1
0
mirror of https://github.com/godotengine/godot.git synced 2025-11-07 12:30:27 +00:00

Update libwebp to 0.6.1

* lossless performance and compression improvements + a new 'cruncher' mode (-m 6 -q 100)
* ARM performance improvements with clang (15-20% w/ndk r15c)
* webp-js: emscripten/webassembly based javascript decoder
* miscellaneous bug & build fixes
This commit is contained in:
volzhs
2017-12-12 02:11:11 +09:00
parent 64d104756c
commit 043103fe6a
162 changed files with 7580 additions and 6214 deletions

View File

@@ -0,0 +1,190 @@
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Specific inlined methods for boolean decoder [VP8GetBit() ...]
// This file should be included by the .c sources that actually need to call
// these methods.
//
// Author: Skal (pascal.massimino@gmail.com)
#ifndef WEBP_UTILS_BIT_READER_INL_UTILS_H_
#define WEBP_UTILS_BIT_READER_INL_UTILS_H_
#ifdef HAVE_CONFIG_H
#include "src/webp/config.h"
#endif
#include <string.h> // for memcpy
#include "src/dsp/dsp.h"
#include "src/utils/bit_reader_utils.h"
#include "src/utils/endian_inl_utils.h"
#include "src/utils/utils.h"
#ifdef __cplusplus
extern "C" {
#endif
//------------------------------------------------------------------------------
// Derived type lbit_t = natural type for memory I/O
#if (BITS > 32)
typedef uint64_t lbit_t;
#elif (BITS > 16)
typedef uint32_t lbit_t;
#elif (BITS > 8)
typedef uint16_t lbit_t;
#else
typedef uint8_t lbit_t;
#endif
extern const uint8_t kVP8Log2Range[128];
extern const uint8_t kVP8NewRange[128];
// special case for the tail byte-reading
void VP8LoadFinalBytes(VP8BitReader* const br);
//------------------------------------------------------------------------------
// Inlined critical functions
// makes sure br->value_ has at least BITS bits worth of data
static WEBP_UBSAN_IGNORE_UNDEF WEBP_INLINE
void VP8LoadNewBytes(VP8BitReader* const br) {
assert(br != NULL && br->buf_ != NULL);
// Read 'BITS' bits at a time if possible.
if (br->buf_ < br->buf_max_) {
// convert memory type to register type (with some zero'ing!)
bit_t bits;
#if defined(WEBP_USE_MIPS32)
// This is needed because of un-aligned read.
lbit_t in_bits;
lbit_t* p_buf_ = (lbit_t*)br->buf_;
__asm__ volatile(
".set push \n\t"
".set at \n\t"
".set macro \n\t"
"ulw %[in_bits], 0(%[p_buf_]) \n\t"
".set pop \n\t"
: [in_bits]"=r"(in_bits)
: [p_buf_]"r"(p_buf_)
: "memory", "at"
);
#else
lbit_t in_bits;
memcpy(&in_bits, br->buf_, sizeof(in_bits));
#endif
br->buf_ += BITS >> 3;
#if !defined(WORDS_BIGENDIAN)
#if (BITS > 32)
bits = BSwap64(in_bits);
bits >>= 64 - BITS;
#elif (BITS >= 24)
bits = BSwap32(in_bits);
bits >>= (32 - BITS);
#elif (BITS == 16)
bits = BSwap16(in_bits);
#else // BITS == 8
bits = (bit_t)in_bits;
#endif // BITS > 32
#else // WORDS_BIGENDIAN
bits = (bit_t)in_bits;
if (BITS != 8 * sizeof(bit_t)) bits >>= (8 * sizeof(bit_t) - BITS);
#endif
br->value_ = bits | (br->value_ << BITS);
br->bits_ += BITS;
} else {
VP8LoadFinalBytes(br); // no need to be inlined
}
}
// Read a bit with proba 'prob'. Speed-critical function!
static WEBP_INLINE int VP8GetBit(VP8BitReader* const br, int prob) {
// Don't move this declaration! It makes a big speed difference to store
// 'range' *before* calling VP8LoadNewBytes(), even if this function doesn't
// alter br->range_ value.
range_t range = br->range_;
if (br->bits_ < 0) {
VP8LoadNewBytes(br);
}
{
const int pos = br->bits_;
const range_t split = (range * prob) >> 8;
const range_t value = (range_t)(br->value_ >> pos);
const int bit = (value > split);
if (bit) {
range -= split;
br->value_ -= (bit_t)(split + 1) << pos;
} else {
range = split + 1;
}
{
const int shift = 7 ^ BitsLog2Floor(range);
range <<= shift;
br->bits_ -= shift;
}
br->range_ = range - 1;
return bit;
}
}
// simplified version of VP8GetBit() for prob=0x80 (note shift is always 1 here)
static WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW WEBP_INLINE
int VP8GetSigned(VP8BitReader* const br, int v) {
if (br->bits_ < 0) {
VP8LoadNewBytes(br);
}
{
const int pos = br->bits_;
const range_t split = br->range_ >> 1;
const range_t value = (range_t)(br->value_ >> pos);
const int32_t mask = (int32_t)(split - value) >> 31; // -1 or 0
br->bits_ -= 1;
br->range_ += mask;
br->range_ |= 1;
br->value_ -= (bit_t)((split + 1) & mask) << pos;
return (v ^ mask) - mask;
}
}
static WEBP_INLINE int VP8GetBitAlt(VP8BitReader* const br, int prob) {
// Don't move this declaration! It makes a big speed difference to store
// 'range' *before* calling VP8LoadNewBytes(), even if this function doesn't
// alter br->range_ value.
range_t range = br->range_;
if (br->bits_ < 0) {
VP8LoadNewBytes(br);
}
{
const int pos = br->bits_;
const range_t split = (range * prob) >> 8;
const range_t value = (range_t)(br->value_ >> pos);
int bit; // Don't use 'const int bit = (value > split);", it's slower.
if (value > split) {
range -= split + 1;
br->value_ -= (bit_t)(split + 1) << pos;
bit = 1;
} else {
range = split;
bit = 0;
}
if (range <= (range_t)0x7e) {
const int shift = kVP8Log2Range[range];
range = kVP8NewRange[range];
br->bits_ -= shift;
}
br->range_ = range;
return bit;
}
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // WEBP_UTILS_BIT_READER_INL_UTILS_H_

View File

@@ -0,0 +1,229 @@
// Copyright 2010 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Boolean decoder non-inlined methods
//
// Author: Skal (pascal.massimino@gmail.com)
#ifdef HAVE_CONFIG_H
#include "src/webp/config.h"
#endif
#include "src/utils/bit_reader_inl_utils.h"
#include "src/utils/utils.h"
//------------------------------------------------------------------------------
// VP8BitReader
void VP8BitReaderSetBuffer(VP8BitReader* const br,
const uint8_t* const start,
size_t size) {
br->buf_ = start;
br->buf_end_ = start + size;
br->buf_max_ =
(size >= sizeof(lbit_t)) ? start + size - sizeof(lbit_t) + 1
: start;
}
void VP8InitBitReader(VP8BitReader* const br,
const uint8_t* const start, size_t size) {
assert(br != NULL);
assert(start != NULL);
assert(size < (1u << 31)); // limit ensured by format and upstream checks
br->range_ = 255 - 1;
br->value_ = 0;
br->bits_ = -8; // to load the very first 8bits
br->eof_ = 0;
VP8BitReaderSetBuffer(br, start, size);
// -- GODOT -- begin
#ifdef JAVASCRIPT_ENABLED // html5 required aligned reads
while(((uintptr_t)br->buf_ & 1) != 0 && !br->eof_)
VP8LoadFinalBytes(br);
#else
VP8LoadNewBytes(br);
#endif
// -- GODOT -- end
}
void VP8RemapBitReader(VP8BitReader* const br, ptrdiff_t offset) {
if (br->buf_ != NULL) {
br->buf_ += offset;
br->buf_end_ += offset;
br->buf_max_ += offset;
}
}
const uint8_t kVP8Log2Range[128] = {
7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0
};
// range = ((range - 1) << kVP8Log2Range[range]) + 1
const uint8_t kVP8NewRange[128] = {
127, 127, 191, 127, 159, 191, 223, 127,
143, 159, 175, 191, 207, 223, 239, 127,
135, 143, 151, 159, 167, 175, 183, 191,
199, 207, 215, 223, 231, 239, 247, 127,
131, 135, 139, 143, 147, 151, 155, 159,
163, 167, 171, 175, 179, 183, 187, 191,
195, 199, 203, 207, 211, 215, 219, 223,
227, 231, 235, 239, 243, 247, 251, 127,
129, 131, 133, 135, 137, 139, 141, 143,
145, 147, 149, 151, 153, 155, 157, 159,
161, 163, 165, 167, 169, 171, 173, 175,
177, 179, 181, 183, 185, 187, 189, 191,
193, 195, 197, 199, 201, 203, 205, 207,
209, 211, 213, 215, 217, 219, 221, 223,
225, 227, 229, 231, 233, 235, 237, 239,
241, 243, 245, 247, 249, 251, 253, 127
};
void VP8LoadFinalBytes(VP8BitReader* const br) {
assert(br != NULL && br->buf_ != NULL);
// Only read 8bits at a time
if (br->buf_ < br->buf_end_) {
br->bits_ += 8;
br->value_ = (bit_t)(*br->buf_++) | (br->value_ << 8);
} else if (!br->eof_) {
br->value_ <<= 8;
br->bits_ += 8;
br->eof_ = 1;
} else {
br->bits_ = 0; // This is to avoid undefined behaviour with shifts.
}
}
//------------------------------------------------------------------------------
// Higher-level calls
uint32_t VP8GetValue(VP8BitReader* const br, int bits) {
uint32_t v = 0;
while (bits-- > 0) {
v |= VP8GetBit(br, 0x80) << bits;
}
return v;
}
int32_t VP8GetSignedValue(VP8BitReader* const br, int bits) {
const int value = VP8GetValue(br, bits);
return VP8Get(br) ? -value : value;
}
//------------------------------------------------------------------------------
// VP8LBitReader
#define VP8L_LOG8_WBITS 4 // Number of bytes needed to store VP8L_WBITS bits.
#if defined(__arm__) || defined(_M_ARM) || defined(__aarch64__) || \
defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64__) || defined(_M_X64)
#define VP8L_USE_FAST_LOAD
#endif
static const uint32_t kBitMask[VP8L_MAX_NUM_BIT_READ + 1] = {
0,
0x000001, 0x000003, 0x000007, 0x00000f,
0x00001f, 0x00003f, 0x00007f, 0x0000ff,
0x0001ff, 0x0003ff, 0x0007ff, 0x000fff,
0x001fff, 0x003fff, 0x007fff, 0x00ffff,
0x01ffff, 0x03ffff, 0x07ffff, 0x0fffff,
0x1fffff, 0x3fffff, 0x7fffff, 0xffffff
};
void VP8LInitBitReader(VP8LBitReader* const br, const uint8_t* const start,
size_t length) {
size_t i;
vp8l_val_t value = 0;
assert(br != NULL);
assert(start != NULL);
assert(length < 0xfffffff8u); // can't happen with a RIFF chunk.
br->len_ = length;
br->val_ = 0;
br->bit_pos_ = 0;
br->eos_ = 0;
if (length > sizeof(br->val_)) {
length = sizeof(br->val_);
}
for (i = 0; i < length; ++i) {
value |= (vp8l_val_t)start[i] << (8 * i);
}
br->val_ = value;
br->pos_ = length;
br->buf_ = start;
}
void VP8LBitReaderSetBuffer(VP8LBitReader* const br,
const uint8_t* const buf, size_t len) {
assert(br != NULL);
assert(buf != NULL);
assert(len < 0xfffffff8u); // can't happen with a RIFF chunk.
br->buf_ = buf;
br->len_ = len;
// pos_ > len_ should be considered a param error.
br->eos_ = (br->pos_ > br->len_) || VP8LIsEndOfStream(br);
}
static void VP8LSetEndOfStream(VP8LBitReader* const br) {
br->eos_ = 1;
br->bit_pos_ = 0; // To avoid undefined behaviour with shifts.
}
// If not at EOS, reload up to VP8L_LBITS byte-by-byte
static void ShiftBytes(VP8LBitReader* const br) {
while (br->bit_pos_ >= 8 && br->pos_ < br->len_) {
br->val_ >>= 8;
br->val_ |= ((vp8l_val_t)br->buf_[br->pos_]) << (VP8L_LBITS - 8);
++br->pos_;
br->bit_pos_ -= 8;
}
if (VP8LIsEndOfStream(br)) {
VP8LSetEndOfStream(br);
}
}
void VP8LDoFillBitWindow(VP8LBitReader* const br) {
assert(br->bit_pos_ >= VP8L_WBITS);
#if defined(VP8L_USE_FAST_LOAD)
if (br->pos_ + sizeof(br->val_) < br->len_) {
br->val_ >>= VP8L_WBITS;
br->bit_pos_ -= VP8L_WBITS;
br->val_ |= (vp8l_val_t)HToLE32(WebPMemToUint32(br->buf_ + br->pos_)) <<
(VP8L_LBITS - VP8L_WBITS);
br->pos_ += VP8L_LOG8_WBITS;
return;
}
#endif
ShiftBytes(br); // Slow path.
}
uint32_t VP8LReadBits(VP8LBitReader* const br, int n_bits) {
assert(n_bits >= 0);
// Flag an error if end_of_stream or n_bits is more than allowed limit.
if (!br->eos_ && n_bits <= VP8L_MAX_NUM_BIT_READ) {
const uint32_t val = VP8LPrefetchBits(br) & kBitMask[n_bits];
const int new_bits = br->bit_pos_ + n_bits;
br->bit_pos_ = new_bits;
ShiftBytes(br);
return val;
} else {
VP8LSetEndOfStream(br);
return 0;
}
}
//------------------------------------------------------------------------------

View File

@@ -0,0 +1,185 @@
// Copyright 2010 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Boolean decoder
//
// Author: Skal (pascal.massimino@gmail.com)
// Vikas Arora (vikaas.arora@gmail.com)
#ifndef WEBP_UTILS_BIT_READER_UTILS_H_
#define WEBP_UTILS_BIT_READER_UTILS_H_
#include <assert.h>
#ifdef _MSC_VER
#include <stdlib.h> // _byteswap_ulong
#endif
#include "src/webp/types.h"
#ifdef __cplusplus
extern "C" {
#endif
// The Boolean decoder needs to maintain infinite precision on the value_ field.
// However, since range_ is only 8bit, we only need an active window of 8 bits
// for value_. Left bits (MSB) gets zeroed and shifted away when value_ falls
// below 128, range_ is updated, and fresh bits read from the bitstream are
// brought in as LSB. To avoid reading the fresh bits one by one (slow), we
// cache BITS of them ahead. The total of (BITS + 8) bits must fit into a
// natural register (with type bit_t). To fetch BITS bits from bitstream we
// use a type lbit_t.
//
// BITS can be any multiple of 8 from 8 to 56 (inclusive).
// Pick values that fit natural register size.
// -- GODOT -- start
#ifdef JAVASCRIPT_ENABLED
#define BITS 16
#else
// -- GODOT -- end
#if defined(__i386__) || defined(_M_IX86) // x86 32bit
#define BITS 24
#elif defined(__x86_64__) || defined(_M_X64) // x86 64bit
#define BITS 56
#elif defined(__arm__) || defined(_M_ARM) // ARM
#define BITS 24
#elif defined(__aarch64__) // ARM 64bit
#define BITS 56
#elif defined(__mips__) // MIPS
#define BITS 24
#else // reasonable default
#define BITS 24
#endif
// -- GODOT -- start
#endif
// -- GODOT -- end
//------------------------------------------------------------------------------
// Derived types and constants:
// bit_t = natural register type for storing 'value_' (which is BITS+8 bits)
// range_t = register for 'range_' (which is 8bits only)
#if (BITS > 24)
typedef uint64_t bit_t;
#else
typedef uint32_t bit_t;
#endif
typedef uint32_t range_t;
//------------------------------------------------------------------------------
// Bitreader
typedef struct VP8BitReader VP8BitReader;
struct VP8BitReader {
// boolean decoder (keep the field ordering as is!)
bit_t value_; // current value
range_t range_; // current range minus 1. In [127, 254] interval.
int bits_; // number of valid bits left
// read buffer
const uint8_t* buf_; // next byte to be read
const uint8_t* buf_end_; // end of read buffer
const uint8_t* buf_max_; // max packed-read position on buffer
int eof_; // true if input is exhausted
};
// Initialize the bit reader and the boolean decoder.
void VP8InitBitReader(VP8BitReader* const br,
const uint8_t* const start, size_t size);
// Sets the working read buffer.
void VP8BitReaderSetBuffer(VP8BitReader* const br,
const uint8_t* const start, size_t size);
// Update internal pointers to displace the byte buffer by the
// relative offset 'offset'.
void VP8RemapBitReader(VP8BitReader* const br, ptrdiff_t offset);
// return the next value made of 'num_bits' bits
uint32_t VP8GetValue(VP8BitReader* const br, int num_bits);
static WEBP_INLINE uint32_t VP8Get(VP8BitReader* const br) {
return VP8GetValue(br, 1);
}
// return the next value with sign-extension.
int32_t VP8GetSignedValue(VP8BitReader* const br, int num_bits);
// bit_reader_inl.h will implement the following methods:
// static WEBP_INLINE int VP8GetBit(VP8BitReader* const br, int prob)
// static WEBP_INLINE int VP8GetSigned(VP8BitReader* const br, int v)
// and should be included by the .c files that actually need them.
// This is to avoid recompiling the whole library whenever this file is touched,
// and also allowing platform-specific ad-hoc hacks.
// -----------------------------------------------------------------------------
// Bitreader for lossless format
// maximum number of bits (inclusive) the bit-reader can handle:
#define VP8L_MAX_NUM_BIT_READ 24
#define VP8L_LBITS 64 // Number of bits prefetched (= bit-size of vp8l_val_t).
#define VP8L_WBITS 32 // Minimum number of bytes ready after VP8LFillBitWindow.
typedef uint64_t vp8l_val_t; // right now, this bit-reader can only use 64bit.
typedef struct {
vp8l_val_t val_; // pre-fetched bits
const uint8_t* buf_; // input byte buffer
size_t len_; // buffer length
size_t pos_; // byte position in buf_
int bit_pos_; // current bit-reading position in val_
int eos_; // true if a bit was read past the end of buffer
} VP8LBitReader;
void VP8LInitBitReader(VP8LBitReader* const br,
const uint8_t* const start,
size_t length);
// Sets a new data buffer.
void VP8LBitReaderSetBuffer(VP8LBitReader* const br,
const uint8_t* const buffer, size_t length);
// Reads the specified number of bits from read buffer.
// Flags an error in case end_of_stream or n_bits is more than the allowed limit
// of VP8L_MAX_NUM_BIT_READ (inclusive).
// Flags eos_ if this read attempt is going to cross the read buffer.
uint32_t VP8LReadBits(VP8LBitReader* const br, int n_bits);
// Return the prefetched bits, so they can be looked up.
static WEBP_INLINE uint32_t VP8LPrefetchBits(VP8LBitReader* const br) {
return (uint32_t)(br->val_ >> (br->bit_pos_ & (VP8L_LBITS - 1)));
}
// Returns true if there was an attempt at reading bit past the end of
// the buffer. Doesn't set br->eos_ flag.
static WEBP_INLINE int VP8LIsEndOfStream(const VP8LBitReader* const br) {
assert(br->pos_ <= br->len_);
return br->eos_ || ((br->pos_ == br->len_) && (br->bit_pos_ > VP8L_LBITS));
}
// For jumping over a number of bits in the bit stream when accessed with
// VP8LPrefetchBits and VP8LFillBitWindow.
// This function does *not* set br->eos_, since it's speed-critical.
// Use with extreme care!
static WEBP_INLINE void VP8LSetBitPos(VP8LBitReader* const br, int val) {
br->bit_pos_ = val;
}
// Advances the read buffer by 4 bytes to make room for reading next 32 bits.
// Speed critical, but infrequent part of the code can be non-inlined.
extern void VP8LDoFillBitWindow(VP8LBitReader* const br);
static WEBP_INLINE void VP8LFillBitWindow(VP8LBitReader* const br) {
if (br->bit_pos_ >= VP8L_WBITS) VP8LDoFillBitWindow(br);
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* WEBP_UTILS_BIT_READER_UTILS_H_ */

View File

@@ -0,0 +1,346 @@
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Bit writing and boolean coder
//
// Author: Skal (pascal.massimino@gmail.com)
// Vikas Arora (vikaas.arora@gmail.com)
#include <assert.h>
#include <string.h> // for memcpy()
#include <stdlib.h>
#include "src/utils/bit_writer_utils.h"
#include "src/utils/endian_inl_utils.h"
#include "src/utils/utils.h"
//------------------------------------------------------------------------------
// VP8BitWriter
static int BitWriterResize(VP8BitWriter* const bw, size_t extra_size) {
uint8_t* new_buf;
size_t new_size;
const uint64_t needed_size_64b = (uint64_t)bw->pos_ + extra_size;
const size_t needed_size = (size_t)needed_size_64b;
if (needed_size_64b != needed_size) {
bw->error_ = 1;
return 0;
}
if (needed_size <= bw->max_pos_) return 1;
// If the following line wraps over 32bit, the test just after will catch it.
new_size = 2 * bw->max_pos_;
if (new_size < needed_size) new_size = needed_size;
if (new_size < 1024) new_size = 1024;
new_buf = (uint8_t*)WebPSafeMalloc(1ULL, new_size);
if (new_buf == NULL) {
bw->error_ = 1;
return 0;
}
if (bw->pos_ > 0) {
assert(bw->buf_ != NULL);
memcpy(new_buf, bw->buf_, bw->pos_);
}
WebPSafeFree(bw->buf_);
bw->buf_ = new_buf;
bw->max_pos_ = new_size;
return 1;
}
static void Flush(VP8BitWriter* const bw) {
const int s = 8 + bw->nb_bits_;
const int32_t bits = bw->value_ >> s;
assert(bw->nb_bits_ >= 0);
bw->value_ -= bits << s;
bw->nb_bits_ -= 8;
if ((bits & 0xff) != 0xff) {
size_t pos = bw->pos_;
if (!BitWriterResize(bw, bw->run_ + 1)) {
return;
}
if (bits & 0x100) { // overflow -> propagate carry over pending 0xff's
if (pos > 0) bw->buf_[pos - 1]++;
}
if (bw->run_ > 0) {
const int value = (bits & 0x100) ? 0x00 : 0xff;
for (; bw->run_ > 0; --bw->run_) bw->buf_[pos++] = value;
}
bw->buf_[pos++] = bits;
bw->pos_ = pos;
} else {
bw->run_++; // delay writing of bytes 0xff, pending eventual carry.
}
}
//------------------------------------------------------------------------------
// renormalization
static const uint8_t kNorm[128] = { // renorm_sizes[i] = 8 - log2(i)
7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0
};
// range = ((range + 1) << kVP8Log2Range[range]) - 1
static const uint8_t kNewRange[128] = {
127, 127, 191, 127, 159, 191, 223, 127, 143, 159, 175, 191, 207, 223, 239,
127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239,
247, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179,
183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239,
243, 247, 251, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149,
151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179,
181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209,
211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239,
241, 243, 245, 247, 249, 251, 253, 127
};
int VP8PutBit(VP8BitWriter* const bw, int bit, int prob) {
const int split = (bw->range_ * prob) >> 8;
if (bit) {
bw->value_ += split + 1;
bw->range_ -= split + 1;
} else {
bw->range_ = split;
}
if (bw->range_ < 127) { // emit 'shift' bits out and renormalize
const int shift = kNorm[bw->range_];
bw->range_ = kNewRange[bw->range_];
bw->value_ <<= shift;
bw->nb_bits_ += shift;
if (bw->nb_bits_ > 0) Flush(bw);
}
return bit;
}
int VP8PutBitUniform(VP8BitWriter* const bw, int bit) {
const int split = bw->range_ >> 1;
if (bit) {
bw->value_ += split + 1;
bw->range_ -= split + 1;
} else {
bw->range_ = split;
}
if (bw->range_ < 127) {
bw->range_ = kNewRange[bw->range_];
bw->value_ <<= 1;
bw->nb_bits_ += 1;
if (bw->nb_bits_ > 0) Flush(bw);
}
return bit;
}
void VP8PutBits(VP8BitWriter* const bw, uint32_t value, int nb_bits) {
uint32_t mask;
assert(nb_bits > 0 && nb_bits < 32);
for (mask = 1u << (nb_bits - 1); mask; mask >>= 1) {
VP8PutBitUniform(bw, value & mask);
}
}
void VP8PutSignedBits(VP8BitWriter* const bw, int value, int nb_bits) {
if (!VP8PutBitUniform(bw, value != 0)) return;
if (value < 0) {
VP8PutBits(bw, ((-value) << 1) | 1, nb_bits + 1);
} else {
VP8PutBits(bw, value << 1, nb_bits + 1);
}
}
//------------------------------------------------------------------------------
int VP8BitWriterInit(VP8BitWriter* const bw, size_t expected_size) {
bw->range_ = 255 - 1;
bw->value_ = 0;
bw->run_ = 0;
bw->nb_bits_ = -8;
bw->pos_ = 0;
bw->max_pos_ = 0;
bw->error_ = 0;
bw->buf_ = NULL;
return (expected_size > 0) ? BitWriterResize(bw, expected_size) : 1;
}
uint8_t* VP8BitWriterFinish(VP8BitWriter* const bw) {
VP8PutBits(bw, 0, 9 - bw->nb_bits_);
bw->nb_bits_ = 0; // pad with zeroes
Flush(bw);
return bw->buf_;
}
int VP8BitWriterAppend(VP8BitWriter* const bw,
const uint8_t* data, size_t size) {
assert(data != NULL);
if (bw->nb_bits_ != -8) return 0; // Flush() must have been called
if (!BitWriterResize(bw, size)) return 0;
memcpy(bw->buf_ + bw->pos_, data, size);
bw->pos_ += size;
return 1;
}
void VP8BitWriterWipeOut(VP8BitWriter* const bw) {
if (bw != NULL) {
WebPSafeFree(bw->buf_);
memset(bw, 0, sizeof(*bw));
}
}
//------------------------------------------------------------------------------
// VP8LBitWriter
// This is the minimum amount of size the memory buffer is guaranteed to grow
// when extra space is needed.
#define MIN_EXTRA_SIZE (32768ULL)
// Returns 1 on success.
static int VP8LBitWriterResize(VP8LBitWriter* const bw, size_t extra_size) {
uint8_t* allocated_buf;
size_t allocated_size;
const size_t max_bytes = bw->end_ - bw->buf_;
const size_t current_size = bw->cur_ - bw->buf_;
const uint64_t size_required_64b = (uint64_t)current_size + extra_size;
const size_t size_required = (size_t)size_required_64b;
if (size_required != size_required_64b) {
bw->error_ = 1;
return 0;
}
if (max_bytes > 0 && size_required <= max_bytes) return 1;
allocated_size = (3 * max_bytes) >> 1;
if (allocated_size < size_required) allocated_size = size_required;
// make allocated size multiple of 1k
allocated_size = (((allocated_size >> 10) + 1) << 10);
allocated_buf = (uint8_t*)WebPSafeMalloc(1ULL, allocated_size);
if (allocated_buf == NULL) {
bw->error_ = 1;
return 0;
}
if (current_size > 0) {
memcpy(allocated_buf, bw->buf_, current_size);
}
WebPSafeFree(bw->buf_);
bw->buf_ = allocated_buf;
bw->cur_ = bw->buf_ + current_size;
bw->end_ = bw->buf_ + allocated_size;
return 1;
}
int VP8LBitWriterInit(VP8LBitWriter* const bw, size_t expected_size) {
memset(bw, 0, sizeof(*bw));
return VP8LBitWriterResize(bw, expected_size);
}
int VP8LBitWriterClone(const VP8LBitWriter* const src,
VP8LBitWriter* const dst) {
const size_t current_size = src->cur_ - src->buf_;
assert(src->cur_ >= src->buf_ && src->cur_ <= src->end_);
if (!VP8LBitWriterResize(dst, current_size)) return 0;
memcpy(dst->buf_, src->buf_, current_size);
dst->bits_ = src->bits_;
dst->used_ = src->used_;
dst->error_ = src->error_;
return 1;
}
void VP8LBitWriterWipeOut(VP8LBitWriter* const bw) {
if (bw != NULL) {
WebPSafeFree(bw->buf_);
memset(bw, 0, sizeof(*bw));
}
}
void VP8LBitWriterReset(const VP8LBitWriter* const bw_init,
VP8LBitWriter* const bw) {
bw->bits_ = bw_init->bits_;
bw->used_ = bw_init->used_;
bw->cur_ = bw->buf_ + (bw_init->cur_ - bw_init->buf_);
assert(bw->cur_ <= bw->end_);
bw->error_ = bw_init->error_;
}
void VP8LBitWriterSwap(VP8LBitWriter* const src, VP8LBitWriter* const dst) {
const VP8LBitWriter tmp = *src;
*src = *dst;
*dst = tmp;
}
void VP8LPutBitsFlushBits(VP8LBitWriter* const bw) {
// If needed, make some room by flushing some bits out.
if (bw->cur_ + VP8L_WRITER_BYTES > bw->end_) {
const uint64_t extra_size = (bw->end_ - bw->buf_) + MIN_EXTRA_SIZE;
if (extra_size != (size_t)extra_size ||
!VP8LBitWriterResize(bw, (size_t)extra_size)) {
bw->cur_ = bw->buf_;
bw->error_ = 1;
return;
}
}
*(vp8l_wtype_t*)bw->cur_ = (vp8l_wtype_t)WSWAP((vp8l_wtype_t)bw->bits_);
bw->cur_ += VP8L_WRITER_BYTES;
bw->bits_ >>= VP8L_WRITER_BITS;
bw->used_ -= VP8L_WRITER_BITS;
}
void VP8LPutBitsInternal(VP8LBitWriter* const bw, uint32_t bits, int n_bits) {
assert(n_bits <= 32);
// That's the max we can handle:
assert(sizeof(vp8l_wtype_t) == 2);
if (n_bits > 0) {
vp8l_atype_t lbits = bw->bits_;
int used = bw->used_;
// Special case of overflow handling for 32bit accumulator (2-steps flush).
#if VP8L_WRITER_BITS == 16
if (used + n_bits >= VP8L_WRITER_MAX_BITS) {
// Fill up all the VP8L_WRITER_MAX_BITS so it can be flushed out below.
const int shift = VP8L_WRITER_MAX_BITS - used;
lbits |= (vp8l_atype_t)bits << used;
used = VP8L_WRITER_MAX_BITS;
n_bits -= shift;
bits >>= shift;
assert(n_bits <= VP8L_WRITER_MAX_BITS);
}
#endif
// If needed, make some room by flushing some bits out.
while (used >= VP8L_WRITER_BITS) {
if (bw->cur_ + VP8L_WRITER_BYTES > bw->end_) {
const uint64_t extra_size = (bw->end_ - bw->buf_) + MIN_EXTRA_SIZE;
if (extra_size != (size_t)extra_size ||
!VP8LBitWriterResize(bw, (size_t)extra_size)) {
bw->cur_ = bw->buf_;
bw->error_ = 1;
return;
}
}
*(vp8l_wtype_t*)bw->cur_ = (vp8l_wtype_t)WSWAP((vp8l_wtype_t)lbits);
bw->cur_ += VP8L_WRITER_BYTES;
lbits >>= VP8L_WRITER_BITS;
used -= VP8L_WRITER_BITS;
}
bw->bits_ = lbits | ((vp8l_atype_t)bits << used);
bw->used_ = used + n_bits;
}
}
uint8_t* VP8LBitWriterFinish(VP8LBitWriter* const bw) {
// flush leftover bits
if (VP8LBitWriterResize(bw, (bw->used_ + 7) >> 3)) {
while (bw->used_ > 0) {
*bw->cur_++ = (uint8_t)bw->bits_;
bw->bits_ >>= 8;
bw->used_ -= 8;
}
bw->used_ = 0;
}
return bw->buf_;
}
//------------------------------------------------------------------------------

View File

@@ -0,0 +1,154 @@
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Bit writing and boolean coder
//
// Author: Skal (pascal.massimino@gmail.com)
#ifndef WEBP_UTILS_BIT_WRITER_UTILS_H_
#define WEBP_UTILS_BIT_WRITER_UTILS_H_
#include "src/webp/types.h"
#ifdef __cplusplus
extern "C" {
#endif
//------------------------------------------------------------------------------
// Bit-writing
typedef struct VP8BitWriter VP8BitWriter;
struct VP8BitWriter {
int32_t range_; // range-1
int32_t value_;
int run_; // number of outstanding bits
int nb_bits_; // number of pending bits
uint8_t* buf_; // internal buffer. Re-allocated regularly. Not owned.
size_t pos_;
size_t max_pos_;
int error_; // true in case of error
};
// Initialize the object. Allocates some initial memory based on expected_size.
int VP8BitWriterInit(VP8BitWriter* const bw, size_t expected_size);
// Finalize the bitstream coding. Returns a pointer to the internal buffer.
uint8_t* VP8BitWriterFinish(VP8BitWriter* const bw);
// Release any pending memory and zeroes the object. Not a mandatory call.
// Only useful in case of error, when the internal buffer hasn't been grabbed!
void VP8BitWriterWipeOut(VP8BitWriter* const bw);
int VP8PutBit(VP8BitWriter* const bw, int bit, int prob);
int VP8PutBitUniform(VP8BitWriter* const bw, int bit);
void VP8PutBits(VP8BitWriter* const bw, uint32_t value, int nb_bits);
void VP8PutSignedBits(VP8BitWriter* const bw, int value, int nb_bits);
// Appends some bytes to the internal buffer. Data is copied.
int VP8BitWriterAppend(VP8BitWriter* const bw,
const uint8_t* data, size_t size);
// return approximate write position (in bits)
static WEBP_INLINE uint64_t VP8BitWriterPos(const VP8BitWriter* const bw) {
const uint64_t nb_bits = 8 + bw->nb_bits_; // bw->nb_bits_ is <= 0, note
return (bw->pos_ + bw->run_) * 8 + nb_bits;
}
// Returns a pointer to the internal buffer.
static WEBP_INLINE uint8_t* VP8BitWriterBuf(const VP8BitWriter* const bw) {
return bw->buf_;
}
// Returns the size of the internal buffer.
static WEBP_INLINE size_t VP8BitWriterSize(const VP8BitWriter* const bw) {
return bw->pos_;
}
//------------------------------------------------------------------------------
// VP8LBitWriter
#if defined(__x86_64__) || defined(_M_X64) // 64bit
typedef uint64_t vp8l_atype_t; // accumulator type
typedef uint32_t vp8l_wtype_t; // writing type
#define WSWAP HToLE32
#define VP8L_WRITER_BYTES 4 // sizeof(vp8l_wtype_t)
#define VP8L_WRITER_BITS 32 // 8 * sizeof(vp8l_wtype_t)
#define VP8L_WRITER_MAX_BITS 64 // 8 * sizeof(vp8l_atype_t)
#else
typedef uint32_t vp8l_atype_t;
typedef uint16_t vp8l_wtype_t;
#define WSWAP HToLE16
#define VP8L_WRITER_BYTES 2
#define VP8L_WRITER_BITS 16
#define VP8L_WRITER_MAX_BITS 32
#endif
typedef struct {
vp8l_atype_t bits_; // bit accumulator
int used_; // number of bits used in accumulator
uint8_t* buf_; // start of buffer
uint8_t* cur_; // current write position
uint8_t* end_; // end of buffer
// After all bits are written (VP8LBitWriterFinish()), the caller must observe
// the state of error_. A value of 1 indicates that a memory allocation
// failure has happened during bit writing. A value of 0 indicates successful
// writing of bits.
int error_;
} VP8LBitWriter;
static WEBP_INLINE size_t VP8LBitWriterNumBytes(const VP8LBitWriter* const bw) {
return (bw->cur_ - bw->buf_) + ((bw->used_ + 7) >> 3);
}
// Returns false in case of memory allocation error.
int VP8LBitWriterInit(VP8LBitWriter* const bw, size_t expected_size);
// Returns false in case of memory allocation error.
int VP8LBitWriterClone(const VP8LBitWriter* const src,
VP8LBitWriter* const dst);
// Finalize the bitstream coding. Returns a pointer to the internal buffer.
uint8_t* VP8LBitWriterFinish(VP8LBitWriter* const bw);
// Release any pending memory and zeroes the object.
void VP8LBitWriterWipeOut(VP8LBitWriter* const bw);
// Resets the cursor of the BitWriter bw to when it was like in bw_init.
void VP8LBitWriterReset(const VP8LBitWriter* const bw_init,
VP8LBitWriter* const bw);
// Swaps the memory held by two BitWriters.
void VP8LBitWriterSwap(VP8LBitWriter* const src, VP8LBitWriter* const dst);
// Internal function for VP8LPutBits flushing 32 bits from the written state.
void VP8LPutBitsFlushBits(VP8LBitWriter* const bw);
// PutBits internal function used in the 16 bit vp8l_wtype_t case.
void VP8LPutBitsInternal(VP8LBitWriter* const bw, uint32_t bits, int n_bits);
// This function writes bits into bytes in increasing addresses (little endian),
// and within a byte least-significant-bit first.
// This function can write up to 32 bits in one go, but VP8LBitReader can only
// read 24 bits max (VP8L_MAX_NUM_BIT_READ).
// VP8LBitWriter's error_ flag is set in case of memory allocation error.
static WEBP_INLINE void VP8LPutBits(VP8LBitWriter* const bw,
uint32_t bits, int n_bits) {
if (sizeof(vp8l_wtype_t) == 4) {
if (n_bits > 0) {
if (bw->used_ >= 32) {
VP8LPutBitsFlushBits(bw);
}
bw->bits_ |= (vp8l_atype_t)bits << bw->used_;
bw->used_ += n_bits;
}
} else {
VP8LPutBitsInternal(bw, bits, n_bits);
}
}
//------------------------------------------------------------------------------
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* WEBP_UTILS_BIT_WRITER_UTILS_H_ */

View File

@@ -0,0 +1,49 @@
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Color Cache for WebP Lossless
//
// Author: Jyrki Alakuijala (jyrki@google.com)
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "src/utils/color_cache_utils.h"
#include "src/utils/utils.h"
//------------------------------------------------------------------------------
// VP8LColorCache.
int VP8LColorCacheInit(VP8LColorCache* const cc, int hash_bits) {
const int hash_size = 1 << hash_bits;
assert(cc != NULL);
assert(hash_bits > 0);
cc->colors_ = (uint32_t*)WebPSafeCalloc((uint64_t)hash_size,
sizeof(*cc->colors_));
if (cc->colors_ == NULL) return 0;
cc->hash_shift_ = 32 - hash_bits;
cc->hash_bits_ = hash_bits;
return 1;
}
void VP8LColorCacheClear(VP8LColorCache* const cc) {
if (cc != NULL) {
WebPSafeFree(cc->colors_);
cc->colors_ = NULL;
}
}
void VP8LColorCacheCopy(const VP8LColorCache* const src,
VP8LColorCache* const dst) {
assert(src != NULL);
assert(dst != NULL);
assert(src->hash_bits_ == dst->hash_bits_);
memcpy(dst->colors_, src->colors_,
((size_t)1u << dst->hash_bits_) * sizeof(*dst->colors_));
}

View File

@@ -0,0 +1,87 @@
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Color Cache for WebP Lossless
//
// Authors: Jyrki Alakuijala (jyrki@google.com)
// Urvang Joshi (urvang@google.com)
#ifndef WEBP_UTILS_COLOR_CACHE_UTILS_H_
#define WEBP_UTILS_COLOR_CACHE_UTILS_H_
#include <assert.h>
#include "src/webp/types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Main color cache struct.
typedef struct {
uint32_t *colors_; // color entries
int hash_shift_; // Hash shift: 32 - hash_bits_.
int hash_bits_;
} VP8LColorCache;
static const uint64_t kHashMul = 0x1e35a7bdull;
static WEBP_INLINE int VP8LHashPix(uint32_t argb, int shift) {
return (int)(((argb * kHashMul) & 0xffffffffu) >> shift);
}
static WEBP_INLINE uint32_t VP8LColorCacheLookup(
const VP8LColorCache* const cc, uint32_t key) {
assert((key >> cc->hash_bits_) == 0u);
return cc->colors_[key];
}
static WEBP_INLINE void VP8LColorCacheSet(const VP8LColorCache* const cc,
uint32_t key, uint32_t argb) {
assert((key >> cc->hash_bits_) == 0u);
cc->colors_[key] = argb;
}
static WEBP_INLINE void VP8LColorCacheInsert(const VP8LColorCache* const cc,
uint32_t argb) {
const int key = VP8LHashPix(argb, cc->hash_shift_);
cc->colors_[key] = argb;
}
static WEBP_INLINE int VP8LColorCacheGetIndex(const VP8LColorCache* const cc,
uint32_t argb) {
return VP8LHashPix(argb, cc->hash_shift_);
}
// Return the key if cc contains argb, and -1 otherwise.
static WEBP_INLINE int VP8LColorCacheContains(const VP8LColorCache* const cc,
uint32_t argb) {
const int key = VP8LHashPix(argb, cc->hash_shift_);
return (cc->colors_[key] == argb) ? key : -1;
}
//------------------------------------------------------------------------------
// Initializes the color cache with 'hash_bits' bits for the keys.
// Returns false in case of memory error.
int VP8LColorCacheInit(VP8LColorCache* const color_cache, int hash_bits);
void VP8LColorCacheCopy(const VP8LColorCache* const src,
VP8LColorCache* const dst);
// Delete the memory associated to color cache.
void VP8LColorCacheClear(VP8LColorCache* const color_cache);
//------------------------------------------------------------------------------
#ifdef __cplusplus
}
#endif
#endif // WEBP_UTILS_COLOR_CACHE_UTILS_H_

View File

@@ -0,0 +1,100 @@
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Endian related functions.
#ifndef WEBP_UTILS_ENDIAN_INL_UTILS_H_
#define WEBP_UTILS_ENDIAN_INL_UTILS_H_
#ifdef HAVE_CONFIG_H
#include "src/webp/config.h"
#endif
#include "src/dsp/dsp.h"
#include "src/webp/types.h"
// some endian fix (e.g.: mips-gcc doesn't define __BIG_ENDIAN__)
#if !defined(WORDS_BIGENDIAN) && \
(defined(__BIG_ENDIAN__) || defined(_M_PPC) || \
(defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
#define WORDS_BIGENDIAN
#endif
#if defined(WORDS_BIGENDIAN)
#define HToLE32 BSwap32
#define HToLE16 BSwap16
#else
#define HToLE32(x) (x)
#define HToLE16(x) (x)
#endif
#if !defined(HAVE_CONFIG_H)
#if LOCAL_GCC_PREREQ(4,8) || __has_builtin(__builtin_bswap16)
#define HAVE_BUILTIN_BSWAP16
#endif
#if LOCAL_GCC_PREREQ(4,3) || __has_builtin(__builtin_bswap32)
#define HAVE_BUILTIN_BSWAP32
#endif
#if LOCAL_GCC_PREREQ(4,3) || __has_builtin(__builtin_bswap64)
#define HAVE_BUILTIN_BSWAP64
#endif
#endif // !HAVE_CONFIG_H
static WEBP_INLINE uint16_t BSwap16(uint16_t x) {
#if defined(HAVE_BUILTIN_BSWAP16)
return __builtin_bswap16(x);
#elif defined(_MSC_VER)
return _byteswap_ushort(x);
#else
// gcc will recognize a 'rorw $8, ...' here:
return (x >> 8) | ((x & 0xff) << 8);
#endif // HAVE_BUILTIN_BSWAP16
}
static WEBP_INLINE uint32_t BSwap32(uint32_t x) {
#if defined(WEBP_USE_MIPS32_R2)
uint32_t ret;
__asm__ volatile (
"wsbh %[ret], %[x] \n\t"
"rotr %[ret], %[ret], 16 \n\t"
: [ret]"=r"(ret)
: [x]"r"(x)
);
return ret;
#elif defined(HAVE_BUILTIN_BSWAP32)
return __builtin_bswap32(x);
#elif defined(__i386__) || defined(__x86_64__)
uint32_t swapped_bytes;
__asm__ volatile("bswap %0" : "=r"(swapped_bytes) : "0"(x));
return swapped_bytes;
#elif defined(_MSC_VER)
return (uint32_t)_byteswap_ulong(x);
#else
return (x >> 24) | ((x >> 8) & 0xff00) | ((x << 8) & 0xff0000) | (x << 24);
#endif // HAVE_BUILTIN_BSWAP32
}
static WEBP_INLINE uint64_t BSwap64(uint64_t x) {
#if defined(HAVE_BUILTIN_BSWAP64)
return __builtin_bswap64(x);
#elif defined(__x86_64__)
uint64_t swapped_bytes;
__asm__ volatile("bswapq %0" : "=r"(swapped_bytes) : "0"(x));
return swapped_bytes;
#elif defined(_MSC_VER)
return (uint64_t)_byteswap_uint64(x);
#else // generic code for swapping 64-bit values (suggested by bdb@)
x = ((x & 0xffffffff00000000ull) >> 32) | ((x & 0x00000000ffffffffull) << 32);
x = ((x & 0xffff0000ffff0000ull) >> 16) | ((x & 0x0000ffff0000ffffull) << 16);
x = ((x & 0xff00ff00ff00ff00ull) >> 8) | ((x & 0x00ff00ff00ff00ffull) << 8);
return x;
#endif // HAVE_BUILTIN_BSWAP64
}
#endif // WEBP_UTILS_ENDIAN_INL_UTILS_H_

View File

@@ -0,0 +1,76 @@
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// filter estimation
//
// Author: Urvang (urvang@google.com)
#include "src/utils/filters_utils.h"
#include <stdlib.h>
#include <string.h>
// -----------------------------------------------------------------------------
// Quick estimate of a potentially interesting filter mode to try.
#define SMAX 16
#define SDIFF(a, b) (abs((a) - (b)) >> 4) // Scoring diff, in [0..SMAX)
static WEBP_INLINE int GradientPredictor(uint8_t a, uint8_t b, uint8_t c) {
const int g = a + b - c;
return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255; // clip to 8bit
}
WEBP_FILTER_TYPE WebPEstimateBestFilter(const uint8_t* data,
int width, int height, int stride) {
int i, j;
int bins[WEBP_FILTER_LAST][SMAX];
memset(bins, 0, sizeof(bins));
// We only sample every other pixels. That's enough.
for (j = 2; j < height - 1; j += 2) {
const uint8_t* const p = data + j * stride;
int mean = p[0];
for (i = 2; i < width - 1; i += 2) {
const int diff0 = SDIFF(p[i], mean);
const int diff1 = SDIFF(p[i], p[i - 1]);
const int diff2 = SDIFF(p[i], p[i - width]);
const int grad_pred =
GradientPredictor(p[i - 1], p[i - width], p[i - width - 1]);
const int diff3 = SDIFF(p[i], grad_pred);
bins[WEBP_FILTER_NONE][diff0] = 1;
bins[WEBP_FILTER_HORIZONTAL][diff1] = 1;
bins[WEBP_FILTER_VERTICAL][diff2] = 1;
bins[WEBP_FILTER_GRADIENT][diff3] = 1;
mean = (3 * mean + p[i] + 2) >> 2;
}
}
{
int filter;
WEBP_FILTER_TYPE best_filter = WEBP_FILTER_NONE;
int best_score = 0x7fffffff;
for (filter = WEBP_FILTER_NONE; filter < WEBP_FILTER_LAST; ++filter) {
int score = 0;
for (i = 0; i < SMAX; ++i) {
if (bins[filter][i] > 0) {
score += i;
}
}
if (score < best_score) {
best_score = score;
best_filter = (WEBP_FILTER_TYPE)filter;
}
}
return best_filter;
}
}
#undef SMAX
#undef SDIFF
//------------------------------------------------------------------------------

View File

@@ -0,0 +1,32 @@
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Spatial prediction using various filters
//
// Author: Urvang (urvang@google.com)
#ifndef WEBP_UTILS_FILTERS_UTILS_H_
#define WEBP_UTILS_FILTERS_UTILS_H_
#include "src/webp/types.h"
#include "src/dsp/dsp.h"
#ifdef __cplusplus
extern "C" {
#endif
// Fast estimate of a potentially good filter.
WEBP_FILTER_TYPE WebPEstimateBestFilter(const uint8_t* data,
int width, int height, int stride);
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* WEBP_UTILS_FILTERS_UTILS_H_ */

View File

@@ -0,0 +1,417 @@
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
// Entropy encoding (Huffman) for webp lossless.
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "src/utils/huffman_encode_utils.h"
#include "src/utils/utils.h"
#include "src/webp/format_constants.h"
// -----------------------------------------------------------------------------
// Util function to optimize the symbol map for RLE coding
// Heuristics for selecting the stride ranges to collapse.
static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
return abs(a - b) < 4;
}
// Change the population counts in a way that the consequent
// Huffman tree compression, especially its RLE-part, give smaller output.
static void OptimizeHuffmanForRle(int length, uint8_t* const good_for_rle,
uint32_t* const counts) {
// 1) Let's make the Huffman code more compatible with rle encoding.
int i;
for (; length >= 0; --length) {
if (length == 0) {
return; // All zeros.
}
if (counts[length - 1] != 0) {
// Now counts[0..length - 1] does not have trailing zeros.
break;
}
}
// 2) Let's mark all population counts that already can be encoded
// with an rle code.
{
// Let's not spoil any of the existing good rle codes.
// Mark any seq of 0's that is longer as 5 as a good_for_rle.
// Mark any seq of non-0's that is longer as 7 as a good_for_rle.
uint32_t symbol = counts[0];
int stride = 0;
for (i = 0; i < length + 1; ++i) {
if (i == length || counts[i] != symbol) {
if ((symbol == 0 && stride >= 5) ||
(symbol != 0 && stride >= 7)) {
int k;
for (k = 0; k < stride; ++k) {
good_for_rle[i - k - 1] = 1;
}
}
stride = 1;
if (i != length) {
symbol = counts[i];
}
} else {
++stride;
}
}
}
// 3) Let's replace those population counts that lead to more rle codes.
{
uint32_t stride = 0;
uint32_t limit = counts[0];
uint32_t sum = 0;
for (i = 0; i < length + 1; ++i) {
if (i == length || good_for_rle[i] ||
(i != 0 && good_for_rle[i - 1]) ||
!ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
if (stride >= 4 || (stride >= 3 && sum == 0)) {
uint32_t k;
// The stride must end, collapse what we have, if we have enough (4).
uint32_t count = (sum + stride / 2) / stride;
if (count < 1) {
count = 1;
}
if (sum == 0) {
// Don't make an all zeros stride to be upgraded to ones.
count = 0;
}
for (k = 0; k < stride; ++k) {
// We don't want to change value at counts[i],
// that is already belonging to the next stride. Thus - 1.
counts[i - k - 1] = count;
}
}
stride = 0;
sum = 0;
if (i < length - 3) {
// All interesting strides have a count of at least 4,
// at least when non-zeros.
limit = (counts[i] + counts[i + 1] +
counts[i + 2] + counts[i + 3] + 2) / 4;
} else if (i < length) {
limit = counts[i];
} else {
limit = 0;
}
}
++stride;
if (i != length) {
sum += counts[i];
if (stride >= 4) {
limit = (sum + stride / 2) / stride;
}
}
}
}
}
// A comparer function for two Huffman trees: sorts first by 'total count'
// (more comes first), and then by 'value' (more comes first).
static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) {
const HuffmanTree* const t1 = (const HuffmanTree*)ptr1;
const HuffmanTree* const t2 = (const HuffmanTree*)ptr2;
if (t1->total_count_ > t2->total_count_) {
return -1;
} else if (t1->total_count_ < t2->total_count_) {
return 1;
} else {
assert(t1->value_ != t2->value_);
return (t1->value_ < t2->value_) ? -1 : 1;
}
}
static void SetBitDepths(const HuffmanTree* const tree,
const HuffmanTree* const pool,
uint8_t* const bit_depths, int level) {
if (tree->pool_index_left_ >= 0) {
SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1);
SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1);
} else {
bit_depths[tree->value_] = level;
}
}
// Create an optimal Huffman tree.
//
// (data,length): population counts.
// tree_limit: maximum bit depth (inclusive) of the codes.
// bit_depths[]: how many bits are used for the symbol.
//
// Returns 0 when an error has occurred.
//
// The catch here is that the tree cannot be arbitrarily deep
//
// count_limit is the value that is to be faked as the minimum value
// and this minimum value is raised until the tree matches the
// maximum length requirement.
//
// This algorithm is not of excellent performance for very long data blocks,
// especially when population counts are longer than 2**tree_limit, but
// we are not planning to use this with extremely long blocks.
//
// See http://en.wikipedia.org/wiki/Huffman_coding
static void GenerateOptimalTree(const uint32_t* const histogram,
int histogram_size,
HuffmanTree* tree, int tree_depth_limit,
uint8_t* const bit_depths) {
uint32_t count_min;
HuffmanTree* tree_pool;
int tree_size_orig = 0;
int i;
for (i = 0; i < histogram_size; ++i) {
if (histogram[i] != 0) {
++tree_size_orig;
}
}
if (tree_size_orig == 0) { // pretty optimal already!
return;
}
tree_pool = tree + tree_size_orig;
// For block sizes with less than 64k symbols we never need to do a
// second iteration of this loop.
// If we actually start running inside this loop a lot, we would perhaps
// be better off with the Katajainen algorithm.
assert(tree_size_orig <= (1 << (tree_depth_limit - 1)));
for (count_min = 1; ; count_min *= 2) {
int tree_size = tree_size_orig;
// We need to pack the Huffman tree in tree_depth_limit bits.
// So, we try by faking histogram entries to be at least 'count_min'.
int idx = 0;
int j;
for (j = 0; j < histogram_size; ++j) {
if (histogram[j] != 0) {
const uint32_t count =
(histogram[j] < count_min) ? count_min : histogram[j];
tree[idx].total_count_ = count;
tree[idx].value_ = j;
tree[idx].pool_index_left_ = -1;
tree[idx].pool_index_right_ = -1;
++idx;
}
}
// Build the Huffman tree.
qsort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees);
if (tree_size > 1) { // Normal case.
int tree_pool_size = 0;
while (tree_size > 1) { // Finish when we have only one root.
uint32_t count;
tree_pool[tree_pool_size++] = tree[tree_size - 1];
tree_pool[tree_pool_size++] = tree[tree_size - 2];
count = tree_pool[tree_pool_size - 1].total_count_ +
tree_pool[tree_pool_size - 2].total_count_;
tree_size -= 2;
{
// Search for the insertion point.
int k;
for (k = 0; k < tree_size; ++k) {
if (tree[k].total_count_ <= count) {
break;
}
}
memmove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree));
tree[k].total_count_ = count;
tree[k].value_ = -1;
tree[k].pool_index_left_ = tree_pool_size - 1;
tree[k].pool_index_right_ = tree_pool_size - 2;
tree_size = tree_size + 1;
}
}
SetBitDepths(&tree[0], tree_pool, bit_depths, 0);
} else if (tree_size == 1) { // Trivial case: only one element.
bit_depths[tree[0].value_] = 1;
}
{
// Test if this Huffman tree satisfies our 'tree_depth_limit' criteria.
int max_depth = bit_depths[0];
for (j = 1; j < histogram_size; ++j) {
if (max_depth < bit_depths[j]) {
max_depth = bit_depths[j];
}
}
if (max_depth <= tree_depth_limit) {
break;
}
}
}
}
// -----------------------------------------------------------------------------
// Coding of the Huffman tree values
static HuffmanTreeToken* CodeRepeatedValues(int repetitions,
HuffmanTreeToken* tokens,
int value, int prev_value) {
assert(value <= MAX_ALLOWED_CODE_LENGTH);
if (value != prev_value) {
tokens->code = value;
tokens->extra_bits = 0;
++tokens;
--repetitions;
}
while (repetitions >= 1) {
if (repetitions < 3) {
int i;
for (i = 0; i < repetitions; ++i) {
tokens->code = value;
tokens->extra_bits = 0;
++tokens;
}
break;
} else if (repetitions < 7) {
tokens->code = 16;
tokens->extra_bits = repetitions - 3;
++tokens;
break;
} else {
tokens->code = 16;
tokens->extra_bits = 3;
++tokens;
repetitions -= 6;
}
}
return tokens;
}
static HuffmanTreeToken* CodeRepeatedZeros(int repetitions,
HuffmanTreeToken* tokens) {
while (repetitions >= 1) {
if (repetitions < 3) {
int i;
for (i = 0; i < repetitions; ++i) {
tokens->code = 0; // 0-value
tokens->extra_bits = 0;
++tokens;
}
break;
} else if (repetitions < 11) {
tokens->code = 17;
tokens->extra_bits = repetitions - 3;
++tokens;
break;
} else if (repetitions < 139) {
tokens->code = 18;
tokens->extra_bits = repetitions - 11;
++tokens;
break;
} else {
tokens->code = 18;
tokens->extra_bits = 0x7f; // 138 repeated 0s
++tokens;
repetitions -= 138;
}
}
return tokens;
}
int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree,
HuffmanTreeToken* tokens, int max_tokens) {
HuffmanTreeToken* const starting_token = tokens;
HuffmanTreeToken* const ending_token = tokens + max_tokens;
const int depth_size = tree->num_symbols;
int prev_value = 8; // 8 is the initial value for rle.
int i = 0;
assert(tokens != NULL);
while (i < depth_size) {
const int value = tree->code_lengths[i];
int k = i + 1;
int runs;
while (k < depth_size && tree->code_lengths[k] == value) ++k;
runs = k - i;
if (value == 0) {
tokens = CodeRepeatedZeros(runs, tokens);
} else {
tokens = CodeRepeatedValues(runs, tokens, value, prev_value);
prev_value = value;
}
i += runs;
assert(tokens <= ending_token);
}
(void)ending_token; // suppress 'unused variable' warning
return (int)(tokens - starting_token);
}
// -----------------------------------------------------------------------------
// Pre-reversed 4-bit values.
static const uint8_t kReversedBits[16] = {
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
};
static uint32_t ReverseBits(int num_bits, uint32_t bits) {
uint32_t retval = 0;
int i = 0;
while (i < num_bits) {
i += 4;
retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i);
bits >>= 4;
}
retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits);
return retval;
}
// Get the actual bit values for a tree of bit depths.
static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) {
// 0 bit-depth means that the symbol does not exist.
int i;
int len;
uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1];
int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
assert(tree != NULL);
len = tree->num_symbols;
for (i = 0; i < len; ++i) {
const int code_length = tree->code_lengths[i];
assert(code_length <= MAX_ALLOWED_CODE_LENGTH);
++depth_count[code_length];
}
depth_count[0] = 0; // ignore unused symbol
next_code[0] = 0;
{
uint32_t code = 0;
for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) {
code = (code + depth_count[i - 1]) << 1;
next_code[i] = code;
}
}
for (i = 0; i < len; ++i) {
const int code_length = tree->code_lengths[i];
tree->codes[i] = ReverseBits(code_length, next_code[code_length]++);
}
}
// -----------------------------------------------------------------------------
// Main entry point
void VP8LCreateHuffmanTree(uint32_t* const histogram, int tree_depth_limit,
uint8_t* const buf_rle,
HuffmanTree* const huff_tree,
HuffmanTreeCode* const huff_code) {
const int num_symbols = huff_code->num_symbols;
memset(buf_rle, 0, num_symbols * sizeof(*buf_rle));
OptimizeHuffmanForRle(num_symbols, buf_rle, histogram);
GenerateOptimalTree(histogram, num_symbols, huff_tree, tree_depth_limit,
huff_code->code_lengths);
// Create the actual bit codes for the bit lengths.
ConvertBitDepthsToSymbols(huff_code);
}

View File

@@ -0,0 +1,60 @@
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
// Entropy encoding (Huffman) for webp lossless
#ifndef WEBP_UTILS_HUFFMAN_ENCODE_UTILS_H_
#define WEBP_UTILS_HUFFMAN_ENCODE_UTILS_H_
#include "src/webp/types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Struct for holding the tree header in coded form.
typedef struct {
uint8_t code; // value (0..15) or escape code (16,17,18)
uint8_t extra_bits; // extra bits for escape codes
} HuffmanTreeToken;
// Struct to represent the tree codes (depth and bits array).
typedef struct {
int num_symbols; // Number of symbols.
uint8_t* code_lengths; // Code lengths of the symbols.
uint16_t* codes; // Symbol Codes.
} HuffmanTreeCode;
// Struct to represent the Huffman tree.
typedef struct {
uint32_t total_count_; // Symbol frequency.
int value_; // Symbol value.
int pool_index_left_; // Index for the left sub-tree.
int pool_index_right_; // Index for the right sub-tree.
} HuffmanTree;
// Turn the Huffman tree into a token sequence.
// Returns the number of tokens used.
int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree,
HuffmanTreeToken* tokens, int max_tokens);
// Create an optimized tree, and tokenize it.
// 'buf_rle' and 'huff_tree' are pre-allocated and the 'tree' is the constructed
// huffman code tree.
void VP8LCreateHuffmanTree(uint32_t* const histogram, int tree_depth_limit,
uint8_t* const buf_rle, HuffmanTree* const huff_tree,
HuffmanTreeCode* const tree);
#ifdef __cplusplus
}
#endif
#endif // WEBP_UTILS_HUFFMAN_ENCODE_UTILS_H_

View File

@@ -0,0 +1,223 @@
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Utilities for building and looking up Huffman trees.
//
// Author: Urvang Joshi (urvang@google.com)
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "src/utils/huffman_utils.h"
#include "src/utils/utils.h"
#include "src/webp/format_constants.h"
// Huffman data read via DecodeImageStream is represented in two (red and green)
// bytes.
#define MAX_HTREE_GROUPS 0x10000
HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
HTreeGroup* const htree_groups =
(HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups));
if (htree_groups == NULL) {
return NULL;
}
assert(num_htree_groups <= MAX_HTREE_GROUPS);
return htree_groups;
}
void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) {
if (htree_groups != NULL) {
WebPSafeFree(htree_groups);
}
}
// Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
// bit-wise reversal of the len least significant bits of key.
static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) {
uint32_t step = 1 << (len - 1);
while (key & step) {
step >>= 1;
}
return step ? (key & (step - 1)) + step : key;
}
// Stores code in table[0], table[step], table[2*step], ..., table[end].
// Assumes that end is an integer multiple of step.
static WEBP_INLINE void ReplicateValue(HuffmanCode* table,
int step, int end,
HuffmanCode code) {
assert(end % step == 0);
do {
end -= step;
table[end] = code;
} while (end > 0);
}
// Returns the table width of the next 2nd level table. count is the histogram
// of bit lengths for the remaining symbols, len is the code length of the next
// processed symbol
static WEBP_INLINE int NextTableBitSize(const int* const count,
int len, int root_bits) {
int left = 1 << (len - root_bits);
while (len < MAX_ALLOWED_CODE_LENGTH) {
left -= count[len];
if (left <= 0) break;
++len;
left <<= 1;
}
return len - root_bits;
}
// sorted[code_lengths_size] is a pre-allocated array for sorting symbols
// by code length.
static int BuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
const int code_lengths[], int code_lengths_size,
uint16_t sorted[]) {
HuffmanCode* table = root_table; // next available space in table
int total_size = 1 << root_bits; // total size root table + 2nd level table
int len; // current code length
int symbol; // symbol index in original or sorted table
// number of codes of each length:
int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
// offsets in sorted table for each length:
int offset[MAX_ALLOWED_CODE_LENGTH + 1];
assert(code_lengths_size != 0);
assert(code_lengths != NULL);
assert(root_table != NULL);
assert(root_bits > 0);
// Build histogram of code lengths.
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) {
return 0;
}
++count[code_lengths[symbol]];
}
// Error, all code lengths are zeros.
if (count[0] == code_lengths_size) {
return 0;
}
// Generate offsets into sorted symbol table by code length.
offset[1] = 0;
for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) {
if (count[len] > (1 << len)) {
return 0;
}
offset[len + 1] = offset[len] + count[len];
}
// Sort symbols by length, by symbol order within each length.
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
const int symbol_code_length = code_lengths[symbol];
if (code_lengths[symbol] > 0) {
sorted[offset[symbol_code_length]++] = symbol;
}
}
// Special case code with only one value.
if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) {
HuffmanCode code;
code.bits = 0;
code.value = (uint16_t)sorted[0];
ReplicateValue(table, 1, total_size, code);
return total_size;
}
{
int step; // step size to replicate values in current table
uint32_t low = -1; // low bits for current root entry
uint32_t mask = total_size - 1; // mask for low bits
uint32_t key = 0; // reversed prefix code
int num_nodes = 1; // number of Huffman tree nodes
int num_open = 1; // number of open branches in current tree level
int table_bits = root_bits; // key length of current table
int table_size = 1 << table_bits; // size of current table
symbol = 0;
// Fill in root table.
for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) {
num_open <<= 1;
num_nodes += num_open;
num_open -= count[len];
if (num_open < 0) {
return 0;
}
for (; count[len] > 0; --count[len]) {
HuffmanCode code;
code.bits = (uint8_t)len;
code.value = (uint16_t)sorted[symbol++];
ReplicateValue(&table[key], step, table_size, code);
key = GetNextKey(key, len);
}
}
// Fill in 2nd level tables and add pointers to root table.
for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH;
++len, step <<= 1) {
num_open <<= 1;
num_nodes += num_open;
num_open -= count[len];
if (num_open < 0) {
return 0;
}
for (; count[len] > 0; --count[len]) {
HuffmanCode code;
if ((key & mask) != low) {
table += table_size;
table_bits = NextTableBitSize(count, len, root_bits);
table_size = 1 << table_bits;
total_size += table_size;
low = key & mask;
root_table[low].bits = (uint8_t)(table_bits + root_bits);
root_table[low].value = (uint16_t)((table - root_table) - low);
}
code.bits = (uint8_t)(len - root_bits);
code.value = (uint16_t)sorted[symbol++];
ReplicateValue(&table[key >> root_bits], step, table_size, code);
key = GetNextKey(key, len);
}
}
// Check if tree is full.
if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) {
return 0;
}
}
return total_size;
}
// Maximum code_lengths_size is 2328 (reached for 11-bit color_cache_bits).
// More commonly, the value is around ~280.
#define MAX_CODE_LENGTHS_SIZE \
((1 << MAX_CACHE_BITS) + NUM_LITERAL_CODES + NUM_LENGTH_CODES)
// Cut-off value for switching between heap and stack allocation.
#define SORTED_SIZE_CUTOFF 512
int VP8LBuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
const int code_lengths[], int code_lengths_size) {
int total_size;
assert(code_lengths_size <= MAX_CODE_LENGTHS_SIZE);
if (code_lengths_size <= SORTED_SIZE_CUTOFF) {
// use local stack-allocated array.
uint16_t sorted[SORTED_SIZE_CUTOFF];
total_size = BuildHuffmanTable(root_table, root_bits,
code_lengths, code_lengths_size, sorted);
} else { // rare case. Use heap allocation.
uint16_t* const sorted =
(uint16_t*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted));
if (sorted == NULL) return 0;
total_size = BuildHuffmanTable(root_table, root_bits,
code_lengths, code_lengths_size, sorted);
WebPSafeFree(sorted);
}
return total_size;
}

View File

@@ -0,0 +1,88 @@
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Utilities for building and looking up Huffman trees.
//
// Author: Urvang Joshi (urvang@google.com)
#ifndef WEBP_UTILS_HUFFMAN_UTILS_H_
#define WEBP_UTILS_HUFFMAN_UTILS_H_
#include <assert.h>
#include "src/webp/format_constants.h"
#include "src/webp/types.h"
#ifdef __cplusplus
extern "C" {
#endif
#define HUFFMAN_TABLE_BITS 8
#define HUFFMAN_TABLE_MASK ((1 << HUFFMAN_TABLE_BITS) - 1)
#define LENGTHS_TABLE_BITS 7
#define LENGTHS_TABLE_MASK ((1 << LENGTHS_TABLE_BITS) - 1)
// Huffman lookup table entry
typedef struct {
uint8_t bits; // number of bits used for this symbol
uint16_t value; // symbol value or table offset
} HuffmanCode;
// long version for holding 32b values
typedef struct {
int bits; // number of bits used for this symbol,
// or an impossible value if not a literal code.
uint32_t value; // 32b packed ARGB value if literal,
// or non-literal symbol otherwise
} HuffmanCode32;
#define HUFFMAN_PACKED_BITS 6
#define HUFFMAN_PACKED_TABLE_SIZE (1u << HUFFMAN_PACKED_BITS)
// Huffman table group.
// Includes special handling for the following cases:
// - is_trivial_literal: one common literal base for RED/BLUE/ALPHA (not GREEN)
// - is_trivial_code: only 1 code (no bit is read from bitstream)
// - use_packed_table: few enough literal symbols, so all the bit codes
// can fit into a small look-up table packed_table[]
// The common literal base, if applicable, is stored in 'literal_arb'.
typedef struct HTreeGroup HTreeGroup;
struct HTreeGroup {
HuffmanCode* htrees[HUFFMAN_CODES_PER_META_CODE];
int is_trivial_literal; // True, if huffman trees for Red, Blue & Alpha
// Symbols are trivial (have a single code).
uint32_t literal_arb; // If is_trivial_literal is true, this is the
// ARGB value of the pixel, with Green channel
// being set to zero.
int is_trivial_code; // true if is_trivial_literal with only one code
int use_packed_table; // use packed table below for short literal code
// table mapping input bits to a packed values, or escape case to literal code
HuffmanCode32 packed_table[HUFFMAN_PACKED_TABLE_SIZE];
};
// Creates the instance of HTreeGroup with specified number of tree-groups.
HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups);
// Releases the memory allocated for HTreeGroup.
void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups);
// Builds Huffman lookup table assuming code lengths are in symbol order.
// The 'code_lengths' is pre-allocated temporary memory buffer used for creating
// the huffman table.
// Returns built table size or 0 in case of error (invalid tree or
// memory error).
int VP8LBuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
const int code_lengths[], int code_lengths_size);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // WEBP_UTILS_HUFFMAN_UTILS_H_

View File

@@ -0,0 +1,285 @@
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Implement gradient smoothing: we replace a current alpha value by its
// surrounding average if it's close enough (that is: the change will be less
// than the minimum distance between two quantized level).
// We use sliding window for computing the 2d moving average.
//
// Author: Skal (pascal.massimino@gmail.com)
#include "src/utils/quant_levels_dec_utils.h"
#include <string.h> // for memset
#include "src/utils/utils.h"
// #define USE_DITHERING // uncomment to enable ordered dithering (not vital)
#define FIX 16 // fix-point precision for averaging
#define LFIX 2 // extra precision for look-up table
#define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size
#if defined(USE_DITHERING)
#define DFIX 4 // extra precision for ordered dithering
#define DSIZE 4 // dithering size (must be a power of two)
// cf. http://en.wikipedia.org/wiki/Ordered_dithering
static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
{ 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision
{ 12, 4, 14, 6 },
{ 3, 11, 1, 9 },
{ 15, 7, 13, 5 }
};
#else
#define DFIX 0
#endif
typedef struct {
int width_, height_; // dimension
int stride_; // stride in bytes
int row_; // current input row being processed
uint8_t* src_; // input pointer
uint8_t* dst_; // output pointer
int radius_; // filter radius (=delay)
int scale_; // normalization factor, in FIX bits precision
void* mem_; // all memory
// various scratch buffers
uint16_t* start_;
uint16_t* cur_;
uint16_t* end_;
uint16_t* top_;
uint16_t* average_;
// input levels distribution
int num_levels_; // number of quantized levels
int min_, max_; // min and max level values
int min_level_dist_; // smallest distance between two consecutive levels
int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory
} SmoothParams;
//------------------------------------------------------------------------------
#define CLIP_8b_MASK (int)(~0U << (8 + DFIX))
static WEBP_INLINE uint8_t clip_8b(int v) {
return (!(v & CLIP_8b_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
}
#undef CLIP_8b_MASK
// vertical accumulation
static void VFilter(SmoothParams* const p) {
const uint8_t* src = p->src_;
const int w = p->width_;
uint16_t* const cur = p->cur_;
const uint16_t* const top = p->top_;
uint16_t* const out = p->end_;
uint16_t sum = 0; // all arithmetic is modulo 16bit
int x;
for (x = 0; x < w; ++x) {
uint16_t new_value;
sum += src[x];
new_value = top[x] + sum;
out[x] = new_value - cur[x]; // vertical sum of 'r' pixels.
cur[x] = new_value;
}
// move input pointers one row down
p->top_ = p->cur_;
p->cur_ += w;
if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over
// We replicate edges, as it's somewhat easier as a boundary condition.
// That's why we don't update the 'src' pointer on top/bottom area:
if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
p->src_ += p->stride_;
}
}
// horizontal accumulation. We use mirror replication of missing pixels, as it's
// a little easier to implement (surprisingly).
static void HFilter(SmoothParams* const p) {
const uint16_t* const in = p->end_;
uint16_t* const out = p->average_;
const uint32_t scale = p->scale_;
const int w = p->width_;
const int r = p->radius_;
int x;
for (x = 0; x <= r; ++x) { // left mirroring
const uint16_t delta = in[x + r - 1] + in[r - x];
out[x] = (delta * scale) >> FIX;
}
for (; x < w - r; ++x) { // bulk middle run
const uint16_t delta = in[x + r] - in[x - r - 1];
out[x] = (delta * scale) >> FIX;
}
for (; x < w; ++x) { // right mirroring
const uint16_t delta =
2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
out[x] = (delta * scale) >> FIX;
}
}
// emit one filtered output row
static void ApplyFilter(SmoothParams* const p) {
const uint16_t* const average = p->average_;
const int w = p->width_;
const int16_t* const correction = p->correction_;
#if defined(USE_DITHERING)
const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
#endif
uint8_t* const dst = p->dst_;
int x;
for (x = 0; x < w; ++x) {
const int v = dst[x];
if (v < p->max_ && v > p->min_) {
const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
#if defined(USE_DITHERING)
dst[x] = clip_8b(c + dither[x % DSIZE]);
#else
dst[x] = clip_8b(c);
#endif
}
}
p->dst_ += p->stride_; // advance output pointer
}
//------------------------------------------------------------------------------
// Initialize correction table
static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
// The correction curve is:
// f(x) = x for x <= threshold2
// f(x) = 0 for x >= threshold1
// and a linear interpolation for range x=[threshold2, threshold1]
// (along with f(-x) = -f(x) symmetry).
// Note that: threshold2 = 3/4 * threshold1
const int threshold1 = min_dist << LFIX;
const int threshold2 = (3 * threshold1) >> 2;
const int max_threshold = threshold2 << DFIX;
const int delta = threshold1 - threshold2;
int i;
for (i = 1; i <= LUT_SIZE; ++i) {
int c = (i <= threshold2) ? (i << DFIX)
: (i < threshold1) ? max_threshold * (threshold1 - i) / delta
: 0;
c >>= LFIX;
lut[+i] = +c;
lut[-i] = -c;
}
lut[0] = 0;
}
static void CountLevels(SmoothParams* const p) {
int i, j, last_level;
uint8_t used_levels[256] = { 0 };
const uint8_t* data = p->src_;
p->min_ = 255;
p->max_ = 0;
for (j = 0; j < p->height_; ++j) {
for (i = 0; i < p->width_; ++i) {
const int v = data[i];
if (v < p->min_) p->min_ = v;
if (v > p->max_) p->max_ = v;
used_levels[v] = 1;
}
data += p->stride_;
}
// Compute the mininum distance between two non-zero levels.
p->min_level_dist_ = p->max_ - p->min_;
last_level = -1;
for (i = 0; i < 256; ++i) {
if (used_levels[i]) {
++p->num_levels_;
if (last_level >= 0) {
const int level_dist = i - last_level;
if (level_dist < p->min_level_dist_) {
p->min_level_dist_ = level_dist;
}
}
last_level = i;
}
}
}
// Initialize all params.
static int InitParams(uint8_t* const data, int width, int height, int stride,
int radius, SmoothParams* const p) {
const int R = 2 * radius + 1; // total size of the kernel
const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
const size_t size_m = width * sizeof(*p->average_);
const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
const size_t total_size = size_scratch_m + size_m + size_lut;
uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
if (mem == NULL) return 0;
p->mem_ = (void*)mem;
p->start_ = (uint16_t*)mem;
p->cur_ = p->start_;
p->end_ = p->start_ + R * width;
p->top_ = p->end_ - width;
memset(p->top_, 0, width * sizeof(*p->top_));
mem += size_scratch_m;
p->average_ = (uint16_t*)mem;
mem += size_m;
p->width_ = width;
p->height_ = height;
p->stride_ = stride;
p->src_ = data;
p->dst_ = data;
p->radius_ = radius;
p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant
p->row_ = -radius;
// analyze the input distribution so we can best-fit the threshold
CountLevels(p);
// correction table
p->correction_ = ((int16_t*)mem) + LUT_SIZE;
InitCorrectionLUT(p->correction_, p->min_level_dist_);
return 1;
}
static void CleanupParams(SmoothParams* const p) {
WebPSafeFree(p->mem_);
}
int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride,
int strength) {
const int radius = 4 * strength / 100;
if (strength < 0 || strength > 100) return 0;
if (data == NULL || width <= 0 || height <= 0) return 0; // bad params
if (radius > 0) {
SmoothParams p;
memset(&p, 0, sizeof(p));
if (!InitParams(data, width, height, stride, radius, &p)) return 0;
if (p.num_levels_ > 2) {
for (; p.row_ < p.height_; ++p.row_) {
VFilter(&p); // accumulate average of input
// Need to wait few rows in order to prime the filter,
// before emitting some output.
if (p.row_ >= p.radius_) {
HFilter(&p);
ApplyFilter(&p);
}
}
}
CleanupParams(&p);
}
return 1;
}

View File

@@ -0,0 +1,35 @@
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Alpha plane de-quantization utility
//
// Author: Vikas Arora (vikasa@google.com)
#ifndef WEBP_UTILS_QUANT_LEVELS_DEC_UTILS_H_
#define WEBP_UTILS_QUANT_LEVELS_DEC_UTILS_H_
#include "src/webp/types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Apply post-processing to input 'data' of size 'width'x'height' assuming that
// the source was quantized to a reduced number of levels. 'stride' is in bytes.
// Strength is in [0..100] and controls the amount of dithering applied.
// Returns false in case of error (data is NULL, invalid parameters,
// malloc failure, ...).
int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride,
int strength);
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* WEBP_UTILS_QUANT_LEVELS_DEC_UTILS_H_ */

View File

@@ -0,0 +1,140 @@
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Quantize levels for specified number of quantization-levels ([2, 256]).
// Min and max values are preserved (usual 0 and 255 for alpha plane).
//
// Author: Skal (pascal.massimino@gmail.com)
#include <assert.h>
#include "src/utils/quant_levels_utils.h"
#define NUM_SYMBOLS 256
#define MAX_ITER 6 // Maximum number of convergence steps.
#define ERROR_THRESHOLD 1e-4 // MSE stopping criterion.
// -----------------------------------------------------------------------------
// Quantize levels.
int QuantizeLevels(uint8_t* const data, int width, int height,
int num_levels, uint64_t* const sse) {
int freq[NUM_SYMBOLS] = { 0 };
int q_level[NUM_SYMBOLS] = { 0 };
double inv_q_level[NUM_SYMBOLS] = { 0 };
int min_s = 255, max_s = 0;
const size_t data_size = height * width;
int i, num_levels_in, iter;
double last_err = 1.e38, err = 0.;
const double err_threshold = ERROR_THRESHOLD * data_size;
if (data == NULL) {
return 0;
}
if (width <= 0 || height <= 0) {
return 0;
}
if (num_levels < 2 || num_levels > 256) {
return 0;
}
{
size_t n;
num_levels_in = 0;
for (n = 0; n < data_size; ++n) {
num_levels_in += (freq[data[n]] == 0);
if (min_s > data[n]) min_s = data[n];
if (max_s < data[n]) max_s = data[n];
++freq[data[n]];
}
}
if (num_levels_in <= num_levels) goto End; // nothing to do!
// Start with uniformly spread centroids.
for (i = 0; i < num_levels; ++i) {
inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1);
}
// Fixed values. Won't be changed.
q_level[min_s] = 0;
q_level[max_s] = num_levels - 1;
assert(inv_q_level[0] == min_s);
assert(inv_q_level[num_levels - 1] == max_s);
// k-Means iterations.
for (iter = 0; iter < MAX_ITER; ++iter) {
double q_sum[NUM_SYMBOLS] = { 0 };
double q_count[NUM_SYMBOLS] = { 0 };
int s, slot = 0;
// Assign classes to representatives.
for (s = min_s; s <= max_s; ++s) {
// Keep track of the nearest neighbour 'slot'
while (slot < num_levels - 1 &&
2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
++slot;
}
if (freq[s] > 0) {
q_sum[slot] += s * freq[s];
q_count[slot] += freq[s];
}
q_level[s] = slot;
}
// Assign new representatives to classes.
if (num_levels > 2) {
for (slot = 1; slot < num_levels - 1; ++slot) {
const double count = q_count[slot];
if (count > 0.) {
inv_q_level[slot] = q_sum[slot] / count;
}
}
}
// Compute convergence error.
err = 0.;
for (s = min_s; s <= max_s; ++s) {
const double error = s - inv_q_level[q_level[s]];
err += freq[s] * error * error;
}
// Check for convergence: we stop as soon as the error is no
// longer improving.
if (last_err - err < err_threshold) break;
last_err = err;
}
// Remap the alpha plane to quantized values.
{
// double->int rounding operation can be costly, so we do it
// once for all before remapping. We also perform the data[] -> slot
// mapping, while at it (avoid one indirection in the final loop).
uint8_t map[NUM_SYMBOLS];
int s;
size_t n;
for (s = min_s; s <= max_s; ++s) {
const int slot = q_level[s];
map[s] = (uint8_t)(inv_q_level[slot] + .5);
}
// Final pass.
for (n = 0; n < data_size; ++n) {
data[n] = map[data[n]];
}
}
End:
// Store sum of squared error if needed.
if (sse != NULL) *sse = (uint64_t)err;
return 1;
}

View File

@@ -0,0 +1,36 @@
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Alpha plane quantization utility
//
// Author: Vikas Arora (vikasa@google.com)
#ifndef WEBP_UTILS_QUANT_LEVELS_UTILS_H_
#define WEBP_UTILS_QUANT_LEVELS_UTILS_H_
#include <stdlib.h>
#include "src/webp/types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Replace the input 'data' of size 'width'x'height' with 'num-levels'
// quantized values. If not NULL, 'sse' will contain the sum of squared error.
// Valid range for 'num_levels' is [2, 256].
// Returns false in case of error (data is NULL, or parameters are invalid).
int QuantizeLevels(uint8_t* const data, int width, int height, int num_levels,
uint64_t* const sse);
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* WEBP_UTILS_QUANT_LEVELS_UTILS_H_ */

View File

@@ -0,0 +1,43 @@
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Pseudo-random utilities
//
// Author: Skal (pascal.massimino@gmail.com)
#include <string.h>
#include "src/utils/random_utils.h"
//------------------------------------------------------------------------------
// 31b-range values
static const uint32_t kRandomTable[VP8_RANDOM_TABLE_SIZE] = {
0x0de15230, 0x03b31886, 0x775faccb, 0x1c88626a, 0x68385c55, 0x14b3b828,
0x4a85fef8, 0x49ddb84b, 0x64fcf397, 0x5c550289, 0x4a290000, 0x0d7ec1da,
0x5940b7ab, 0x5492577d, 0x4e19ca72, 0x38d38c69, 0x0c01ee65, 0x32a1755f,
0x5437f652, 0x5abb2c32, 0x0faa57b1, 0x73f533e7, 0x685feeda, 0x7563cce2,
0x6e990e83, 0x4730a7ed, 0x4fc0d9c6, 0x496b153c, 0x4f1403fa, 0x541afb0c,
0x73990b32, 0x26d7cb1c, 0x6fcc3706, 0x2cbb77d8, 0x75762f2a, 0x6425ccdd,
0x24b35461, 0x0a7d8715, 0x220414a8, 0x141ebf67, 0x56b41583, 0x73e502e3,
0x44cab16f, 0x28264d42, 0x73baaefb, 0x0a50ebed, 0x1d6ab6fb, 0x0d3ad40b,
0x35db3b68, 0x2b081e83, 0x77ce6b95, 0x5181e5f0, 0x78853bbc, 0x009f9494,
0x27e5ed3c
};
void VP8InitRandom(VP8Random* const rg, float dithering) {
memcpy(rg->tab_, kRandomTable, sizeof(rg->tab_));
rg->index1_ = 0;
rg->index2_ = 31;
rg->amp_ = (dithering < 0.0) ? 0
: (dithering > 1.0) ? (1 << VP8_RANDOM_DITHER_FIX)
: (uint32_t)((1 << VP8_RANDOM_DITHER_FIX) * dithering);
}
//------------------------------------------------------------------------------

View File

@@ -0,0 +1,63 @@
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Pseudo-random utilities
//
// Author: Skal (pascal.massimino@gmail.com)
#ifndef WEBP_UTILS_RANDOM_UTILS_H_
#define WEBP_UTILS_RANDOM_UTILS_H_
#include <assert.h>
#include "src/webp/types.h"
#ifdef __cplusplus
extern "C" {
#endif
#define VP8_RANDOM_DITHER_FIX 8 // fixed-point precision for dithering
#define VP8_RANDOM_TABLE_SIZE 55
typedef struct {
int index1_, index2_;
uint32_t tab_[VP8_RANDOM_TABLE_SIZE];
int amp_;
} VP8Random;
// Initializes random generator with an amplitude 'dithering' in range [0..1].
void VP8InitRandom(VP8Random* const rg, float dithering);
// Returns a centered pseudo-random number with 'num_bits' amplitude.
// (uses D.Knuth's Difference-based random generator).
// 'amp' is in VP8_RANDOM_DITHER_FIX fixed-point precision.
static WEBP_INLINE int VP8RandomBits2(VP8Random* const rg, int num_bits,
int amp) {
int diff;
assert(num_bits + VP8_RANDOM_DITHER_FIX <= 31);
diff = rg->tab_[rg->index1_] - rg->tab_[rg->index2_];
if (diff < 0) diff += (1u << 31);
rg->tab_[rg->index1_] = diff;
if (++rg->index1_ == VP8_RANDOM_TABLE_SIZE) rg->index1_ = 0;
if (++rg->index2_ == VP8_RANDOM_TABLE_SIZE) rg->index2_ = 0;
// sign-extend, 0-center
diff = (int)((uint32_t)diff << 1) >> (32 - num_bits);
diff = (diff * amp) >> VP8_RANDOM_DITHER_FIX; // restrict range
diff += 1 << (num_bits - 1); // shift back to 0.5-center
return diff;
}
static WEBP_INLINE int VP8RandomBits(VP8Random* const rg, int num_bits) {
return VP8RandomBits2(rg, num_bits, rg->amp_);
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* WEBP_UTILS_RANDOM_UTILS_H_ */

View File

@@ -0,0 +1,148 @@
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Rescaling functions
//
// Author: Skal (pascal.massimino@gmail.com)
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "src/dsp/dsp.h"
#include "src/utils/rescaler_utils.h"
//------------------------------------------------------------------------------
void WebPRescalerInit(WebPRescaler* const wrk, int src_width, int src_height,
uint8_t* const dst,
int dst_width, int dst_height, int dst_stride,
int num_channels, rescaler_t* const work) {
const int x_add = src_width, x_sub = dst_width;
const int y_add = src_height, y_sub = dst_height;
wrk->x_expand = (src_width < dst_width);
wrk->y_expand = (src_height < dst_height);
wrk->src_width = src_width;
wrk->src_height = src_height;
wrk->dst_width = dst_width;
wrk->dst_height = dst_height;
wrk->src_y = 0;
wrk->dst_y = 0;
wrk->dst = dst;
wrk->dst_stride = dst_stride;
wrk->num_channels = num_channels;
// for 'x_expand', we use bilinear interpolation
wrk->x_add = wrk->x_expand ? (x_sub - 1) : x_add;
wrk->x_sub = wrk->x_expand ? (x_add - 1) : x_sub;
if (!wrk->x_expand) { // fx_scale is not used otherwise
wrk->fx_scale = WEBP_RESCALER_FRAC(1, wrk->x_sub);
}
// vertical scaling parameters
wrk->y_add = wrk->y_expand ? y_add - 1 : y_add;
wrk->y_sub = wrk->y_expand ? y_sub - 1 : y_sub;
wrk->y_accum = wrk->y_expand ? wrk->y_sub : wrk->y_add;
if (!wrk->y_expand) {
// This is WEBP_RESCALER_FRAC(dst_height, x_add * y_add) without the cast.
// Its value is <= WEBP_RESCALER_ONE, because dst_height <= wrk->y_add, and
// wrk->x_add >= 1;
const uint64_t ratio =
(uint64_t)dst_height * WEBP_RESCALER_ONE / (wrk->x_add * wrk->y_add);
if (ratio != (uint32_t)ratio) {
// When ratio == WEBP_RESCALER_ONE, we can't represent the ratio with the
// current fixed-point precision. This happens when src_height ==
// wrk->y_add (which == src_height), and wrk->x_add == 1.
// => We special-case fxy_scale = 0, in WebPRescalerExportRow().
wrk->fxy_scale = 0;
} else {
wrk->fxy_scale = (uint32_t)ratio;
}
wrk->fy_scale = WEBP_RESCALER_FRAC(1, wrk->y_sub);
} else {
wrk->fy_scale = WEBP_RESCALER_FRAC(1, wrk->x_add);
// wrk->fxy_scale is unused here.
}
wrk->irow = work;
wrk->frow = work + num_channels * dst_width;
memset(work, 0, 2 * dst_width * num_channels * sizeof(*work));
WebPRescalerDspInit();
}
int WebPRescalerGetScaledDimensions(int src_width, int src_height,
int* const scaled_width,
int* const scaled_height) {
assert(scaled_width != NULL);
assert(scaled_height != NULL);
{
int width = *scaled_width;
int height = *scaled_height;
// if width is unspecified, scale original proportionally to height ratio.
if (width == 0) {
width =
(int)(((uint64_t)src_width * height + src_height / 2) / src_height);
}
// if height is unspecified, scale original proportionally to width ratio.
if (height == 0) {
height =
(int)(((uint64_t)src_height * width + src_width / 2) / src_width);
}
// Check if the overall dimensions still make sense.
if (width <= 0 || height <= 0) {
return 0;
}
*scaled_width = width;
*scaled_height = height;
return 1;
}
}
//------------------------------------------------------------------------------
// all-in-one calls
int WebPRescaleNeededLines(const WebPRescaler* const wrk, int max_num_lines) {
const int num_lines = (wrk->y_accum + wrk->y_sub - 1) / wrk->y_sub;
return (num_lines > max_num_lines) ? max_num_lines : num_lines;
}
int WebPRescalerImport(WebPRescaler* const wrk, int num_lines,
const uint8_t* src, int src_stride) {
int total_imported = 0;
while (total_imported < num_lines && !WebPRescalerHasPendingOutput(wrk)) {
if (wrk->y_expand) {
rescaler_t* const tmp = wrk->irow;
wrk->irow = wrk->frow;
wrk->frow = tmp;
}
WebPRescalerImportRow(wrk, src);
if (!wrk->y_expand) { // Accumulate the contribution of the new row.
int x;
for (x = 0; x < wrk->num_channels * wrk->dst_width; ++x) {
wrk->irow[x] += wrk->frow[x];
}
}
++wrk->src_y;
src += src_stride;
++total_imported;
wrk->y_accum -= wrk->y_sub;
}
return total_imported;
}
int WebPRescalerExport(WebPRescaler* const rescaler) {
int total_exported = 0;
while (WebPRescalerHasPendingOutput(rescaler)) {
WebPRescalerExportRow(rescaler);
++total_exported;
}
return total_exported;
}
//------------------------------------------------------------------------------

View File

@@ -0,0 +1,101 @@
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Rescaling functions
//
// Author: Skal (pascal.massimino@gmail.com)
#ifndef WEBP_UTILS_RESCALER_UTILS_H_
#define WEBP_UTILS_RESCALER_UTILS_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "src/webp/types.h"
#define WEBP_RESCALER_RFIX 32 // fixed-point precision for multiplies
#define WEBP_RESCALER_ONE (1ull << WEBP_RESCALER_RFIX)
#define WEBP_RESCALER_FRAC(x, y) \
((uint32_t)(((uint64_t)(x) << WEBP_RESCALER_RFIX) / (y)))
// Structure used for on-the-fly rescaling
typedef uint32_t rescaler_t; // type for side-buffer
typedef struct WebPRescaler WebPRescaler;
struct WebPRescaler {
int x_expand; // true if we're expanding in the x direction
int y_expand; // true if we're expanding in the y direction
int num_channels; // bytes to jump between pixels
uint32_t fx_scale; // fixed-point scaling factors
uint32_t fy_scale; // ''
uint32_t fxy_scale; // ''
int y_accum; // vertical accumulator
int y_add, y_sub; // vertical increments
int x_add, x_sub; // horizontal increments
int src_width, src_height; // source dimensions
int dst_width, dst_height; // destination dimensions
int src_y, dst_y; // row counters for input and output
uint8_t* dst;
int dst_stride;
rescaler_t* irow, *frow; // work buffer
};
// Initialize a rescaler given scratch area 'work' and dimensions of src & dst.
void WebPRescalerInit(WebPRescaler* const rescaler,
int src_width, int src_height,
uint8_t* const dst,
int dst_width, int dst_height, int dst_stride,
int num_channels,
rescaler_t* const work);
// If either 'scaled_width' or 'scaled_height' (but not both) is 0 the value
// will be calculated preserving the aspect ratio, otherwise the values are
// left unmodified. Returns true on success, false if either value is 0 after
// performing the scaling calculation.
int WebPRescalerGetScaledDimensions(int src_width, int src_height,
int* const scaled_width,
int* const scaled_height);
// Returns the number of input lines needed next to produce one output line,
// considering that the maximum available input lines are 'max_num_lines'.
int WebPRescaleNeededLines(const WebPRescaler* const rescaler,
int max_num_lines);
// Import multiple rows over all channels, until at least one row is ready to
// be exported. Returns the actual number of lines that were imported.
int WebPRescalerImport(WebPRescaler* const rescaler, int num_rows,
const uint8_t* src, int src_stride);
// Export as many rows as possible. Return the numbers of rows written.
int WebPRescalerExport(WebPRescaler* const rescaler);
// Return true if input is finished
static WEBP_INLINE
int WebPRescalerInputDone(const WebPRescaler* const rescaler) {
return (rescaler->src_y >= rescaler->src_height);
}
// Return true if output is finished
static WEBP_INLINE
int WebPRescalerOutputDone(const WebPRescaler* const rescaler) {
return (rescaler->dst_y >= rescaler->dst_height);
}
// Return true if there are pending output rows ready.
static WEBP_INLINE
int WebPRescalerHasPendingOutput(const WebPRescaler* const rescaler) {
return !WebPRescalerOutputDone(rescaler) && (rescaler->y_accum <= 0);
}
//------------------------------------------------------------------------------
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* WEBP_UTILS_RESCALER_UTILS_H_ */

View File

@@ -0,0 +1,359 @@
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Multi-threaded worker
//
// Author: Skal (pascal.massimino@gmail.com)
#include <assert.h>
#include <string.h> // for memset()
#include "src/utils/thread_utils.h"
#include "src/utils/utils.h"
#ifdef WEBP_USE_THREAD
#if defined(_WIN32)
#include <windows.h>
typedef HANDLE pthread_t;
typedef CRITICAL_SECTION pthread_mutex_t;
#if _WIN32_WINNT >= 0x0600 // Windows Vista / Server 2008 or greater
#define USE_WINDOWS_CONDITION_VARIABLE
typedef CONDITION_VARIABLE pthread_cond_t;
#else
typedef struct {
HANDLE waiting_sem_;
HANDLE received_sem_;
HANDLE signal_event_;
} pthread_cond_t;
#endif // _WIN32_WINNT >= 0x600
#ifndef WINAPI_FAMILY_PARTITION
#define WINAPI_PARTITION_DESKTOP 1
#define WINAPI_FAMILY_PARTITION(x) x
#endif
#if !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
#define USE_CREATE_THREAD
#endif
#else // !_WIN32
#include <pthread.h>
#endif // _WIN32
typedef struct {
pthread_mutex_t mutex_;
pthread_cond_t condition_;
pthread_t thread_;
} WebPWorkerImpl;
#if defined(_WIN32)
//------------------------------------------------------------------------------
// simplistic pthread emulation layer
#include <process.h>
// _beginthreadex requires __stdcall
#define THREADFN unsigned int __stdcall
#define THREAD_RETURN(val) (unsigned int)((DWORD_PTR)val)
#if _WIN32_WINNT >= 0x0501 // Windows XP or greater
#define WaitForSingleObject(obj, timeout) \
WaitForSingleObjectEx(obj, timeout, FALSE /*bAlertable*/)
#endif
static int pthread_create(pthread_t* const thread, const void* attr,
unsigned int (__stdcall *start)(void*), void* arg) {
(void)attr;
#ifdef USE_CREATE_THREAD
*thread = CreateThread(NULL, /* lpThreadAttributes */
0, /* dwStackSize */
start,
arg,
0, /* dwStackSize */
NULL); /* lpThreadId */
#else
*thread = (pthread_t)_beginthreadex(NULL, /* void *security */
0, /* unsigned stack_size */
start,
arg,
0, /* unsigned initflag */
NULL); /* unsigned *thrdaddr */
#endif
if (*thread == NULL) return 1;
SetThreadPriority(*thread, THREAD_PRIORITY_ABOVE_NORMAL);
return 0;
}
static int pthread_join(pthread_t thread, void** value_ptr) {
(void)value_ptr;
return (WaitForSingleObject(thread, INFINITE) != WAIT_OBJECT_0 ||
CloseHandle(thread) == 0);
}
// Mutex
static int pthread_mutex_init(pthread_mutex_t* const mutex, void* mutexattr) {
(void)mutexattr;
#if _WIN32_WINNT >= 0x0600 // Windows Vista / Server 2008 or greater
InitializeCriticalSectionEx(mutex, 0 /*dwSpinCount*/, 0 /*Flags*/);
#else
InitializeCriticalSection(mutex);
#endif
return 0;
}
static int pthread_mutex_lock(pthread_mutex_t* const mutex) {
EnterCriticalSection(mutex);
return 0;
}
static int pthread_mutex_unlock(pthread_mutex_t* const mutex) {
LeaveCriticalSection(mutex);
return 0;
}
static int pthread_mutex_destroy(pthread_mutex_t* const mutex) {
DeleteCriticalSection(mutex);
return 0;
}
// Condition
static int pthread_cond_destroy(pthread_cond_t* const condition) {
int ok = 1;
#ifdef USE_WINDOWS_CONDITION_VARIABLE
(void)condition;
#else
ok &= (CloseHandle(condition->waiting_sem_) != 0);
ok &= (CloseHandle(condition->received_sem_) != 0);
ok &= (CloseHandle(condition->signal_event_) != 0);
#endif
return !ok;
}
static int pthread_cond_init(pthread_cond_t* const condition, void* cond_attr) {
(void)cond_attr;
#ifdef USE_WINDOWS_CONDITION_VARIABLE
InitializeConditionVariable(condition);
#else
condition->waiting_sem_ = CreateSemaphore(NULL, 0, 1, NULL);
condition->received_sem_ = CreateSemaphore(NULL, 0, 1, NULL);
condition->signal_event_ = CreateEvent(NULL, FALSE, FALSE, NULL);
if (condition->waiting_sem_ == NULL ||
condition->received_sem_ == NULL ||
condition->signal_event_ == NULL) {
pthread_cond_destroy(condition);
return 1;
}
#endif
return 0;
}
static int pthread_cond_signal(pthread_cond_t* const condition) {
int ok = 1;
#ifdef USE_WINDOWS_CONDITION_VARIABLE
WakeConditionVariable(condition);
#else
if (WaitForSingleObject(condition->waiting_sem_, 0) == WAIT_OBJECT_0) {
// a thread is waiting in pthread_cond_wait: allow it to be notified
ok = SetEvent(condition->signal_event_);
// wait until the event is consumed so the signaler cannot consume
// the event via its own pthread_cond_wait.
ok &= (WaitForSingleObject(condition->received_sem_, INFINITE) !=
WAIT_OBJECT_0);
}
#endif
return !ok;
}
static int pthread_cond_wait(pthread_cond_t* const condition,
pthread_mutex_t* const mutex) {
int ok;
#ifdef USE_WINDOWS_CONDITION_VARIABLE
ok = SleepConditionVariableCS(condition, mutex, INFINITE);
#else
// note that there is a consumer available so the signal isn't dropped in
// pthread_cond_signal
if (!ReleaseSemaphore(condition->waiting_sem_, 1, NULL)) return 1;
// now unlock the mutex so pthread_cond_signal may be issued
pthread_mutex_unlock(mutex);
ok = (WaitForSingleObject(condition->signal_event_, INFINITE) ==
WAIT_OBJECT_0);
ok &= ReleaseSemaphore(condition->received_sem_, 1, NULL);
pthread_mutex_lock(mutex);
#endif
return !ok;
}
#else // !_WIN32
# define THREADFN void*
# define THREAD_RETURN(val) val
#endif // _WIN32
//------------------------------------------------------------------------------
static THREADFN ThreadLoop(void* ptr) {
WebPWorker* const worker = (WebPWorker*)ptr;
WebPWorkerImpl* const impl = (WebPWorkerImpl*)worker->impl_;
int done = 0;
while (!done) {
pthread_mutex_lock(&impl->mutex_);
while (worker->status_ == OK) { // wait in idling mode
pthread_cond_wait(&impl->condition_, &impl->mutex_);
}
if (worker->status_ == WORK) {
WebPGetWorkerInterface()->Execute(worker);
worker->status_ = OK;
} else if (worker->status_ == NOT_OK) { // finish the worker
done = 1;
}
// signal to the main thread that we're done (for Sync())
pthread_cond_signal(&impl->condition_);
pthread_mutex_unlock(&impl->mutex_);
}
return THREAD_RETURN(NULL); // Thread is finished
}
// main thread state control
static void ChangeState(WebPWorker* const worker, WebPWorkerStatus new_status) {
// No-op when attempting to change state on a thread that didn't come up.
// Checking status_ without acquiring the lock first would result in a data
// race.
WebPWorkerImpl* const impl = (WebPWorkerImpl*)worker->impl_;
if (impl == NULL) return;
pthread_mutex_lock(&impl->mutex_);
if (worker->status_ >= OK) {
// wait for the worker to finish
while (worker->status_ != OK) {
pthread_cond_wait(&impl->condition_, &impl->mutex_);
}
// assign new status and release the working thread if needed
if (new_status != OK) {
worker->status_ = new_status;
pthread_cond_signal(&impl->condition_);
}
}
pthread_mutex_unlock(&impl->mutex_);
}
#endif // WEBP_USE_THREAD
//------------------------------------------------------------------------------
static void Init(WebPWorker* const worker) {
memset(worker, 0, sizeof(*worker));
worker->status_ = NOT_OK;
}
static int Sync(WebPWorker* const worker) {
#ifdef WEBP_USE_THREAD
ChangeState(worker, OK);
#endif
assert(worker->status_ <= OK);
return !worker->had_error;
}
static int Reset(WebPWorker* const worker) {
int ok = 1;
worker->had_error = 0;
if (worker->status_ < OK) {
#ifdef WEBP_USE_THREAD
WebPWorkerImpl* const impl =
(WebPWorkerImpl*)WebPSafeCalloc(1, sizeof(WebPWorkerImpl));
worker->impl_ = (void*)impl;
if (worker->impl_ == NULL) {
return 0;
}
if (pthread_mutex_init(&impl->mutex_, NULL)) {
goto Error;
}
if (pthread_cond_init(&impl->condition_, NULL)) {
pthread_mutex_destroy(&impl->mutex_);
goto Error;
}
pthread_mutex_lock(&impl->mutex_);
ok = !pthread_create(&impl->thread_, NULL, ThreadLoop, worker);
if (ok) worker->status_ = OK;
pthread_mutex_unlock(&impl->mutex_);
if (!ok) {
pthread_mutex_destroy(&impl->mutex_);
pthread_cond_destroy(&impl->condition_);
Error:
WebPSafeFree(impl);
worker->impl_ = NULL;
return 0;
}
#else
worker->status_ = OK;
#endif
} else if (worker->status_ > OK) {
ok = Sync(worker);
}
assert(!ok || (worker->status_ == OK));
return ok;
}
static void Execute(WebPWorker* const worker) {
if (worker->hook != NULL) {
worker->had_error |= !worker->hook(worker->data1, worker->data2);
}
}
static void Launch(WebPWorker* const worker) {
#ifdef WEBP_USE_THREAD
ChangeState(worker, WORK);
#else
Execute(worker);
#endif
}
static void End(WebPWorker* const worker) {
#ifdef WEBP_USE_THREAD
if (worker->impl_ != NULL) {
WebPWorkerImpl* const impl = (WebPWorkerImpl*)worker->impl_;
ChangeState(worker, NOT_OK);
pthread_join(impl->thread_, NULL);
pthread_mutex_destroy(&impl->mutex_);
pthread_cond_destroy(&impl->condition_);
WebPSafeFree(impl);
worker->impl_ = NULL;
}
#else
worker->status_ = NOT_OK;
assert(worker->impl_ == NULL);
#endif
assert(worker->status_ == NOT_OK);
}
//------------------------------------------------------------------------------
static WebPWorkerInterface g_worker_interface = {
Init, Reset, Sync, Launch, Execute, End
};
int WebPSetWorkerInterface(const WebPWorkerInterface* const winterface) {
if (winterface == NULL ||
winterface->Init == NULL || winterface->Reset == NULL ||
winterface->Sync == NULL || winterface->Launch == NULL ||
winterface->Execute == NULL || winterface->End == NULL) {
return 0;
}
g_worker_interface = *winterface;
return 1;
}
const WebPWorkerInterface* WebPGetWorkerInterface(void) {
return &g_worker_interface;
}
//------------------------------------------------------------------------------

View File

@@ -0,0 +1,90 @@
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Multi-threaded worker
//
// Author: Skal (pascal.massimino@gmail.com)
#ifndef WEBP_UTILS_THREAD_UTILS_H_
#define WEBP_UTILS_THREAD_UTILS_H_
#ifdef HAVE_CONFIG_H
#include "src/webp/config.h"
#endif
#include "src/webp/types.h"
#ifdef __cplusplus
extern "C" {
#endif
// State of the worker thread object
typedef enum {
NOT_OK = 0, // object is unusable
OK, // ready to work
WORK // busy finishing the current task
} WebPWorkerStatus;
// Function to be called by the worker thread. Takes two opaque pointers as
// arguments (data1 and data2), and should return false in case of error.
typedef int (*WebPWorkerHook)(void*, void*);
// Synchronization object used to launch job in the worker thread
typedef struct {
void* impl_; // platform-dependent implementation worker details
WebPWorkerStatus status_;
WebPWorkerHook hook; // hook to call
void* data1; // first argument passed to 'hook'
void* data2; // second argument passed to 'hook'
int had_error; // return value of the last call to 'hook'
} WebPWorker;
// The interface for all thread-worker related functions. All these functions
// must be implemented.
typedef struct {
// Must be called first, before any other method.
void (*Init)(WebPWorker* const worker);
// Must be called to initialize the object and spawn the thread. Re-entrant.
// Will potentially launch the thread. Returns false in case of error.
int (*Reset)(WebPWorker* const worker);
// Makes sure the previous work is finished. Returns true if worker->had_error
// was not set and no error condition was triggered by the working thread.
int (*Sync)(WebPWorker* const worker);
// Triggers the thread to call hook() with data1 and data2 arguments. These
// hook/data1/data2 values can be changed at any time before calling this
// function, but not be changed afterward until the next call to Sync().
void (*Launch)(WebPWorker* const worker);
// This function is similar to Launch() except that it calls the
// hook directly instead of using a thread. Convenient to bypass the thread
// mechanism while still using the WebPWorker structs. Sync() must
// still be called afterward (for error reporting).
void (*Execute)(WebPWorker* const worker);
// Kill the thread and terminate the object. To use the object again, one
// must call Reset() again.
void (*End)(WebPWorker* const worker);
} WebPWorkerInterface;
// Install a new set of threading functions, overriding the defaults. This
// should be done before any workers are started, i.e., before any encoding or
// decoding takes place. The contents of the interface struct are copied, it
// is safe to free the corresponding memory after this call. This function is
// not thread-safe. Return false in case of invalid pointer or methods.
WEBP_EXTERN int WebPSetWorkerInterface(
const WebPWorkerInterface* const winterface);
// Retrieve the currently set thread worker interface.
WEBP_EXTERN const WebPWorkerInterface* WebPGetWorkerInterface(void);
//------------------------------------------------------------------------------
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* WEBP_UTILS_THREAD_UTILS_H_ */

330
thirdparty/libwebp/src/utils/utils.c vendored Normal file
View File

@@ -0,0 +1,330 @@
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Misc. common utility functions
//
// Author: Skal (pascal.massimino@gmail.com)
#include <stdlib.h>
#include <string.h> // for memcpy()
#include "src/webp/decode.h"
#include "src/webp/encode.h"
#include "src/webp/format_constants.h" // for MAX_PALETTE_SIZE
#include "src/utils/color_cache_utils.h"
#include "src/utils/utils.h"
// If PRINT_MEM_INFO is defined, extra info (like total memory used, number of
// alloc/free etc) is printed. For debugging/tuning purpose only (it's slow,
// and not multi-thread safe!).
// An interesting alternative is valgrind's 'massif' tool:
// http://valgrind.org/docs/manual/ms-manual.html
// Here is an example command line:
/* valgrind --tool=massif --massif-out-file=massif.out \
--stacks=yes --alloc-fn=WebPSafeMalloc --alloc-fn=WebPSafeCalloc
ms_print massif.out
*/
// In addition:
// * if PRINT_MEM_TRAFFIC is defined, all the details of the malloc/free cycles
// are printed.
// * if MALLOC_FAIL_AT is defined, the global environment variable
// $MALLOC_FAIL_AT is used to simulate a memory error when calloc or malloc
// is called for the nth time. Example usage:
// export MALLOC_FAIL_AT=50 && ./examples/cwebp input.png
// * if MALLOC_LIMIT is defined, the global environment variable $MALLOC_LIMIT
// sets the maximum amount of memory (in bytes) made available to libwebp.
// This can be used to emulate environment with very limited memory.
// Example: export MALLOC_LIMIT=64000000 && ./examples/dwebp picture.webp
// #define PRINT_MEM_INFO
// #define PRINT_MEM_TRAFFIC
// #define MALLOC_FAIL_AT
// #define MALLOC_LIMIT
//------------------------------------------------------------------------------
// Checked memory allocation
#if defined(PRINT_MEM_INFO)
#include <stdio.h>
static int num_malloc_calls = 0;
static int num_calloc_calls = 0;
static int num_free_calls = 0;
static int countdown_to_fail = 0; // 0 = off
typedef struct MemBlock MemBlock;
struct MemBlock {
void* ptr_;
size_t size_;
MemBlock* next_;
};
static MemBlock* all_blocks = NULL;
static size_t total_mem = 0;
static size_t total_mem_allocated = 0;
static size_t high_water_mark = 0;
static size_t mem_limit = 0;
static int exit_registered = 0;
static void PrintMemInfo(void) {
fprintf(stderr, "\nMEMORY INFO:\n");
fprintf(stderr, "num calls to: malloc = %4d\n", num_malloc_calls);
fprintf(stderr, " calloc = %4d\n", num_calloc_calls);
fprintf(stderr, " free = %4d\n", num_free_calls);
fprintf(stderr, "total_mem: %u\n", (uint32_t)total_mem);
fprintf(stderr, "total_mem allocated: %u\n", (uint32_t)total_mem_allocated);
fprintf(stderr, "high-water mark: %u\n", (uint32_t)high_water_mark);
while (all_blocks != NULL) {
MemBlock* b = all_blocks;
all_blocks = b->next_;
free(b);
}
}
static void Increment(int* const v) {
if (!exit_registered) {
#if defined(MALLOC_FAIL_AT)
{
const char* const malloc_fail_at_str = getenv("MALLOC_FAIL_AT");
if (malloc_fail_at_str != NULL) {
countdown_to_fail = atoi(malloc_fail_at_str);
}
}
#endif
#if defined(MALLOC_LIMIT)
{
const char* const malloc_limit_str = getenv("MALLOC_LIMIT");
if (malloc_limit_str != NULL) {
mem_limit = atoi(malloc_limit_str);
}
}
#endif
(void)countdown_to_fail;
(void)mem_limit;
atexit(PrintMemInfo);
exit_registered = 1;
}
++*v;
}
static void AddMem(void* ptr, size_t size) {
if (ptr != NULL) {
MemBlock* const b = (MemBlock*)malloc(sizeof(*b));
if (b == NULL) abort();
b->next_ = all_blocks;
all_blocks = b;
b->ptr_ = ptr;
b->size_ = size;
total_mem += size;
total_mem_allocated += size;
#if defined(PRINT_MEM_TRAFFIC)
#if defined(MALLOC_FAIL_AT)
fprintf(stderr, "fail-count: %5d [mem=%u]\n",
num_malloc_calls + num_calloc_calls, (uint32_t)total_mem);
#else
fprintf(stderr, "Mem: %u (+%u)\n", (uint32_t)total_mem, (uint32_t)size);
#endif
#endif
if (total_mem > high_water_mark) high_water_mark = total_mem;
}
}
static void SubMem(void* ptr) {
if (ptr != NULL) {
MemBlock** b = &all_blocks;
// Inefficient search, but that's just for debugging.
while (*b != NULL && (*b)->ptr_ != ptr) b = &(*b)->next_;
if (*b == NULL) {
fprintf(stderr, "Invalid pointer free! (%p)\n", ptr);
abort();
}
{
MemBlock* const block = *b;
*b = block->next_;
total_mem -= block->size_;
#if defined(PRINT_MEM_TRAFFIC)
fprintf(stderr, "Mem: %u (-%u)\n",
(uint32_t)total_mem, (uint32_t)block->size_);
#endif
free(block);
}
}
}
#else
#define Increment(v) do {} while (0)
#define AddMem(p, s) do {} while (0)
#define SubMem(p) do {} while (0)
#endif
// Returns 0 in case of overflow of nmemb * size.
static int CheckSizeArgumentsOverflow(uint64_t nmemb, size_t size) {
const uint64_t total_size = nmemb * size;
if (nmemb == 0) return 1;
if ((uint64_t)size > WEBP_MAX_ALLOCABLE_MEMORY / nmemb) return 0;
if (total_size != (size_t)total_size) return 0;
#if defined(PRINT_MEM_INFO) && defined(MALLOC_FAIL_AT)
if (countdown_to_fail > 0 && --countdown_to_fail == 0) {
return 0; // fake fail!
}
#endif
#if defined(MALLOC_LIMIT)
if (mem_limit > 0) {
const uint64_t new_total_mem = (uint64_t)total_mem + total_size;
if (new_total_mem != (size_t)new_total_mem ||
new_total_mem > mem_limit) {
return 0; // fake fail!
}
}
#endif
return 1;
}
void* WebPSafeMalloc(uint64_t nmemb, size_t size) {
void* ptr;
Increment(&num_malloc_calls);
if (!CheckSizeArgumentsOverflow(nmemb, size)) return NULL;
assert(nmemb * size > 0);
ptr = malloc((size_t)(nmemb * size));
AddMem(ptr, (size_t)(nmemb * size));
return ptr;
}
void* WebPSafeCalloc(uint64_t nmemb, size_t size) {
void* ptr;
Increment(&num_calloc_calls);
if (!CheckSizeArgumentsOverflow(nmemb, size)) return NULL;
assert(nmemb * size > 0);
ptr = calloc((size_t)nmemb, size);
AddMem(ptr, (size_t)(nmemb * size));
return ptr;
}
void WebPSafeFree(void* const ptr) {
if (ptr != NULL) {
Increment(&num_free_calls);
SubMem(ptr);
}
free(ptr);
}
// Public API function.
void WebPFree(void* ptr) {
free(ptr);
}
//------------------------------------------------------------------------------
void WebPCopyPlane(const uint8_t* src, int src_stride,
uint8_t* dst, int dst_stride, int width, int height) {
assert(src != NULL && dst != NULL);
assert(src_stride >= width && dst_stride >= width);
while (height-- > 0) {
memcpy(dst, src, width);
src += src_stride;
dst += dst_stride;
}
}
void WebPCopyPixels(const WebPPicture* const src, WebPPicture* const dst) {
assert(src != NULL && dst != NULL);
assert(src->width == dst->width && src->height == dst->height);
assert(src->use_argb && dst->use_argb);
WebPCopyPlane((uint8_t*)src->argb, 4 * src->argb_stride, (uint8_t*)dst->argb,
4 * dst->argb_stride, 4 * src->width, src->height);
}
//------------------------------------------------------------------------------
#define COLOR_HASH_SIZE (MAX_PALETTE_SIZE * 4)
#define COLOR_HASH_RIGHT_SHIFT 22 // 32 - log2(COLOR_HASH_SIZE).
int WebPGetColorPalette(const WebPPicture* const pic, uint32_t* const palette) {
int i;
int x, y;
int num_colors = 0;
uint8_t in_use[COLOR_HASH_SIZE] = { 0 };
uint32_t colors[COLOR_HASH_SIZE];
const uint32_t* argb = pic->argb;
const int width = pic->width;
const int height = pic->height;
uint32_t last_pix = ~argb[0]; // so we're sure that last_pix != argb[0]
assert(pic != NULL);
assert(pic->use_argb);
for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
int key;
if (argb[x] == last_pix) {
continue;
}
last_pix = argb[x];
key = VP8LHashPix(last_pix, COLOR_HASH_RIGHT_SHIFT);
while (1) {
if (!in_use[key]) {
colors[key] = last_pix;
in_use[key] = 1;
++num_colors;
if (num_colors > MAX_PALETTE_SIZE) {
return MAX_PALETTE_SIZE + 1; // Exact count not needed.
}
break;
} else if (colors[key] == last_pix) {
break; // The color is already there.
} else {
// Some other color sits here, so do linear conflict resolution.
++key;
key &= (COLOR_HASH_SIZE - 1); // Key mask.
}
}
}
argb += pic->argb_stride;
}
if (palette != NULL) { // Fill the colors into palette.
num_colors = 0;
for (i = 0; i < COLOR_HASH_SIZE; ++i) {
if (in_use[i]) {
palette[num_colors] = colors[i];
++num_colors;
}
}
}
return num_colors;
}
#undef COLOR_HASH_SIZE
#undef COLOR_HASH_RIGHT_SHIFT
//------------------------------------------------------------------------------
#if defined(WEBP_NEED_LOG_TABLE_8BIT)
const uint8_t WebPLogTable8bit[256] = { // 31 ^ clz(i)
0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
};
#endif
//------------------------------------------------------------------------------

178
thirdparty/libwebp/src/utils/utils.h vendored Normal file
View File

@@ -0,0 +1,178 @@
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Misc. common utility functions
//
// Authors: Skal (pascal.massimino@gmail.com)
// Urvang (urvang@google.com)
#ifndef WEBP_UTILS_UTILS_H_
#define WEBP_UTILS_UTILS_H_
#ifdef HAVE_CONFIG_H
#include "src/webp/config.h"
#endif
#include <assert.h>
#include <limits.h>
#include "src/dsp/dsp.h"
#include "src/webp/types.h"
#ifdef __cplusplus
extern "C" {
#endif
//------------------------------------------------------------------------------
// Memory allocation
// This is the maximum memory amount that libwebp will ever try to allocate.
#ifndef WEBP_MAX_ALLOCABLE_MEMORY
#if SIZE_MAX > (1ULL << 34)
#define WEBP_MAX_ALLOCABLE_MEMORY (1ULL << 34)
#else
// For 32-bit targets keep this below INT_MAX to avoid valgrind warnings.
#define WEBP_MAX_ALLOCABLE_MEMORY ((1ULL << 31) - (1 << 16))
#endif
#endif // WEBP_MAX_ALLOCABLE_MEMORY
// size-checking safe malloc/calloc: verify that the requested size is not too
// large, or return NULL. You don't need to call these for constructs like
// malloc(sizeof(foo)), but only if there's picture-dependent size involved
// somewhere (like: malloc(num_pixels * sizeof(*something))). That's why this
// safe malloc() borrows the signature from calloc(), pointing at the dangerous
// underlying multiply involved.
WEBP_EXTERN void* WebPSafeMalloc(uint64_t nmemb, size_t size);
// Note that WebPSafeCalloc() expects the second argument type to be 'size_t'
// in order to favor the "calloc(num_foo, sizeof(foo))" pattern.
WEBP_EXTERN void* WebPSafeCalloc(uint64_t nmemb, size_t size);
// Companion deallocation function to the above allocations.
WEBP_EXTERN void WebPSafeFree(void* const ptr);
//------------------------------------------------------------------------------
// Alignment
#define WEBP_ALIGN_CST 31
#define WEBP_ALIGN(PTR) (((uintptr_t)(PTR) + WEBP_ALIGN_CST) & ~WEBP_ALIGN_CST)
#include <string.h>
// memcpy() is the safe way of moving potentially unaligned 32b memory.
static WEBP_INLINE uint32_t WebPMemToUint32(const uint8_t* const ptr) {
uint32_t A;
memcpy(&A, ptr, sizeof(A));
return A;
}
static WEBP_INLINE void WebPUint32ToMem(uint8_t* const ptr, uint32_t val) {
memcpy(ptr, &val, sizeof(val));
}
//------------------------------------------------------------------------------
// Reading/writing data.
// Read 16, 24 or 32 bits stored in little-endian order.
static WEBP_INLINE int GetLE16(const uint8_t* const data) {
return (int)(data[0] << 0) | (data[1] << 8);
}
static WEBP_INLINE int GetLE24(const uint8_t* const data) {
return GetLE16(data) | (data[2] << 16);
}
static WEBP_INLINE uint32_t GetLE32(const uint8_t* const data) {
return GetLE16(data) | ((uint32_t)GetLE16(data + 2) << 16);
}
// Store 16, 24 or 32 bits in little-endian order.
static WEBP_INLINE void PutLE16(uint8_t* const data, int val) {
assert(val < (1 << 16));
data[0] = (val >> 0);
data[1] = (val >> 8);
}
static WEBP_INLINE void PutLE24(uint8_t* const data, int val) {
assert(val < (1 << 24));
PutLE16(data, val & 0xffff);
data[2] = (val >> 16);
}
static WEBP_INLINE void PutLE32(uint8_t* const data, uint32_t val) {
PutLE16(data, (int)(val & 0xffff));
PutLE16(data + 2, (int)(val >> 16));
}
// Returns 31 ^ clz(n) = log2(n). This is the default C-implementation, either
// based on table or not. Can be used as fallback if clz() is not available.
#define WEBP_NEED_LOG_TABLE_8BIT
extern const uint8_t WebPLogTable8bit[256];
static WEBP_INLINE int WebPLog2FloorC(uint32_t n) {
int log_value = 0;
while (n >= 256) {
log_value += 8;
n >>= 8;
}
return log_value + WebPLogTable8bit[n];
}
// Returns (int)floor(log2(n)). n must be > 0.
// use GNU builtins where available.
#if defined(__GNUC__) && \
((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4)
static WEBP_INLINE int BitsLog2Floor(uint32_t n) {
return 31 ^ __builtin_clz(n);
}
#elif defined(_MSC_VER) && _MSC_VER > 1310 && \
(defined(_M_X64) || defined(_M_IX86))
#include <intrin.h>
#pragma intrinsic(_BitScanReverse)
static WEBP_INLINE int BitsLog2Floor(uint32_t n) {
unsigned long first_set_bit;
_BitScanReverse(&first_set_bit, n);
return first_set_bit;
}
#else // default: use the C-version.
static WEBP_INLINE int BitsLog2Floor(uint32_t n) { return WebPLog2FloorC(n); }
#endif
//------------------------------------------------------------------------------
// Pixel copying.
struct WebPPicture;
// Copy width x height pixels from 'src' to 'dst' honoring the strides.
WEBP_EXTERN void WebPCopyPlane(const uint8_t* src, int src_stride,
uint8_t* dst, int dst_stride,
int width, int height);
// Copy ARGB pixels from 'src' to 'dst' honoring strides. 'src' and 'dst' are
// assumed to be already allocated and using ARGB data.
WEBP_EXTERN void WebPCopyPixels(const struct WebPPicture* const src,
struct WebPPicture* const dst);
//------------------------------------------------------------------------------
// Unique colors.
// Returns count of unique colors in 'pic', assuming pic->use_argb is true.
// If the unique color count is more than MAX_PALETTE_SIZE, returns
// MAX_PALETTE_SIZE+1.
// If 'palette' is not NULL and number of unique colors is less than or equal to
// MAX_PALETTE_SIZE, also outputs the actual unique colors into 'palette'.
// Note: 'palette' is assumed to be an array already allocated with at least
// MAX_PALETTE_SIZE elements.
WEBP_EXTERN int WebPGetColorPalette(const struct WebPPicture* const pic,
uint32_t* const palette);
//------------------------------------------------------------------------------
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* WEBP_UTILS_UTILS_H_ */