
|
||||
|
||||
struct SDFGIProbeCascadeData {
|
||||
vec3 position;
|
||||
float to_probe;
|
||||
ivec3 probe_world_offset;
|
||||
float to_cell; // 1/bounds * grid_size
|
||||
};
|
||||
|
||||
layout(set = 1, binding = 0, std140) uniform SDFGI {
|
||||
vec3 grid_size;
|
||||
uint max_cascades;
|
||||
|
||||
bool use_occlusion;
|
||||
int probe_axis_size;
|
||||
float probe_to_uvw;
|
||||
float normal_bias;
|
||||
|
||||
vec3 lightprobe_tex_pixel_size;
|
||||
float energy;
|
||||
|
||||
vec3 lightprobe_uv_offset;
|
||||
float y_mult;
|
||||
|
||||
vec3 occlusion_clamp;
|
||||
uint pad3;
|
||||
|
||||
vec3 occlusion_renormalize;
|
||||
uint pad4;
|
||||
|
||||
vec3 cascade_probe_size;
|
||||
uint pad5;
|
||||
|
||||
SDFGIProbeCascadeData cascades[SDFGI_MAX_CASCADES];
|
||||
}
|
||||
sdfgi;
|
||||
|
||||
layout(set = 1, binding = 1) uniform texture2DArray sdfgi_ambient_texture;
|
||||
|
||||
layout(set = 1, binding = 2) uniform texture3D sdfgi_occlusion_texture;
|
||||
|
||||
#endif //SDFGI
|
||||
|
||||
layout(push_constant, binding = 0, std430) uniform Params {
|
||||
vec2 fog_frustum_size_begin;
|
||||
vec2 fog_frustum_size_end;
|
||||
|
||||
float fog_frustum_end;
|
||||
float z_near;
|
||||
float z_far;
|
||||
int filter_axis;
|
||||
|
||||
ivec3 fog_volume_size;
|
||||
uint directional_light_count;
|
||||
|
||||
vec3 light_color;
|
||||
float base_density;
|
||||
|
||||
float detail_spread;
|
||||
float gi_inject;
|
||||
uint max_gi_probes;
|
||||
uint pad;
|
||||
|
||||
mat3x4 cam_rotation;
|
||||
}
|
||||
params;
|
||||
|
||||
float get_depth_at_pos(float cell_depth_size, int z) {
|
||||
float d = float(z) * cell_depth_size + cell_depth_size * 0.5; //center of voxels
|
||||
d = pow(d, params.detail_spread);
|
||||
return params.fog_frustum_end * d;
|
||||
}
|
||||
|
||||
vec3 hash3f(uvec3 x) {
|
||||
x = ((x >> 16) ^ x) * 0x45d9f3b;
|
||||
x = ((x >> 16) ^ x) * 0x45d9f3b;
|
||||
x = (x >> 16) ^ x;
|
||||
return vec3(x & 0xFFFFF) / vec3(float(0xFFFFF));
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec3 fog_cell_size = 1.0 / vec3(params.fog_volume_size);
|
||||
|
||||
#ifdef MODE_DENSITY
|
||||
|
||||
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
|
||||
if (any(greaterThanEqual(pos, params.fog_volume_size))) {
|
||||
return; //do not compute
|
||||
}
|
||||
|
||||
vec3 posf = vec3(pos);
|
||||
|
||||
//posf += mix(vec3(0.0),vec3(1.0),0.3) * hash3f(uvec3(pos)) * 2.0 - 1.0;
|
||||
|
||||
vec3 fog_unit_pos = posf * fog_cell_size + fog_cell_size * 0.5; //center of voxels
|
||||
fog_unit_pos.z = pow(fog_unit_pos.z, params.detail_spread);
|
||||
|
||||
vec3 view_pos;
|
||||
view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(fog_unit_pos.z));
|
||||
view_pos.z = -params.fog_frustum_end * fog_unit_pos.z;
|
||||
view_pos.y = -view_pos.y;
|
||||
|
||||
vec3 total_light = params.light_color;
|
||||
|
||||
float total_density = params.base_density;
|
||||
float cell_depth_size = abs(view_pos.z - get_depth_at_pos(fog_cell_size.z, pos.z + 1));
|
||||
//compute directional lights
|
||||
|
||||
for (uint i = 0; i < params.directional_light_count; i++) {
|
||||
vec3 shadow_attenuation = vec3(1.0);
|
||||
|
||||
if (directional_lights.data[i].shadow_enabled) {
|
||||
float depth_z = -view_pos.z;
|
||||
|
||||
vec4 pssm_coord;
|
||||
vec3 shadow_color = directional_lights.data[i].shadow_color1.rgb;
|
||||
vec3 light_dir = directional_lights.data[i].direction;
|
||||
vec4 v = vec4(view_pos, 1.0);
|
||||
float z_range;
|
||||
|
||||
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
||||
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
|
||||
pssm_coord /= pssm_coord.w;
|
||||
z_range = directional_lights.data[i].shadow_z_range.x;
|
||||
|
||||
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
||||
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
|
||||
pssm_coord /= pssm_coord.w;
|
||||
z_range = directional_lights.data[i].shadow_z_range.y;
|
||||
|
||||
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
||||
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
|
||||
pssm_coord /= pssm_coord.w;
|
||||
z_range = directional_lights.data[i].shadow_z_range.z;
|
||||
|
||||
} else {
|
||||
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
|
||||
pssm_coord /= pssm_coord.w;
|
||||
z_range = directional_lights.data[i].shadow_z_range.w;
|
||||
}
|
||||
|
||||
float depth = texture(sampler2D(directional_shadow_atlas, linear_sampler), pssm_coord.xy).r;
|
||||
float shadow = exp(min(0.0, (depth - pssm_coord.z)) * z_range * directional_lights.data[i].shadow_volumetric_fog_fade);
|
||||
|
||||
/*
|
||||
//float shadow = textureProj(sampler2DShadow(directional_shadow_atlas,shadow_sampler),pssm_coord);
|
||||
float shadow = 0.0;
|
||||
for(float xi=-1;xi<=1;xi++) {
|
||||
for(float yi=-1;yi<=1;yi++) {
|
||||
vec2 ofs = vec2(xi,yi) * 1.5 * params.directional_shadow_pixel_size;
|
||||
shadow += textureProj(sampler2DShadow(directional_shadow_atlas,shadow_sampler),pssm_coord + vec4(ofs,0.0,0.0));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
shadow /= 3.0 * 3.0;
|
||||
|
||||
*/
|
||||
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, view_pos.z)); //done with negative values for performance
|
||||
|
||||
shadow_attenuation = mix(shadow_color, vec3(1.0), shadow);
|
||||
}
|
||||
|
||||
total_light += shadow_attenuation * directional_lights.data[i].color * directional_lights.data[i].energy / M_PI;
|
||||
}
|
||||
|
||||
//compute lights from cluster
|
||||
|
||||
vec3 cluster_pos;
|
||||
cluster_pos.xy = fog_unit_pos.xy;
|
||||
cluster_pos.z = clamp((abs(view_pos.z) - params.z_near) / (params.z_far - params.z_near), 0.0, 1.0);
|
||||
|
||||
uvec4 cluster_cell = texture(usampler3D(cluster_texture, linear_sampler), cluster_pos);
|
||||
|
||||
uint omni_light_count = cluster_cell.x >> CLUSTER_COUNTER_SHIFT;
|
||||
uint omni_light_pointer = cluster_cell.x & CLUSTER_POINTER_MASK;
|
||||
|
||||
for (uint i = 0; i < omni_light_count; i++) {
|
||||
uint light_index = cluster_data.indices[omni_light_pointer + i];
|
||||
|
||||
vec3 light_pos = lights.data[i].position;
|
||||
float d = distance(lights.data[i].position, view_pos) * lights.data[i].inv_radius;
|
||||
vec3 shadow_attenuation = vec3(1.0);
|
||||
|
||||
if (d < 1.0) {
|
||||
vec2 attenuation_energy = unpackHalf2x16(lights.data[i].attenuation_energy);
|
||||
vec4 color_specular = unpackUnorm4x8(lights.data[i].color_specular);
|
||||
|
||||
float attenuation = pow(max(1.0 - d, 0.0), attenuation_energy.x);
|
||||
|
||||
vec3 light = attenuation_energy.y * color_specular.rgb / M_PI;
|
||||
|
||||
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[i].shadow_color_enabled);
|
||||
|
||||
if (shadow_color_enabled.a > 0.5) {
|
||||
//has shadow
|
||||
vec4 v = vec4(view_pos, 1.0);
|
||||
|
||||
vec4 splane = (lights.data[i].shadow_matrix * v);
|
||||
float shadow_len = length(splane.xyz); //need to remember shadow len from here
|
||||
|
||||
splane.xyz = normalize(splane.xyz);
|
||||
vec4 clamp_rect = lights.data[i].atlas_rect;
|
||||
|
||||
if (splane.z >= 0.0) {
|
||||
splane.z += 1.0;
|
||||
|
||||
clamp_rect.y += clamp_rect.w;
|
||||
|
||||
} else {
|
||||
splane.z = 1.0 - splane.z;
|
||||
}
|
||||
|
||||
splane.xy /= splane.z;
|
||||
|
||||
splane.xy = splane.xy * 0.5 + 0.5;
|
||||
splane.z = shadow_len * lights.data[i].inv_radius;
|
||||
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
|
||||
splane.w = 1.0; //needed? i think it should be 1 already
|
||||
|
||||
float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r;
|
||||
float shadow = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade);
|
||||
|
||||
shadow_attenuation = mix(shadow_color_enabled.rgb, vec3(1.0), shadow);
|
||||
}
|
||||
total_light += light * attenuation * shadow_attenuation;
|
||||
}
|
||||
}
|
||||
|
||||
uint spot_light_count = cluster_cell.y >> CLUSTER_COUNTER_SHIFT;
|
||||
uint spot_light_pointer = cluster_cell.y & CLUSTER_POINTER_MASK;
|
||||
|
||||
for (uint i = 0; i < spot_light_count; i++) {
|
||||
uint light_index = cluster_data.indices[spot_light_pointer + i];
|
||||
|
||||
vec3 light_pos = lights.data[i].position;
|
||||
vec3 light_rel_vec = lights.data[i].position - view_pos;
|
||||
float d = length(light_rel_vec) * lights.data[i].inv_radius;
|
||||
vec3 shadow_attenuation = vec3(1.0);
|
||||
|
||||
if (d < 1.0) {
|
||||
vec2 attenuation_energy = unpackHalf2x16(lights.data[i].attenuation_energy);
|
||||
vec4 color_specular = unpackUnorm4x8(lights.data[i].color_specular);
|
||||
|
||||
float attenuation = pow(max(1.0 - d, 0.0), attenuation_energy.x);
|
||||
|
||||
vec3 spot_dir = lights.data[i].direction;
|
||||
vec2 spot_att_angle = unpackHalf2x16(lights.data[i].cone_attenuation_angle);
|
||||
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y);
|
||||
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y));
|
||||
attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x);
|
||||
|
||||
vec3 light = attenuation_energy.y * color_specular.rgb / M_PI;
|
||||
|
||||
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[i].shadow_color_enabled);
|
||||
|
||||
if (shadow_color_enabled.a > 0.5) {
|
||||
//has shadow
|
||||
vec4 v = vec4(view_pos, 1.0);
|
||||
|
||||
vec4 splane = (lights.data[i].shadow_matrix * v);
|
||||
splane /= splane.w;
|
||||
|
||||
float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r;
|
||||
float shadow = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade);
|
||||
|
||||
shadow_attenuation = mix(shadow_color_enabled.rgb, vec3(1.0), shadow);
|
||||
}
|
||||
|
||||
total_light += light * attenuation * shadow_attenuation;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 world_pos = mat3(params.cam_rotation) * view_pos;
|
||||
|
||||
for (uint i = 0; i < params.max_gi_probes; i++) {
|
||||
vec3 position = (gi_probes.data[i].xform * vec4(world_pos, 1.0)).xyz;
|
||||
|
||||
//this causes corrupted pixels, i have no idea why..
|
||||
if (all(bvec2(all(greaterThanEqual(position, vec3(0.0))), all(lessThan(position, gi_probes.data[i].bounds))))) {
|
||||
position /= gi_probes.data[i].bounds;
|
||||
|
||||
vec4 light = vec4(0.0);
|
||||
for (uint j = 0; j < gi_probes.data[i].mipmaps; j++) {
|
||||
vec4 slight = textureLod(sampler3D(gi_probe_textures[i], linear_sampler_with_mipmaps), position, float(j));
|
||||
float a = (1.0 - light.a);
|
||||
light += a * slight;
|
||||
}
|
||||
|
||||
light.rgb *= gi_probes.data[i].dynamic_range * params.gi_inject;
|
||||
|
||||
total_light += light.rgb;
|
||||
}
|
||||
}
|
||||
|
||||
//sdfgi
|
||||
#ifdef ENABLE_SDFGI
|
||||
|
||||
{
|
||||
float blend = -1.0;
|
||||
vec3 ambient_total = vec3(0.0);
|
||||
|
||||
for (uint i = 0; i < sdfgi.max_cascades; i++) {
|
||||
vec3 cascade_pos = (world_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;
|
||||
|
||||
if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
|
||||
continue; //skip cascade
|
||||
}
|
||||
|
||||
vec3 base_pos = floor(cascade_pos);
|
||||
ivec3 probe_base_pos = ivec3(base_pos);
|
||||
|
||||
vec4 ambient_accum = vec4(0.0);
|
||||
|
||||
ivec3 tex_pos = ivec3(probe_base_pos.xy, int(i));
|
||||
tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;
|
||||
|
||||
for (uint j = 0; j < 8; j++) {
|
||||
ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
|
||||
ivec3 probe_posi = probe_base_pos;
|
||||
probe_posi += offset;
|
||||
|
||||
// Compute weight
|
||||
|
||||
vec3 probe_pos = vec3(probe_posi);
|
||||
vec3 probe_to_pos = cascade_pos - probe_pos;
|
||||
|
||||
vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
|
||||
float weight = trilinear.x * trilinear.y * trilinear.z;
|
||||
|
||||
// Compute lightprobe occlusion
|
||||
|
||||
if (sdfgi.use_occlusion) {
|
||||
ivec3 occ_indexv = abs((sdfgi.cascades[i].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
|
||||
vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));
|
||||
|
||||
vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
|
||||
occ_pos.z += float(i);
|
||||
if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
|
||||
occ_pos.x += 1.0;
|
||||
}
|
||||
|
||||
occ_pos *= sdfgi.occlusion_renormalize;
|
||||
float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_texture, linear_sampler), occ_pos, 0.0), occ_mask);
|
||||
|
||||
weight *= max(occlusion, 0.01);
|
||||
}
|
||||
|
||||
// Compute ambient texture position
|
||||
|
||||
ivec3 uvw = tex_pos;
|
||||
uvw.xy += offset.xy;
|
||||
uvw.x += offset.z * sdfgi.probe_axis_size;
|
||||
|
||||
vec3 ambient = texelFetch(sampler2DArray(sdfgi_ambient_texture, linear_sampler), uvw, 0).rgb;
|
||||
|
||||
ambient_accum.rgb += ambient * weight;
|
||||
ambient_accum.a += weight;
|
||||
}
|
||||
|
||||
if (ambient_accum.a > 0) {
|
||||
ambient_accum.rgb /= ambient_accum.a;
|
||||
}
|
||||
ambient_total = ambient_accum.rgb;
|
||||
break;
|
||||
}
|
||||
|
||||
total_light += ambient_total * params.gi_inject;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
imageStore(density_map, pos, vec4(total_light, total_density));
|
||||
#endif
|
||||
|
||||
#ifdef MODE_FOG
|
||||
|
||||
ivec3 pos = ivec3(gl_GlobalInvocationID.xy, 0);
|
||||
|
||||
if (any(greaterThanEqual(pos, params.fog_volume_size))) {
|
||||
return; //do not compute
|
||||
}
|
||||
|
||||
vec4 fog_accum = vec4(0.0);
|
||||
float prev_z = 0.0;
|
||||
|
||||
float t = 1.0;
|
||||
|
||||
for (int i = 0; i < params.fog_volume_size.z; i++) {
|
||||
//compute fog position
|
||||
ivec3 fog_pos = pos + ivec3(0, 0, i);
|
||||
//get fog value
|
||||
vec4 fog = imageLoad(density_map, fog_pos);
|
||||
|
||||
//get depth at cell pos
|
||||
float z = get_depth_at_pos(fog_cell_size.z, i);
|
||||
//get distance from previos pos
|
||||
float d = abs(prev_z - z);
|
||||
//compute exinction based on beer's
|
||||
float extinction = t * exp(-d * fog.a);
|
||||
//compute alpha based on different of extinctions
|
||||
float alpha = t - extinction;
|
||||
//update extinction
|
||||
t = extinction;
|
||||
|
||||
fog_accum += vec4(fog.rgb * alpha, alpha);
|
||||
prev_z = z;
|
||||
|
||||
vec4 fog_value;
|
||||
|
||||
if (fog_accum.a > 0.0) {
|
||||
fog_value = vec4(fog_accum.rgb / fog_accum.a, 1.0 - t);
|
||||
} else {
|
||||
fog_value = vec4(0.0);
|
||||
}
|
||||
|
||||
imageStore(fog_map, fog_pos, fog_value);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef MODE_FILTER
|
||||
|
||||
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
|
||||
|
||||
const float gauss[7] = float[](0.071303, 0.131514, 0.189879, 0.214607, 0.189879, 0.131514, 0.071303);
|
||||
|
||||
const ivec3 filter_dir[3] = ivec3[](ivec3(1, 0, 0), ivec3(0, 1, 0), ivec3(0, 0, 1));
|
||||
ivec3 offset = filter_dir[params.filter_axis];
|
||||
|
||||
vec4 accum = vec4(0.0);
|
||||
for (int i = -3; i <= 3; i++) {
|
||||
accum += imageLoad(source_map, clamp(pos + offset * i, ivec3(0), params.fog_volume_size - ivec3(1))) * gauss[i + 3];
|
||||
}
|
||||
|
||||
imageStore(dest_map, pos, accum);
|
||||
|
||||
#endif
|
||||
}
|
||||
Reference in New Issue
Block a user